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ABSTRACT

The ant colony optimization algorithms and their applications on the multiple knapsack
problem (MKP) are introduced. The MKP is a hard combinatorial optimization problem with
wide application. Problems from different industrial fields can be interpreted as a knapsack
problem including financial and other management. The MKP is represented by a graph, and
solutions are represented by paths through the graph. Two pheromone models are compared:
pheromone on nodes and pheromone on arcs of the graph. The MKP is a constraint problem
which provides possibilities to use varied heuristic information. The purpose of the chapter
is to compare a variety of heuristic and pheromone models and different variants of ACO

algorithms on MKP.

INTRODUCTION

Combinatorial optimizationisaprocessof find-
ing the best or optimal solution for problems
with adiscrete set of feasible solutions. Appli-
cations occur in numerous settings involving
operationsmanagement and logistics. Theeco-
nomic impact of combinatorial optimizationis
profound, affecting diverse sections. While
much progress has been made in finding exact
solutions to some combinatorial optimization

problems (COPs), many hard combinatorial
problems (NP-problems) are still not exactly
solved in a reasonable time and require good
meta-heuristic methods. The aim of meta-heu-
ristic methods for COPs is to produce quickly
good-quality solutions. In many practical prob-
lems they have proved to be effective and
efficient approaches, being flexible to accom-
modate variations in problem structure and in
the objectives considered for the eval uation of
solutions (Lonnstedt, 1973). For all these rea-
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sons, meta-heuristics has probably been one of
themost stimulated research topicsin optimiza-
tion for the last two decades. Examples are
decision making problems.

Theant colony optimization (ACO) isanew
meta-heuristic method. ACO algorithms are
appliedinreal life and industrial problems for
which a good solution for a short time is re-
quired. ACO achieves good results for prob-
lems with restrictive constraints like multiple
knapsack problem. It represents a multi-agent
system where low-level interaction between
single agents results in a complex behavior of
the whole ant colony. It imitates the behavior
shown by real ants when searching for food.
Antsaresocial insectsthat livein coloniesand
whose behavior isaimed moretothesurvival of
the colony as a whole than to that of a single
individual component of thecolony. Animpor-
tant and interesting aspect of ant colonies is
how ants can find the shortest path between the
food sources and their nest. Antscommunicate
information about food sources viaachemical
substance called pheromone, which the ants
secrete as they move along.

Analogously, ACO is based on the indirect
communication of a colony of simple agents,
called“artificial” ants, mediated by “artificial”
pheromonetrails. Thepheromonetrailsin ACO
algorithmsserveasdistributed numerical infor-
mation, which antsuseto probabilistically con-
struct solutionsto the problem to be solved and
which antsadapt during the algorithm’ sexecu-
tion to reflect their search experience. Artifi-
cial ants not only imitate the behavior de-
scribed, but al so apply additional problem-spe-
cific heuristic information. The idea is devel-
oped by Moyson and Manderick (1988). The
first example of ant algorithm is Ant System
(Dorigo, Maniezzo, & Colorni, 1996), andit has
been appliedto and provided solutionsfor vari-
oushard combinatorial optimization problems.
Recently, different versions of the ACO algo-

rithms such as the ant colony system (Dorigo,
1999, pp. 53-66), the ant algorithm with elitist
ants(Dorigo, 1999, pp. 137-172), themax-min
ant system (Stutzle & Hoos, 2000), the ant
algorithm with additional reinforcement
(Fidanova, 2002), and the best-worst ant sys-
tem (Corddn, Fernandez de Viana, & Herrera,
2002) have been applied to many optimization
problems. Examplesarethetraveling salesman
problem (Dorigo, 1999, pp. 53-66), the qua-
dratic assignment (Gambardella, 1999, pp.167-
176), the vehicle routing (Gambardella, 1999,
pp. 63-76), and the multiple knapsack problem
(Fidanova, 2003).

The multiple knapsack problem (MKP) isa
hard combinatorial optimization problem with
wide applicationswhich enlistsmany practical
problemsfrom different domainslikefinancial
and other management. It is an interesting
problem of both practical and theoretical point
of view: practical because of its wide applica-
tion; theoretical becauseitisaconstraint prob-
lem and givesvariouspossibilitiesfor heuristic
constructions.

Theaim of thischapter isto introduce ACO
and its application on MKP.

ANT COLONY OPTIMIZATION
ALGORTHM

All ACOalgorithmscan beappliedtoany COP.
They follow specific algorithmic scheme. After
the initialization of the pheromone trails and
control parameters, a main loop is repeated
until thestopping criteriaaremet. Thestopping
criteriacan be acertain number of iterations, a
given CPU time limit, or atime limit without
improving the result or if some lower (upper)
bound of the result is known and the achieved
resultisclose enoughtothisbound. Inthemain
loop, the ants construct feasible solutions, and
then the pheromone trails are updated. More
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precisely, partial problem solutionsare seen as
states: each ant starts from random state and
moves from a state | to another state j of the
partial solution. At each step, ant k computesa
set of feasible expansions to its current state
and moves to one of these expansions, accord-
ing to a probability distribution specified as
follows. For ant k, the probability pi'j‘ to move
from a state i to a state j depends on the
combination of two values:

T. 1.
I it je allowed,
Efil-rln
leallowed
pilj( =
0 otherwise (1)
where:

« 7 isthe attractiveness of the move as
computed by some heuristic information,
indicatingapriori desirability of that move;

* 7; is the pheromone trail level of the
move, indicating how profitableit hasbeen
inthe past to makethat particular move (it
representsthereforeaposterior indication
of the desirability of that move); and

« allowed, istheset of remainingfeasible
states.

Thus, the higher theval ue of the pheromone
and the heuristic information are, the more
profitable it is to include state j in the partial
solution. Inthebeginning, theinitial pheromone
level is set tor,, which is a small positive
constant. In nature there is not any pheromone
on the ground at the beginning, or the initial
pheromone ist, =0. If in ACO algorithm the
initial pheromoneis z, = 0, thentheprobability
to chose next state will be pf=0 and the

search process will stop from the beginning.
Thusit isimportant that the initial pheromone
valueispositive.

The pheromone level of the elements of the
solutionsischanged by applying thefollowing
updatingrule:

T; < pI; +AT, (2

where the rule 0< p <1 models evaporation
and At; is an added pheromone. The ACO
algorithmsdiffer in pheromoneupdating. There
exist variousversions of ACO algorithmssuch
asthe ant system (Dorigo et al., 1996), the ant
colony system (Dorigo, 1999, pp. 53-66), ACO
withelitistants(Dorigo, 1999, pp. 137-172), the
max-min ant system (Stitzle & Hoos, 2000),
theant algorithmwith additional reinforcement
(Fidanova, 2002, pp. 292-293), the best-worst
ant system (Cordonet al., 2002), and soon. The
main difference between them is pheromone
updating.

Ant System
The first ant algorithm is ant system. In this
algorithmall pheromoneisdecreased, and after

that every ant addsapheromone corresponding
to the quality of the solution. More precisely:

(L-p)f(S*)  if itismaximization problem

(1-p)/ £(S*) if itisminimization problem

where;

. At} isthe pheromone added by the ant k;
. Sis the solution achieved by ant k;
f(S) isthevalueof theobjectivefunction.

In any ant system, better solutions and ele-
ments used by more ants receive more phero-
mone.
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Ant Colony System (ACS)

The main features of the ACS algorithm are as
follows: to use the best found solution, after
each iteration the ants—which construct the
best solution from the beginning of thetrials—
add pheromone; to avoid stagnation of the
search, the pheromone on other solutions is
decreased. L ocal pheromone updating and glo-
bal pheromoneupdatingin ACSareapplied. In
the local pheromone updating the value of the
pheromone on used elements decreases and
comes between initial pheromone 7, and the
old value of the pheromone. It is a kind of
diversification of the searchinthe search space.

T; < pT; +(1-p)7,

In the global pheromone updating, the ant
that constructs the best solution adds another
pheromone depending on the quality of the
solution.

T, < oty +(1-a)Ar;

f(SY)  if itismaximizabn problen
Atk =

U]

1/ £(S) if itisminimizatn problem

The main idea of ACS is to enforce the
pheromone of thebest found solution and at the
same time to diversify the search.

Ant Algorithm with Elitist Ants

Inthisant algorithm only oneor afixed number
(n) of ants add pheromone. The pheromone
corresponding to other elementsisonly evapo-
rated. Thus the pheromone of the best n solu-
tionsisforced. It isakind of intensification of
the search around the best found solutions.

Max-Min Ant System (MMAS)

The main features of MMAS algorithm are as
follows:

. To exploit the best found solution—after
each iteration only one ant adds a phero-
mone.

. To avoid stagnation of the search, the
range of possible pheromonevalueislim-
ited to afixed interval [z, 7, |-

InMMA Salgorithmthepheromonevalueis
initialized so that after the first iteration all
pheromone values are equal tor,, . In the next
iterations only the elements belonging to the
best sol ution receiveapheromone; other phero-
mone values are only evaporated. The main
ideaof MMAS isto use fixed lower and upper
boundsof the pheromonevalues. If somephero-
mone value is less/greater than lower/upper
bound, it becomes equal to this fixed lower/
upper bound and thus early stagnation of the
algorithmisavoided.

Best-Worst Ant System (BWAYS)

Themainideaof BWASisto use apheromone
mutation. The pheromone value of the best
solutionisincreased, whilethepheromonevalue
of the worst solution is decreased. Thus the
probability to choose el ementsof worst solution
in the next iteration becomes lower.

Ant Algorithm with Additional
Reinforcement (ACO-AR)

The main ideaof ACO-AR is after pheromone
updating to add additional pheromoneto unused
elements. Thus some elements receive addi-
tional probability to be chosen and become
more desirable. Using ACO-AR algorithm the
unused elements have the following features:
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. They have a greater amount of phero-
mone than the elements bel onging to poor
solutions.

. They have a less amount of pheromone
than the elements belonging to the best
solution.

Thus the ants are forced to exploit a search
space which has not been exploited yet without
repeating the bad experience.

ANT ALGORITHM AND
CONVERGENCE

The ACO is a meta-heuristic algorithm for
approximate sol ution of combinatorial optimi-
zation problems. The construction of a good
solution is aresult of the agents’ cooperative
interaction. Failureinlocal optimum may occur
when we perform the ACO algorithm. Thiscan
happen when the pheromone trail is signifi-
cantly higher for one choicethan for all others.
This means that one of the choices has a much
higher amount of pheromone than the others,
and an ant will prefer this solution component
over all alternatives. Inthissituation, antscon-
struct the same solution over and over again,
and the exploration of the search space stops.
It should be avoided by influencing the prob-
abilitiesfor choosing the next sol ution compo-
nent which depends directly on the pheromone
trails. Varioustechniquesexist to avoid failing
intolocal optimum asre-initialization, smooth-
ing of the pheromone, additional reinforcement,
diversification, andintensification of thesearch.

Re-Initialization

When the ants repeat the same solution over
and over again, the pheromoneisre-initialized
(Stitzle& Hoos, 2000) andthe algorithm starts
fromthebeginning. Theaimisto start to create

solutions from other starting states and prob-
ably to construct differently from previous so-
[utions. Thistechniquecan prevent somefailing
into local optimums, but the algorithm is not
guaranteed to converge to an optimal solution.
This technique can be applied to any ant algo-
rithm.

Smoothing of the Pheromone Trails

The main idea of the smoothing (Stitzle &
Hoos, 2000) istoincreasethe pheromonetrails
according to their differences to the maximal
pheromonetrail asfollows:

Ty < Ty +5'(Tmax _Tij)v

where 0 < § <1is asmoothing parameter. The
above proposed mechanism has the advantage
that the information gathered during the run of
thealgorithmisnot completely lost, but merely
weakened. For § =1 this mechanism corre-
sponds to a re-initialization of the pheromone
trails, whilefor § = o0 pheromonetrail smooth-
ing is switched off. After the smoothing, the
current lower bound of the pheromone in-
creases.

Fixed Bounds of the Pheromone

Other method to prevent early stagnation isto
fix thelower and the upper bound of the phero-
mone (Stutzle & Hoos, 2000). Thus if the
pheromone becomes less/greater than the
lower/upper bound, it becomes equal to this
lower/upper bound. Thusthere are not choices
of very high or very low amounts of phero-
mone.

Additional Reinforcement

The aim of additional reinforcement is to add
additional pheromoneon choicesof pheromone
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low amount and thus they become more desir-
able (Fidanova, 2002, pp.292-293). It isaway
to force the ants to look for new solutions.

Search Diversification and
Intensification

In some ant algorithms, diversification and in-
tensification techniques—Iike increasing the
amount of the pheromonefor some choicesand
decreasing it for others—are used. Theaim s
tointensify the solution search on one side and
to diversify it on the other.

It isimportant to know whether the algo-
rithm convergesto theglobal optimum. Stitzle
and Dorigo (2002) proved that if theamount of
the pheromone has a finite upper bound and a
positivelower bound, thenthe ACO algorithm
convergesto the optimal solution. Thismeans
that if the probability to choose any element
does not converge to zero, then the ACO
algorithm converges to the global optimum.
Stitzleand Dorigo (2002) proved that the Ant
Colony System and Max-Min Ant System
satisfy the conditions for convergence and
thus they converge to the global optimum
whenthetime (number of iterations) converge
toinfinity.

Additional reinforcement can be applied to
any ACOagorithm. Fidanova(2004) hasproved
that after additional reinforcement of unused
elementsof any ACOalgorithm, it convergesto
optimal solutionwhenthealgorithmisrunfor a
sufficiently largenumber of iterationsindepen-
dently whether the original ACO algorithm
converges.

MULTIPLE KNAPSACK
PROBLEM

The MKP has humerous applicationsin theory
as well as in practice. It also arises as a sub-

problem in several algorithms for more com-
plex COPs, and these algorithms will benefit
from any improvement in the field of MKP.

The MKP can be thought of as a resource
allocation problem, wheretherearemresources
(the knapsacks) and n objects, and object j has
aprofit p; . Each resource has its own budget
C; (knapsack capacity) and consumptionT;; of
resource i by object j. We are interested in
maximizing the sum of the profits, whilework-
ing with a limited budget. The MKP can be
formulated asfollows:

n
max®_p, X
=1
n
subjectod ', X, <G i=1...m
=1

x, {0} j=1...,n

X; is 1 if the object j is chosen and O

otherwise.

There are m constraints in this problem, so
MKP is also called the m-dimensional knap-
sack problem.Let | ={1,...,m} andJ ={1,...,n},
with ¢, >0 for alje|. A well-stated MKP
assumesthat p; >0 and r, <¢ <" 1, forall
and. Note that the matrix and the vector are
both non-negative.

We can mention the following major appli-
cations: problemsin cargoloading, cutting stocks,
bin-packing, budget control, and financial man-
agement may be formulated as MKP. Sinha
and Zoltner (1979) proposethe use of the MKP
in fault tolerance problem, and Diffe and
Hellman (1976) designed apublic cryptography
schemewhose security realizesthedifficulty of
solving the MKP. Matrello and Toth (1984)
mention that two-processor scheduling prob-
lem may be solved as a MKP. Other applica-
tionsareindustrial management, team manage-
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ment, naval, aerospace, and computational com-
plexity theory.

The shortest path problem in a transporta-
tion network deal swith determining the subset
of the connected roads that collectively com-
prisethe shortest driving distance or the small-
est driving time or the cheapest fair between
two cities. The problemis: what subset of lines
givesthe faster response time for communica-
tion betweenthem? Complexity theory isapart
of the theory of computation dealing with the
resourcesrequired during thecomputationtime
to solve a given problem. More theoretical
application appears either in case a general
problem is transformed to a MKP or MKP
appears as a sub-problem in solving the gener-
alized assignment problem. It againisused in
solving avehicle routing problem. In addition,
MKP can be seen as a general model for any
kind of binary problems with positive coeffi-
cients (Kochenberger, McCarl, & Wymann,
1974).

In solving MKP one is not interested in
solutionsgiving aparticular order. Thereforea
partial solutionisrepresented by , and the most
recent elements incorporated to S, need not be
involved in the process for selecting the next
element. Also, solutionsfor ordering problems
have a fixed length, as a permutation of a
known number of elementsis searched. Solu-
tions of MKP, however, do not have a fixed
length. In this chapter the solution will be
represented by sequence where is 1 if the
object j is chosen and 0 otherwise.

ACO ALGORITHM FOR MKP

The MKP is an interesting problem from a
practical and theoretical point of view: practi-
cal, because it involves a lot of real-life and
industrial problems; theoretical, becauseit gives
several possibilitiesfor pheromoneand heuris-

tic models. One of the basic elements of the
ACO agorithm is the mapping of the problem
onto agraph. We decide which elements of the
problem should correspondto thenodesand the
ones to the arcs. The solutions of the problem
are represented by paths through the graph.

We define the graph of the MKP as fol-
lows: the nodes correspond to the objects and
the arcs fully connect nodes. Fully connected
graph means that after the object |, the object
j might be chosen if there are enough re-
sourcesand if theobject j isnot chosenyet. At
each iteration, every ant constructsasol ution.
It first randomly chooses the initial object
(node in the graph) and then iteratively adds
new objects (nodes in the graph) that can be
selected without violating resource constraints.
Once each ant has constructed its solution,
pheromonetrailsareupdated. The pheromone
model and heuristic information connected
with MKP will be described in detail in the
following subsections. Ants start to construct
their solution from arandom node. Therefore
a small number of ants can be used. By
experiment, itisfound that between 10 and 20
ants are enough to achieve good result, with-
out increasing the number of iterations. Thus
the used computer resources such as time and
memory are decreased.

Pheromone Model

To solve MKP with ACO algorithm, the key
point is to decide which components of the
constructed solutions should be rewarded and
how to exploit these rewards when construct-
ing new solutions. Onecan consider two differ-
ent ways of laying pheromone trails:

e Afirstpossibility istolay pheromonetrails
on each selected node of the graph (ob-
ject). Theideaistoincreasethedesirabil-
ity of some nodes so that these nodes will
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Figure 1. Average solution quality: the thick
line represents the pheromone on arcs and
the dashed line represents the pheromone
on nodes
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be morelikely to be selected in construct-
ing anew solution.

* A second possibility isto lay pheromone
trails on the arcs (i,j) of the graph. Here
the ideais to increase the desirability to
choose nodej when the last selected node
isi.

Thefirst possibility isclosely related to the
nature of the problem, asMKP isan unordered
problem. To solve MKP with ACO algorithm,
Leguizamon and Michalevizc (1999) use the
first possibility, while Fidanova(2003) usesthe
second possibility.

Thetwo pheromone possibilities have been
tested on 20 benchmarks of MKP, from OR
Library, with 100 objects and 10 constraints
(seehttp://mscmga.ms.ic.ac.uk/jeb/orlib). The
number of iterations K=500 isfixed for all the
runs. For the tests we use ACS algorithm and
20 runs of each of the benchmarks. The initial
pheromone parameter is fixed to 1,=0.5. The
evaporation parametersareo=p=0.1. Thenum-
ber of antsis set to be 10. As shown in Figure
1,thereisvery early stagnation of thealgorithm

by pheromone on nodes. This effect can be
explained with large pheromone accumul ation
on some nodes, and thus the ants repeat the
same solution over and over again. In the
second case the pheromone is dispersed on the
arcs. Wewill illustratethese phenomenawith a
small example with five objects and one con-
straint.

Example: max(x,+3X,+2X +X,+2X,)
2X +X,+3X,+X,+3X <6

For heuristic information, let the profit of
the objects be used. Thus the objects with
greater profit aremoredesirable. The ACSis
applied with one ant. Other parameters are
1,=0.5, a=p=0.5. In afirst iteration, let the
ant start fromnode 1. Using probabilisticrule
theachieved solutioninboth casesis(x,,X,,X,),
and thevalue of objectivefunctionis6. After
updating, the new amount of the pheromone
is

a. pheromone on nodes:
(3.25,3.25,3.25,0.5,0.5)
b. pheromone on arcs:

Non 325 05 05 05
05 Non 325 05 05
05 05 Non 05 05
05 05 05 Non 05
05 05 05 05 Non

Inthe second iteration, et the ant start from
the node 2. Thus constructed by the ant, the
solution in aboth cases is (x,, X, X,). Itisthe
same as in the first iteration, but achieved in
different order. The new pheromoneis:

a. pheromoneon nodes:
(3.937,3.937,3.937, 0.5, 0.5)
b. pheromone on arcs:
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Non 325 05 05 05
05 Non 3937 05 05
325 05 Non 05 05
05 05 05 Non 05
05 05 05 05 Non

In the third iteration, let the ant start from
thenode 3. Theachieved solution by both cases
is (X, X,, X,). The new pheromone is:

a. pheromoneon nodes:
(4.109, 4.109, 4.109, 0.5, 0.5)
b. pheromone on arcs:

Non 325 05 05 05
325 Non 3937 05 05
325 325 Non 05 05
05 05 05 Non 05
05 05 05 05 Non

Heuristic Information

The second component in the transition prob-
ability istheheuristicinformation. TheMKPis
aconstraint problem, and the constraintscan be
used for constructing heuristic information in
various manners. There are two main types of
heuristics: static and dynamic. Static heuristics
remain unchanged during the run of the algo-
rithm, whilethedynamic heuristicscorrespond
tothecurrent state of the problem. The profit of
the objects will be included in the heuristics
becauseitisthemostimportant informationfor
objective function. A better result is expected
when we include in the heuristics more infor-
mation for the problem.

Static Heuristics
Two types of static heuristics are proposed,

called “heuristics A” and “heuristics B” re-
spectively.

e Heuristics A: Lets; " r,. For heu-

risticinformationweuse: ;  pf/s?,0<
d, and 0 < d, are parameters. The ex-
penses of the objects areincluded in heu-
ristic information. Therefore, the objects
with greater profit and less average ex-
penses are more desirable. Thuswetry to
have some balance between expenses
and the profit for a given object.

«  HeuristicsB: Lets; " r, /c,. For heu-
risticinformationweuse: ;  p*/s;?,0<
d, and 0 < d, are parameters. Thus the
heuristicinformation dependsontheprofit,
the expenses, and the budgets. The objects
with greater profit, which use alesser part
of the budget, are more desirable.

Dynamic Heuristics

Thethird and the forth types of heuristicinfor-
mation are dynamic, and they correspondtothe
current state of the algorithm. We call them
“heuristicsC” and “heuristics D” respectively.
. Heuristics C (Leguizamon &
Michalevizc, 1999): Let

b ¢ | .nx betheremainder of the

budget before choosing the next object
ands, " r/bifb oOands,
if b,= 0. For heuristicinformation we use:

; P/s, where d, d,. Theamis
for theheuristicinformation to have maxi-
mal correspondence to the current state
of the algorithm and thus to achieve good
result. Leguizamon and Michalevizc
(1999) do not verify if b. 0, but because
it can happen and there is division by b,
we add this verification in the algorithm.
Thustheobjectswith greater profit, which
use less part of the available budget, will
be more desirable.
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Figure 2. The graphics show the average
solution quality (value of the total cost of the
objects in the knapsack) over 20 runs; the
dash-dot line represents heuristics A, the
dash line represents heuristics B, the dotted
line represents heuristics C, and the thick
line represents heuristics D
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*  HeuristicsD: Thisissimilartoheuristics
C, but the parameters d, and d, can be
different. By this heuristics, we can ob-
serve the influence of the parameters d,
and d,

The ACO algorithmswith four kind of heu-
risticinformation have been tested on 20 bench-
marks of MKP, from OR Library, with 100
objectsand 10 constraints. For the testswe use
ACS algorithm with pheromone on arcs. The
initial pheromone parameter isfixed to t,=0.5.
Theevaporation parametersaresetto o.=p=0.1.
Whend#d,,d,=3andd,=2, otherwised,=d,=1.
The number of ants is set to 10. First we
observe that the heuristics B shows advantage
over the other tree heuristics. This means that

itismoreimportant that the expensesbeasmall

10

part of the relevant budget. We expected to
achieve better results by dynamic heuristics
because they correspond to the current state of
the problem. In spite of our expectations, we
achieved weaker resultsby dynamic heuristics.
Using dynamic heuristics, the chosen object
order became important; the desirability of an
object was not the sameif it was chosen in the
beginning of theiteration or later. The MKPis
an unordered problem, and for it the order in
which the objects are chosen is not important.
Thus we can explain better results by static
heuristics. Comparing heuristics C and D, we
observe the importance of the parameters d,
and d, In the case d # d,, the achieved results
are better. The parameters d, and d, show the
importance of the profit and the constraintsin
heuristic information. If d, is greater than d,,
then the profit is more important, and in the
opposite case the constraints are more impor-
tant. If both values d, and d, are great, then the
heuristicinformationismoreimportant thanthe
pheromoneinthetransition probability.

Comparison between
ACOAlgorithms

The ACO algorithms are differing in phero-
mone updating. We compare some ACO algo-
rithmsapplied on MK P. Theant colony system,
the max-min ant system, and the ant algorithm
with additional reinforcement have been cho-
sen, because for them it is proven to converge
to the global optimum. These ACO algorithms
have been tested on 20 benchmarks of MKP
with 100 objects and 10 constraints from OR
Library. Thereported resultsare average on 20
runsof each benchmark. The pheromoneislaid
on the arcs and the heuristics B isused. ACO-
AR isapplied on ant algorithm with elitist ant.
Theadded additional pheromoneisequal tothe
maximal added pheromone. The initial phero-
mone parameter isfixedtot,=0.5. Theevapora-
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Figure 3. Average solution quality: the thick
line represents ACO-AR, the dotted line
represents MMAS, and the dashed line
represents ACS
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tion parameters are o=p=0.1. The minimal
pheromoneissettot . =1000, and the value of
themaximal pheromoneisequal totheapproxi-
mate upper bound of the pheromone (Stiitzle &
Hoos, 2000). Thenumber of antsissetto 10. As
showninFigure3, ACO-AR outperformsACS
and MMAS. By ACS and MMAS we achieve
very similar results. In some of theruns, ACO-
AR reachesthebest foundresultsinaliterature
by meta-heuristics methods.

CONCLUSION

In this chapter the ACO algorithms and their
implementations on MKP are described. The
MKPisrepresented by graph and the solutions
are represented by paths through the graph.
We compare two pheromone models, phero-
mone on the arcs of the graph of the problem
and pheromone on the nodes of the graph. We
observethat laying the pheromone on the arcs,
thealgorithm achievesbetter results. When the
pheromone is laid on the nodes on some of
them, the pheromone concentration becomes
very high and ants choose them with higher

probability. We compare four representations
of heuristic information. Best results are
achieved when the heuristic information de-
pends on the profit, the expenses, and the
budgets. The objectswith greater profit, which
use fewer parts of the budgets, are more desir-
able. Weachievebetter resultsby static heuris-
tics than by dynamics. Using dynamic heuris-
ticsthe probability to choose the same object at
the beginning of the iteration is different than
choosing it later, and for MKP the chosen
objects order is not important. At the end we
compare the results achieved by three of the
ACO algorithms, proved to converge to the
global optimum, ACS, ACO-AR, and MMAS.
We achieve best results by ACO-AR, and in
some of the runs the achieved results are equal
to the best found in the literature. In the future
we will investigate hybridization of the ACO
algorithms, combining them with other meta-
heuristictechniquesand appropriatelocal search
procedures.

ACKNOWLEDGMENT

This work is supported by the Marie Curie
program of the European Community by grant
MERG-CT-2004-510714.

REFERENCES

Cordon, O., Fernandez deViana, & Herrera, F.
(2002) Analysis of the best-worst ant system
ant itsvariationsonthe QAP. InM. Dorigo, G.
Di Caro, & M. Sampels (Eds.), From ant
coloniestoartificial ants(pp. 228-234) (LNCS
2463). Berlin: Springer-Verlag.

Dorigo,M.,Maniezzo, V., & Colorni, A. (1996).
The ant system: Optimization by a colony of
cooperative agents. |EEE Transactions on

11



Ant Colony Optimization and Multiple Knapsack Problem

Systems, Man and Cybernetics—Part B,
26(1), 29-41.

Dorigo, M., & Gambardella, L.M. (1999). Ant
colony system: A cooperativelearning approach
tothetraveling salesman problem. |EEE Trans-
actions on Evolutionary Computing, 1, 53-66.

Dorigo, M., Di Caro, G., & Gambardella, M.
(1999). Ant algorithmsfor distributed discrete
optimization. Journal of Artificial Life, 5,
137-172.

Diffe, W., & Hellman, M.E. (1976). New di-
rection in criptography. |EEE Transactionsin
Information Theory, 36, 644-654.

Fidanova, S. (2002). ACO agorithmwith addi-
tional reinforcement. InM. Dorigo, G. Di Caro,
& M. Sampels (Eds.), From ant colonies to
artificial ants (pp. 292-293) (LNCS 2463).
Berlin: Springer-Verlag.

Fidanova, S. (2002). Evolutionary algorithmfor
multiple knapsack problem. In D. Corn (Eds.),
Proceedings of the PPSN VII Workshops,
Granada, Spain.

Fidanova, S. (2003). ACO algorithm for MKP
usingvariousheuristicinformation. Inl, Dimov,
I. Lirkov, S. Margenov, & Z. Zlatev (Eds.),
Numerical methods and applications (pp.
434-330) (LNCS2542). Berlin: Springer-Verlag.

Fidanova, S. (2004). Convergence proof for a
M onte Carlo method for combinatorial optimi-
zation problems. In M. Bubak, G.D. Albada,
P.M.A. Sloot, & J. Dongarra (Eds.), Computa-
tional science (pp. 527-534) (LNCS 3039).
Berlin: Springer-Verlag.

Gambardella, M. L., Taillard, E. D., & Agazzi,
G. (1999). A multiple ant colony system for
vehiclerouting problemwithtimewindows. In
D. Corne, M. Dorigo, & F. Glover (Eds.), New
ideas in optimization (pp. 63-76). New Y ork:
McGraw Hill.

12

Gambardella, M. L., Taillard, E. D., & Dorigo,
M. (1999). Ant colonies for the QAP. Journal
of the Operational Research Society, 50,
167-176.

Kochenberger, G., McCarl, G., & Wymann, F.
(1974). A heuristics for general integer pro-
gramming. Journal of Decision Science, 5,
34-44.

Leguizamon, G., & Michalevizc, Z. (1999). A
new version of ant system for subset problems.
Proceedings of the International Confer-
ence on Evolutionary Computations, Wash-
ington.

Lonnstedt, L. (1973). The use of operational
research in twelve companies quoted on the
Stockholm Stock Exchange. Journal of Op-
erational Research, 24, 535-545.

Matrello, S., & Toth, P. A.(1984). A mixtureof
dynamic programming and branch-and-bound
for the subset-sum problem. Journal of Man-
agement Science, 30, 756-771.

Moyson, F., & Manderick, B. (1988). The col-
lective behavior of ants. An example of self-
organizationinmassiveparallelization. Proceed-
ings of the AAAI Spring Symposium on Paral-
lel Models of Intelligence, Stanford, CA.

Sinha, A., & Zoltner, A. A. (1979). The mul-
tiple-choice knapsack problem. Journal of
Operational Research, 27, 503-515.

Stitzle, T., & Hoos, H. H. (2000). Max-min ant
system. InM. Dorigo, T. Stutzle, & G. Di Caro
(Eds.), Future generation computer systems
(Vol. 16, pp. 889-914).

Stutzle, T., & Dorigo, M. (2002). A short
convergence proof for a class of ant colony
optimization algorithms. |EEE Transactions
on Evolutionary Computation, 6(4), 358-365.



