
BULGARIAN ACADEMY OF SCIENCES

———————

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 9, No 2

Sofia • 2009

Intuitionistic Fuzzy Estimation of the Ant
Methodology

S. Fidanova, P. Marinov
Institute of Parallel Processing, 1113 Sofia
E-mails: stefka@parallel.bas.bg pencho@parallel.bas.bg

Abstract: Ant Colony Optimization is a stochastic search method that mimic the
social behavior of real ants colonies, which manage to establish the shortest routs to
feeding sources and back. Such algorithms have been developed to arrive at near-
optimum solutions to large-scale optimization problems, for which traditional math-
ematical techniques may fail. In this paper a generalized net model of the process of
ant colony optimization is constructed and on each iteration intuitionistic fuzzy esti-
mations (see [3]) are made of the start nodes of the ants. Several start strategies are
prepared and combined. The study presents ideas that should be beneficial to both
practitioners and researchers involved in solving optimization problems.

Keywords: Ant colony optimization, Metaheuristics, Discrete optimization, Gener-
alized nets, Intuitionistic fuzzy estimation.

1. Introduction

The difficulties associated with using mathematical optimization on large-scale engi-
neering problems, have contributed to the development of alternative solutions. Lin-
ear programming and dynamic programming techniques, for example, often fail in
solving NP-hard problems with large number of variables. To overcome these prob-
lems, researchers have proposed mataheuristic methods for searching near-optimal
solutions to problems. One of the most successful metaheuristic is Ant Colony Opti-
mization (ACO).
Real ants foraging for food lay down quantities of pheromone (chemical cues) mark-
ing the path that they follow. An isolated ant moves essentially at random but an ant
encountering a previously laid pheromone will detect it and decide to follow it with
high probability and thereby reinforce it with a further quantity of pheromone. The

79



repetition of the above mechanism represents the auto-catalytic behavior of a real ant
colony where the more the ants follow a trail, the more attractive that trail becomes.
ACO is inspired by real ant behavior to solve hard combinatorial optimization prob-
lems. Examples of hard optimization problems are Traveling Salesman Problem
[11], Vehicle Routing [12], Minimum Spanning Tree [10], Constrain Satisfaction [8],
Knapsack Problem [6], etc. The ACO algorithm uses a colony of artificial ants that be-
have as cooperative agents in a mathematical space where they are allowed to search
and reinforce pathways (solutions) in order to find the optimal ones. The problem is
represented by graph and the ants walk on the graph to construct solutions. The solu-
tions are represented by paths in the graph. After the initialization of the pheromone
trails, the ants construct feasible solutions, starting from random nodes, and then the
pheromone trails are updated. At each step the ants compute a set of feasible moves
and select the best one (according to some probabilistic rules) to continue the rest of
the tour. The structure of the ACO algorithm is shown by the pseudocode below. The
transition probability pi,j , to choose the node j when the current node is i, is based
on the heuristic information ηi,j and the pheromone trail level τi,j of the move, where
i, j = 1, . . . , n.

pi,j =
τa
i,jη

b
i,j

∑

k∈Unused

τa
i,kη

b
i,k

,

where “Unused” is the set of unused nodes of the graph.
The higher the value of the pheromone and the heuristic information, the more

profitable it is to select this move and resume the search. In the beginning, the initial
pheromone level is set to a small positive constant value τ0; later, the ants update
this value after completing the construction stage. ACO algorithms adopt different
criteria to update the pheromone level.

Ant Colony Optimization

Initialize number of ants;

Initialize the ACO parameters;

while not end-condition do

for k=0 to number of ants

ant k choses start node;
while solution is not constructed do

ant k selects higher probability node;

end while

end for

Update-pheromone-trails;

end while

Fig. 1. Pseudocode for ACO

The pheromone trail update rule is given by:

τi,j ← ρτi,j + ∆τi,j ,

where ρ models evaporation in the nature and ∆τi,j is new added pheromone which
is proportional to the quality of the solution.

80



The novelty in this work is the use of Intuitionistic Fuzzy Estimations (IFE, see
[3]) of start nodes with respect to the quality of the solution and thus to better menage
the search process. Various start strategies and their combinations are offered.

2. Short remarks on GN theory

At the beginning will be presented the main definitions related with GN. It is gener-
alization of Petri nets. A GN is shown in Fig. 2. Its places are marked with circles.
Each vertical part of the net is called transition. GNs, like other nets, contain tokens
which are transfered from place to place. Every token enters the net with an initial
characteristic. During each transfer, the token receives new characteristics. So, they
accumulate their ”history”. Every GN-place has at most one arc entering and at most
one arc leaving it. The places with no entering arcs are called input places for the
net and those with no leaving arcs are called output places. A transition may contain
several input and several output places, the number of input places can be different
from the number of output places.

...

...

...

...

l′
1 l -

l′i l -

l′m l -

r
?

...

...

...

...

l′′
1l-

l′′jl-

l′′nl-

Fig. 2. Generalized Net

Following [1, 2, 4], will be mentioned that every GN-transition is described by a
seven-tuple (Fig. 2.)

Z = 〈L′, L′′, t1, t2, r,M, 〉,

where:
(a) L′ and L′′ are finite, non-empty sets of places (the transition’s input and output

places, respectively); for the transition in Fig. 2. these are L′ = {l′1, l′2, . . . , l′m} and
L′′ = {l′′1 , l′′2 , . . . , l′′n};

(b) t1 is the current time-moment of the transition’s firing;
(c) t2 is the current value of the duration of its active state;
(d) r is the transition’s condition determining which tokens will pass (or transfer)

from the transition’s inputs to its outputs; it has the form of an Index Matrix (IM, see

81



[2,4]):

r =

l′′1 . . . l′′j . . . l′′n
l′1
... ri,j

l′i (ri,j − predicate )
... (1 ≤ i ≤ m, 1 ≤ j ≤ n)

l′m

;

ri,j is the predicate which corresponds to the i-th input and j-th output places. When
its truth value is “true”, a token from i-th input place can be transferred to j-th output
place; otherwise, this is not possible;

(e) M is an IM of the capacities of transition’s arcs:

M =

l′′1 . . . l′′j . . . l′′n
l′1
... mi,j

l′i (mi,j ≥ 0− natural number )
... (1 ≤ i ≤ m, 1 ≤ j ≤ n)

l′m

;

(f) is an object having a form similar to a Boolean expression. It may con-
tain as variables the symbols which serve as labels for transition’s input places, and
is an expression built up of variables and the Boolean connectives ∧ and ∨ whose
semantics is defined as follows:
∧(li1 , li2 , . . . , liu) – every place li1 , li2 , . . . ,

liu must contain at least
one token,

∨(li1 , li2 , . . . , liu) – there must be at least
one token in all places
li1 , li2 ,. . . , liu , where
{li1 , li2 , . . . , liu} ⊂ L′.

When the value of a type (calculated as a Boolean expression) is “true”, the tran-
sition can become active, otherwise it cannot.

The ordered four-tuple

E = 〈〈A, πA, πL, c, f, θ1, θ2〉, 〈K,πK , θK〉,
〈T, t0, t∗〉, 〈X,Φ, b〉〉

is called a Generalized Net (GN) if:
(a) A is a set of transitions;
(b) πA is a function giving the priorities of the transitions, i.e., πA : A → N ,

where N = {0, 1, 2, . . . } ∪ {∞};
(c) πL is a function giving the priorities of the places, i.e., πL : L→ N , where

L = pr1A ∪ pr2A, and priX is the i-th projection of the n-dimensional set, where
n ∈ N,n ≥ 1, and 1 ≤ k ≤ n (obviously, L is the set of all GN-places);

(d) c is a function giving the capacities of the places, i.e., c : L→ N ;
(e) f is a function which calculates the truth values of the predicates of the transi-

tion’s conditions (for the GN described here let the function f have the value “false”
or “true”, i.e., a value from the set {0, 1};

82



(f) θ1 is a function giving the next time-moment when a given transition Z can
be activated, i.e., θ1(t) = t′, where pr3Z = t, t′ ∈ [T, T + t∗] and t ≤ t′. The
value of this function is calculated at the moment when the transition terminates its
functioning;

(g) θ2 is a function giving the duration of the active state of a given transition Z ,
i.e., θ2(t) = t′, where pr4Z = t ∈ [T, T + t∗] and t′ ≥ 0. The value of this function
is calculated at the moment when the transition starts functioning;

(h) K is the set of the GN’s tokens. In some cases, it is convenient to consider this
set in the form

K = ∪
l∈QI

Kl ,

where Kl is the set of tokens which enter the net from place l, and QI is the set of all
input places of the net;

(i) πK is a function giving the priorities of the tokens, i.e., πK : K→ N ;
(j) θK is a function giving the time-moment when a given token can enter the net,

i.e., θK(α) = t, where α ∈ K and t ∈ [T, T + t∗];
(k) T is the time-moment when the GN starts functioning. This moment is deter-

mined with respect to a fixed (global) time-scale;
(l) t0 is an elementary time-step, related to the fixed (global) time-scale;
(m) t∗ is the duration of the GN functioning;
(n) X is the set of all initial characteristics the tokens can receive when they enter

the net;
(o) Φ is a characteristic function which assigns new characteristics to every token

when it makes a transfer from an input to an output place of a given transition.
(p) b is a function giving the maximum number of characteristics a given token

can receive, i.e., b : K → N .
For example, if b(α) = 1 for some token α, then this token will enter the net with

some initial characteristic (marked as its zero-characteristic) and subsequently it will
keep only its current characteristic.

When b(α) = ∞, the token α will keep all its characteristics. When b(α) =
k < ∞, except its zero-characteristic, the token α will keep its last k characteristics
(characteristics older than the last k will be “forgotten”). Hence, in the general case,
every token α has b(α) + 1 characteristics when it leaves the net.

A GN may lack some of the components, and such GNs give rise to special classes
of GNs called reduced GNs. The omitted elements of the reduced GNs are marked
by “ ∗ ”.

Different operations and relations are defined over the transitions of the GNs and
over the same nets.

The idea of defining operators over the set of GNs in the form suggested below
dates back to 1982.

A variety of different types of GN-extensions are defined and each of them is
proved [2, 4] to be a conservative extension of the ordinary GNs.

3. Generalized net description of ACO

In this paper the ACO method is described by Generalized Net (GN) to can deeply
understand the processes and to improve them.

The present GN is an extension of the GN from [7]. All notations from [7] are
kept so the reader may easily compare both models. Let the graph of the problem

83



have m nodes. The set of nodes is divided in N subsets. There are different ways for
dividing. Normally, the nodes of the graph are randomly enumerated. An example
for creation of the subsets, without loss of generality, is: node number one goes to the
first subset, node number two - to the second subset, etc., node number N is in the
N -th subset, node number N + 1 is in the first subset, etc. Thus the number of nodes
in the separate subsets are almost equal.

The GN in this work has 4 transitions, 20 places (l1, ..., l20) and four types (β, γ,
ε, and δ) of tokens (see Fig. 3.).

Z0

?

Z1

?
Z2

?

Z3

?

l17

i
l1

i

l18

i

l19

i

l5

i

l6

i

l2

i

l4

i

l3

i

l7

i

l8

i

l9

i

l16

i

l20

i

l10

i

l13

i

l11

i

l12

i

l14

i

l15

i

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Fig. 3. GN net model for ACO

These tokens enter, respectively, places: l2 – with the initial characteristic: “〈m-
dimensional vector of heuristics with elements – the graph vertices or l-dimensional
vector of heuristics with elements – the graph arcs; objective function 〉”,
where m is the number of the nods of the graph of the problem and l is the number of
the arcs of the graph;

l11 – with the initial characteristic: “the graph structure with m vertices’s and l
arcs”.

l12 – with the initial characteristic: “initial data for the places and quantities of the
pheromones”;

l17 – with the initial characteristic: “〈 values of parameters A and B; number n of
the ants; number N of the subsets of the nodes of the graph 〉”.

Z0 =< {l17, l19, l20}, {l1, l18, l19},
l1 l18 l19

l17 false false true
l19 W19,1 W19,18 W19,19
l20 false false true

>,

where:
W19,1 =“the present is the second time-moment of GN-functioning”,

84



W19,18 =“truth-value of expression C1 ∨ C2 ∨ C3 is true”,
W19,18 = ¬W19,19,

and C1, C2 and C3 are the following end-conditions:
C1 – “computational time (maximal number of iterations) is achieved”,
C2 – “number of iterations without improving the result is achieved”,
C3 – “if the upper/lower bound is known, then the current results are close (e.g.,

less than 5%) to the bound”.
Token δ from place l17 enters place l19 with a characteristic: “{〈〈j, 1〉,Dj(1),

Ej(1)〉|1 ≤ j ≤ N}”, where the initial values of these coefficients are: Dj(1) =
1, Ej(1) = 0.

On the second time-moment token δ splits to two tokens: α that enters place l1
with a characteristic: “n-dimensional vector with elements – the couples of the ants
coordinates", where n is the number of used ants and it is determined in the initial
δ-token characteristic; and token δ that does not obtains any characteristic.

After the first iteration, when token β∗ enters place l19 from place l20, token δ
unites with token β∗ and obtains characteristic: “ {〈j,Dj(i), Ej(i)〉|1 ≤ j ≤ N}",
where i ≥ 2 is the number of the current iteration and Dj(i) and Ej(i) are weight
coefficients of j-th nodes subset (1 ≤ j ≤ N ) and they are calculated by following
formulas:

Dj(i) =
i.Dj(i− 1) + Fj(i)

i
,

Ej(i) =
i.Ej(i− 1) + Gj(i)

i
,

where i ≥ 1 is the current process iteration and for each j (1 ≤ j ≤ N):

(1) Fj(i) =







fj,A

nj
if nj 6= 0

Fj(i− 1) otherwise
,

(2) Gj(i) =







gj,B

nj
if nj 6= 0

Gj(i− 1) otherwise
,

and fj,A is the number of the solutions among the best A%, and gj,B is the number of
the solutions among the worst B%, where A + B ≤ 100, i ≥ 1 and

∑N
j=1 nj = n,,

where nj (1 ≤ j ≤ N) is the number of solutions obtained by ants starting from
nodes subset j.

When W19,18 = true, token δ leaves the net through place l18 without any char-
acteristic.

Z1 =< {l1, l2, l4, l5, l6}, {l3, l4},

l3 l4
l1 true false
l2 false true
l4 false true
l5 true false
l6 true false

> .

85



Token α from places l1, l5 or l6 enters place l3 with a characteristic: “vector of
current transition function results 〈φ1,cu, φ2,cu, ..., φn,cu〉”, while token ε stays only in
place l4 obtaining the characteristic: “new m-dimensional vector of heuristics with el-
ements – the graph vertices’s or, new l-dimensional vector of heuristics with elements
– the graph arcs”.

Z2 =< {l3, l10}, {l5, l6, l7, l8, l9, l10},
l5 l6 l7 l8 l9 l10

l3 W3,5 W3,6 W3,7 false W3,9 W3,10
l10 false false true false W10,9 W10,10

>,

where
W3,5 = “the current iteration is not finishe”,
W3,6 = W3,10 = ¬W3,5 ∨ ¬W10,9,
W10,7 = “the current best solution is worse than the global best solution”,
W10,9 =“truth-value of expression C1 ∨ C2 ∨ C3 is true”,
W10,10 = ¬W10,9.

Token α from place l3 enters place l5 with a characteristic: “〈S1,cu, S2,cu, . . . ,
Sn,cu 〉′′, where Sk,cu is the current partial solution for the current iteration, made by
k-th ant (1 ≤ k ≤ n).

If W3,6 = true it splits to three tokens α, α′ and α′′ that enter places l6 – token α
– with a characteristic: “new n-dimensional vector with elements – the couples of the
new ants coordinates”, place l8 – token α′ – with the last α-characteristic, and place
l10 – token α′′ – with a characteristic: “〈 the best solution for the current iteration; its
number 〉”. Token α′′ can enter place l9 only when W10,9 = true and there it obtains
the characteristic: “the best achieved result”.

In place l7 one of the two tokens from place l10 enters, which has the worst values
as a current characteristic, while in place l10 the token containing the best values as a
current characteristic stays.

Z3 =< {l8, l11, l12, l13, l16}, {l13, l14, l15, l16, l20},
l13 l14 l15 l16 l20

l8 false false false true false
l11 true false false false false
l12 false false false true true
l13 W13,13 W13,14 false false false
l16 false false false false W16,20

>,

where
W13,14 = W16,15 =“truth-value of expression C1 ∨ C2 ∨ C3 is true”,
W13,13 = W16,16 = ¬W13,14,
W16,20 = “the current iteration is finished” &¬W13,14.

Tokens γ from place l11 and β from place l12 with above mentioned characteristics
enter, respectively, places l13 and l16 without any characteristic.

Token α from place l8 enters place l16 and unites with token β (the new token is
again β) with characteristic: “value of the pheromone updating function with respect
of the values of the objective function”.

Tokens β and γ enter, respectively, places l14 and l15 without any characteristics.
When W16,20 = true, token β splits to two token: β that continue to stay in place
l16 without a new characteristic and token β∗ that enters place l20 with characteristic:
“{〈j, Fj(i), Gj(i)〉|1 ≤ j ≤ N}′′.

86



4. Start strategies

The known ACO algorithms create a solution starting from random node. But for
some problems, especially subset problems, it is important from which node the
search process starts. For example if an ant starts from node which does not be-
long to the optimal solution, probability to construct it is zero. In this paper is offered
several start strategies. The aim is to use the experience of the ants from previous
iteration to choose the better starting node. Other authors use this experience only by
the pheromone, when the ants construct the solutions. Let threshold E for Ej(i) and
D for Dj(i) be fixed, than several strategies to choose start node for every ant are
constructed, the threshold E increase every iteration with 1/i where i is the number
of the current iteration:

1. If
Ej(i)
Dj(i)

> E then the subset j is forbidden for current iteration and the starting

node is chosen randomly from {j |j is not forbidden}.

2. If
Ej(i)
Dj(i)

> E then the subset j is forbidden for current simulation and the

starting node is chosen randomly from {j |j is not forbidden}.

3. If
Ej(i)
Dj(i)

> E then the subset j is forbidden for K1 consecutive iterations and

the starting node is chosen randomly from {j |j is not forbidden}.
4. Let r1 ∈ [R, 1) is a random number. Let r2 ∈ [0, 1] is a random number. If

r2 > r1 a node is chosen randomly from subset {j |Dj(i) > D}, otherwise a
node is chosen randomly from the not forbidden subsets, R is chosen and fixed
at the beginning.

5. Let r1 ∈ [R, 1) is a random number. Let r2 ∈ [0, 1] is a random number. If
r2 > r1 a node is randomly chosen from subset {j |Dj(i) > D}, otherwise
a node is randomly chosen from the not forbidden subsets, R is chosen at the
beginning and increase with r3 every iteration.

Where 0 ≤ K1 ≤ “number of iterations” is a parameter. If K1 = 0, thån strategy
3 is equal to the random choose of the start node. If K1 = 1, thån strategy 3 is equal
to strategy 1. If K1 =“maximal number of iterations”, than strategy 3 is equal to the
strategy 2. The strategies 1, 2 and 3 can be called forbid strategies, and strategies 4
and 5 can be called stimulate strategies. By stimulate strategies the ants are forced
to start there search from subsets with high value of Dj(i). If R = 0.5, than the
probability an ant to start from nodes subset with high value of Dj(i) is two times
high than to start from other subset. For forbidden strategies is used fraction between
Ej(i) and Dj(i). Thus is prevented some regions with several bad and with several
good solutions to be forbidden.

More than one strategy for choosing the start node can be used, but there are
strategies which can not be combined. The strategies are distributed into two sets:
St1= Strategy 1, Strategy 2, Strategy 3 and St2= Strategy 4, Strategy 5 . The strategies
from same set can not be used at once. Thus it can be used strategy from one set or
combine it with strategies from other set. Exemplary combinations are (Strategy1),
(Strategy2; Strategy5), (Strategy3; Strategy4).

87



5. Conclusion

This paper is addressed to the modelling of the process of ant colony optimization
method by generalized net using intuitionistic fuzzy estimations, combining five start
strategies. So, the start node of each ant depends of the goodness of the respective
region. The future work will be focused on parameter settings which manage the
starting procedure. It will be investigated on influence of the parameters to algorithm
performance. The aim of this representation is to study in detail the methodology
and relationships between the processes. Thereby one can see the weaknesses of the
method and improve it implementation.

Acknowledgments: This work has been partially funded by the Bulgarian Ministry of
Education and Science by the grant VU-MI-204/2006.

R e f e r e n c e s

1. A l e x i e v a, J., E. C h o y, E. K o y c h e v. Review and Bibloigraphy on Generalized
Nets Theory and Applications. – In: E. Choy, M. Krawczak, A. Shannon and E. Szmidt, Eds.
A Survey of Generalized Nets. Raffles KvB Monograph 10, 2007, 207-301.

2. A t a n a s s o v, K. Generalized Nets. Singapore. World Scientific, 1991.
3. A t a n a s s o v, K. Intuitionistic Fuzzy Sets. Heidelberg, Springer,1999.
4. A t a n a s s o v, K. On Generalized Nets Theory. Sofia, Prof. M. Drinov Academic

Publishing House, 2007.
5. D o r i g o, M., L. M. G a m b a r d e l l a. Ant Colony System: A Cooperative

Learning Approach to the Traveling Salesman Problem. – IEEE Transactions on Evolutionary
Computation 1, 1997, 53-66.

6. F i d a n o v a, S. Evolutionary Algorithm for Multiple Knapsack Problem. – In: Int.
Conference Parallel Problems Solving from Nature, Real World Optimization Using Evolu-
tionary Computing, 2002, Granada, Spain.

7. F i d a n o v a, S., K. A t a n a s s o v. Generalized Net Model of the Process of
Ant Colony Optimization, Issues on Intuitionistic Fuzzy Sets and Generalized Nets 7, 2008,
108-114.

8. L e s s i n g, L., I. D u m i t r e s c u , T. S t u t z l e. A Comparison between ACO
Algorithms for the Set Covering Problem. –In: ANTS Workshop, 2004 , 1-12.

9. M a r t e l l o, S., P. T o t h. A Mixtures of Dynamic Programming and Branch-and-
Bbound for the Subset-Sum Problem. – Management Science, 30, 1984, 756-771.

10. R e i m a n, M., M. L a u m a n n s. A Hybrid ACO Algorithm for the Capacitate
Minimum Spanning Tree Problem.–In: Workshop on Hybrid Metahuristics, Valencia, Spain,
2004, 1-10.

11. S t u t z l e, T., M. D o r i g o. ACO Algorithm for the Traveling Salesman Problem.
– In: K. Miettinen, M. Makela,P. Neittaanmaki, J. Periaux, Eds. Evolutionary Algorithms in
Engineering and Computer Science, Wiley, 1999, 163-183.

12. Z h a n g, T., S. W a n g, W. T i a n, Y. Z h a n g, ACO-VRPTWRV: A New Algorithm
for the Vehicle Routing Problems with Time Windows and Re-Used Vehicles Based on Ant
Colony Optimization. –In: Conference on Intelligent Systems Design and Applications, IEEE
Press, 2006, 390-395.

88




