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Summary: Predicting the 3D form of protein from their linear sequence is one of the major 
challenges in modern biology. Even under simplified lattice models, the problem is NP-hard 
and the standard computational approaches are not powerful enough to search for the correct 
structure in the huge conformation space. Due to the complexity of the protein folding problem 
simplified models such as hydrophobic-polar (HP) model has become one of the major tools 
for studying protein structure. Various optimization methods have been applied on folding 
problem including Monte Carlo methods, Evolutionary algorithms, ant colony optimization 
algorithm. In this work we develop an ant algorithm for 3D HP protein folding problem. It is 
based on very simple design choices in particular with respect to the solution components 
reinforced in the pheromone matrix. The achieved results are compared favorably with 
specialized state-of the art methods for this problem. Our empirical results indicate that our 
rather simple ant algorithm outperforms the existing results for standard benchmark instances 
from the literature.  
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Information, 3D Cubic Lattice. 
 
 
1. INTRODUCTION 
 
Determining the functionality of a protein molecule from amino acid 
sequence remains a central problem in computational biology, molecular 
biology, biochemistry and physics. Even the experimental determination of 
these conformations is often difficult and time consuming. It is common 
practice to use models that simplify the search space of possible 
conformation. These models try to generally reflect different global 
characteristics of protein structures. In the hydrophobic-polar (HP) model 
[3] the primary amino acid sequence of a protein (which can be represented 
as a string over twenty-letter alphabet) is abstracted to a sequence of 
hydrophobic (H) and polar (P) residues that is represented as a string over 
the letter H and P. In the model, the amino acid sequence is abstracted to a 
binary sequence of monomers that are either hydrophobic or polar. The 
structure is a chain whose monomers are on the vertices of a three 
dimensional cubic lattice. The free energy of a conformation is defined as 
the negative number of non-consecutive hydrophobic-hydrophobic contacts. 
A contact is defined as two nonconsecutive monomers in the chain 
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occupying adjacent sites in the lattice. In spite of its apparent simplicity, 
finding optimal structures of the HP model on a cubic lattice is NP-
complete problem [1]. 
 
Ant Colony Optimization (ACO) is a population-based stochastic search 
method for solving a wide range of combinatorial optimization problems. 
ACO is based on the concept of indirect communication between members 
of a population through interaction with the environment. From the 
computational point of view, ACO is an iterative construction search 
method in which a population of simple agents (ants) repeatedly constructs 
candidate solutions to a given problem. This construction process is 
probabilistically guided by heuristic information on the given problem 
instances as well as by a shared memory containing experience gathered by 
the ants in previous iterations. 
 
This work is an investigation of the HP model in a three dimensional cubic 
lattice using an ACO as a tool to find the optimal conformation for a given 
sequence. The achieved results are evaluated and compared with other 
heuristic methods using 10 sequences of 48 monomers from the literature. 
 
The paper is organized as follows: the problem is described in Section 2. 
The ACO algorithm is in Section 3. The achieved results are discussed in 
Section 4. The paper ends with a summary of the conclusions. 
 
 
2. THE PROTEIN FOLDING PROBLEM 
 
The processes involving in folding of proteins are very complex and only 
partially understood, thus the simplified models like Dill's HP model have 
become one of the major tools for studying proteins [3]. The HP model is 
based on the observation that hydrophobic interconnection is the driving 
force for protein folding. The protein conformations of this sequence are 
restricted to self-avoiding paths on 3-dimensional sequence lattice. One of 
the most common approaches to protein structure prediction is based on the 
thermodynamic hypothesis which states that the native state of the protein is 
the one with lowest Gibbs free energy. In the HP model, the energy of a 
conformation is defined as a number of topological contacts between 
hydrophobic amino acid that are not neighbors in the given sequence. More 
specifically a conformation c with exactly n such H-H contacts has free 
energy E(c) =n(-1). The 3D HP protein folding problem can be formally 
defined as follows. Given an amino acid sequence s = s1, s2, ..., sn, find an 
energy minimizing conformation of s, i.e. find 
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such that 
 
 , ( ) min{ ( ) }s sE E c E c | c C= = ∈
 
where C(s) is the set of all valid conformations for s.  
 
A number of well-known heuristic optimization methods have been applied 
to the 3D protein folding problem including Evolutionary Algorithm (EA) 
[7], Monte Carlo (MC) algorithm [8] and Ant Colony Optimization (ACO) 
[9]. An early application of EA to protein structure prediction was presented 
by Unger and Moult [11]. Their EA incorporates characteristics of Monte 
Carlo methods. Currently among the best known algorithms for the HP 
protein folding problem is Pruned-Enriched Rosenblum Method (PERM) 
[6]. Among these methods are the Hydrophobic Zipper (HZ) method [4] and 
the Constraint-based Hydrophobic Core Construction Method (CHCCM) 
[12]. The Core-direct chain growth method (CG) [2] biases construction 
towards finding a good hydrophobic core by using a specifically designed 
heuristic function. 
 
 
3. ACO ALGORITHM FOR PROTEIN FOLDING PROBLEM 
 
Real ants foraging for food lay down quantities of pheromone (chemical 
cues) marking the path that they follow. An isolated ant moves essentially at 
random but an ant encountering a previously laid pheromone will detect it 
and decide to follow it with high probability and therefore reinforce it with 
a future quantity of pheromone.  
 
The ACO algorithm uses a colony of artificial ants that behave as co-
operative agents in a mathematical space where they are allowed to search 
and reinforce path ways (solutions) in order to find the optimal ones. The 
problem is represented by graph and the ants walk on the graph to construct 
solutions. After initialization of the pheromone trails, ants construct feasible 
solutions and the pheromone trails are updated. At each step ants compute a 
set of feasible moves and select the best one (according to some 
probabilistic rules) to carry out the rest of the tour. The transition 
probability is based on the heuristic information and pheromone trail level 
of the move. The higher the value of the pheromone and the heuristic 
information, the more profitable is to select this move and resume the 
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search. In the beginning, the initial pheromone level is set to a small 
positive constant value τ0 and then ants update this value after completing 
the construction stage. ACO algorithms adopt different criteria to update the 
pheromone level. In our implementation Ant Colony System (ACS) 
approach is used [5]. In ACS the pheromone updating consists of two 
stages: local update and global update. While ants build their solutions, at 
the same time they locally update the pheromone level of the visited paths 
by applying the local update rule as follows: 
 
 0(1 )ij ijτ ρ τ ρτ← − +  
 
Where τij is an amount of the pheromone on the arc (i, j) of the 3D cube 
lattice, ρ is a persistence of the trail and the term (1 – ρ) can be interpreted 
as trail evaporation. Using this rule, ants will search in a wide neighborhood 
of the best previous solution. AS shown in the formula, the pheromone level 
on the paths is highly related to the value of evaporation parameter ρ. The 
pheromone level will be reduced and this will reduce the chance that the 
other ants will select the same solution and consequently the search will be 
more diversified. When all ants have completed their solutions, the 
pheromone level is updated by applying the global updating rule only on the 
paths that belong to the best solution since the beginning of the trials as 
follows:  
 
 (1 )ij ij ijτ ρ τ ρ τ← − + ∆  
 

Where  
( ) best solution

0 other
gb
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− ∈⎧
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The Egb is the free energy of the best folding. This global updating rule is 
intended to provide a greater amount of pheromone on the paths of the best 
solution, thus intensify the search around this solution. 
 
There are six possible positions on the 3D lattice for every amino acid. They 
are the neighbor positions of the precedence amino acid. Since 
conformations are rotationally invariant, the position of the first two amino 
acids can be fixed without loss of generality. During the construction phase, 
ants fold a protein from the left end of the sequence adding one amino acid 
at a time based on the two sources of information: pheromone matrix value, 
which represents previous search experience, and heuristic information. The 
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transition probability to select the position of the next amino acid is given 
as: 
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Where ijτ  is the intensity measure of the pheromone deposited by each ant 
on the path (i, j), α is the intensity control parameter, ijη  is the heuristic 
information equal to the number of new H-H contacts if the position j is 
chosen, β is the heuristic parameter and the allowed is the set of free 
neighbor positions. Thus the higher the value of ijτ  and ijη , the more 
profitable is to put the next amino acid on the position j. When the next 
amino acid is polar, the probability is Pij = 0. In this case the position is 
chosen randomly between allowed positions. When the set of allowed 
positions is empty, the ant does some steps back and after that it continues 
construction of the solution. 
 
 
4. EXPERIMENTAL RESULTS 
 
Ten standard benchmark instances of length 48 for 3D HP protein folding 
shown in Table 1 have been widely used in the literature [2, 6, 8, 9, 10]. 
Experiments on these standard benchmark instances were conducted by 
performing a number of independent runs for each problem instance, 20 
runs. The following parameter settings are used for all experiments:            
α = β = 1, ρ = 0.5. Furthermore, all pheromone values were initialized to τij 
= 0.5 and a population of 5 ants were used. The algorithm was terminated 
after 200 iterations. All experiments were performed on IBM ThinkPad 
Centrino 1.8GHz CPU, 512 KB RAM running SuSe Linux. 
 
In Table 2 the achieved results by various heuristics have compared. For 
every of the benchmark instances the best found result by various methods 
is reported. 
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Table 1. 3D standard benchmark instances 

 

Name HP string 

S2-1 HPHHPPHHHHPHHHPPHHPPHPHHPHPHHPPHHPPPHPPPPPPPPHHP 

S2-2 HHHHPHHPHHHHHPPHPPHHPPHPPPPPPHPPHPPPHPPHHPPHHHPH 

S2-3 PHPHHPHHHHHHPPHPHPPHPHHPHPHPPPHPPHHPPHHPPHPHPPHP 

S2-4 PHPHHPPHPHHHPPHHPHHPPPHHHHHPPHPHHPHPHPPPPHPPHPHP 

S2-5 PPHPPPHPHHHHPPHHHHPHHPHHHPPHPHPHPPHPPPPPPHHPHHPH 

S2-6 HHHPPPHHPHPHHPHHPHHPHPPPPPPPHPHPPHPPPHPPHHHHHHPH 

S2-7 PHPPPPHPHHHPHPHHHHPHHPHHPPPHPHPPPHHHPPHHPPHHPPPH 

S2-8 PHHPHHHPHHHHPPHHHPPPPPPHPHHPPHHPHPPPHHPHPHPHHPPP 

S2-9 PHPHPPPPHPHPHPPHPHHHHHHPPHHHPHPPHPHHPPHPHHHPPPPH 

S2-10 PHHPPPPPPHHPPPHHHPHPPHPHHPPHPPHPPHHPPHHHHHHHPPHH 

 
Table 2. Performance comparison of various algorithms 

for the 3D HP protein folding 

Name HZ CHCC CG CI PERM ACO-H ACO-F 
S2-1 31 32 32 32 32 32 48(35.15) 
S2-2 32 34 34 33 34 34 49(36) 
S2-3 31 34 34 32 34 34 43(32.6) 
S2-4 30 33 33 32 33 33 43(30.6) 
S2-5 30 32 32 32 32 32 43(35.15) 
S2-6 29 32 32 30 32 32 43(32.75) 
S2-7 29 32 32 30 32 32 42(33.8) 
S2-8 29 31 31 30 31 31 42(32.95) 
S2-9 31 34 33 32 34 34 46(34.44) 
S2-10 33 33 33 32 33 33 46(36.45) 

 
 

They are the solution quality obtained by hydrophobic zipper (HZ) [4] 
algorithm, the constrain-based hydrophobic core construction (CHCC) [12] 
method, the core-directed chain growth (CG) [2] algorithm, the contact 
interactions (CI) [10] algorithm, the pruned-enriched Rosenbluth method 
(PERM) [6], the ACO algorithm of Hoos (ACO-H) [9] and the ACO 
algorithm presented in this paper (ACO-F). For ACO-F the best found 
results is reported in bold and in the brackets is the average result over 20 
runs. In the majority of the cases our average results are better than the best 
found results by other methods. And for all of the cases our best result is 
better then the best result of other methods. In ACO-H a local search 
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procedure is used to improve the results. ACO-F is without local search 
procedure. The main differences between these two ACO implementations 
are the location of the polar amino acids, the construction of the heuristic 
information and the pheromone updating. 
 
5. CONCLUSION 
 
In this work is shown that ACO can be successfully applied to the 3D 
protein folding problem. Our ACO algorithm outperforms other methods 
find in the literature. We have shown that the components of the ACO 
algorithm contribute to its performance. In particular, the performance is 
affected by the heuristic function and selectivity of pheromone updating. 
The obtained results are encouraging and the ability of the developed 
algorithm to generate rapidly high-quality solutions can be seen. 
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