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Summary: Ant Colony Optimization is a stochastic search method that mimics the 
social behaviour of real ant colonies, which manage to establish the shortest routes to 
feeding sources and backwards. Such algorithms have been developed to reach near-
optimum solutions of large-scale optimization problems, for which traditional 
mathematical techniques may fail. In this paper, a generalized net model of the 
process of ant colony optimization is constructed and on each iteration intuitionistic 
fuzzy estimations of the ants’ start nodes are made. Several start strategies are 
developed and combined. This new technique is tested on Multiple Knapsack 
Problem, which is a real world problem. Benchmark comparisons among the 
strategies are presented in terms of quality of the results. Based on this comparison 
analysis, the performance of the algorithm is discussed along with some guidelines for 
determining the best strategy. The study presents ideas that should be beneficial to 
both practitioners and researchers involved in solving optimization problems. 
 
Keywords: Ant Colony Optimization, Metaheuristics, Discrete optimization, 
Intuitionistic fuzzy estimation. 
 
1. INTRODUCTION 
 
The difficulties associated with using mathematical optimization on 
large-scale engineering problems have contributed to the develop-
ment of alternative solutions. Linear programming and dynamic 
programming techniques, for example, often fail in solving NP-hard 
problems with large number of variables. To overcome these prob-
lems, researchers have proposed mataheuristic methods for searching 
near-optimal solutions to problems. One of the most successful 
metaheuristic is Ant Colony Optimization (ACO). 
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Real ants foraging for food lay down quantities of pheromone 
(chemical cues) marking the path that they follow. An isolated ant 
moves essentially at random but an ant encountering a previously 
laid pheromone will detect it and decide to follow it with high 
probability and thereby reinforce it with a further quantity of 
pheromone. The repetition of the above mechanism represents the 
auto-catalytic behavior of a real ant colony where the more the ants 
follow a trail, the more attractive that trail becomes. 
 
ACO is inspired by real ant behavior to solve hard combinatorial 
optimization problems. Examples of hard optimization problems are 
Traveling Salesman Problem [3, 11], Vehicle Routing [12], 
Minimum Spanning Tree [9], Constrain Satisfaction [7, 11], 
Knapsack Problem [4], etc. The ACO algorithm uses a colony of 
artificial ants that behave as cooperative agents in a mathematical 
space where they are allowed to search and reinforce pathways 
(solutions) in order to find the optimal ones. The problem is 
represented by graph and the ants walk on the graph to construct 
solutions. The solutions are represented by paths in the graph. After 
the initialization of the pheromone trails, the ants construct feasible 
solutions, starting from random nodes, and then the pheromone trails 
are updated. At each step the ants compute a set of feasible moves 
and select the best one (according to some probabilistic rules) to 
continue the rest of the tour. The structure of the ACO algorithm is 
shown by the pseudocode below. The transition probability pi,j, to 
choose the node j when the current node is i, is based on the heuristic 
information ηi,j  and the pheromone trail level τi,j  of the move, where 
i, j = 1, …, n. 
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where Unused is the set of unused nodes of the graph. 
 
The higher the value of the pheromone and the heuristic information, 
the more probable it is to select this move and resume the search. In 
the beginning, the initial pheromone level is set to a small positive 
constant value τ0; later, the ants update this value after completing 
the construction stage. ACO algorithms adopt different criteria to 
update the pheromone level. 
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Ant Colony Optimization 
Initialize number of ants; 
Initialize the ACO parameters; 
while not end-condition do 
 for k=0 to number of ants 
  ant k chooses start node; 
  while solution is not constructed do 
   ant k selects higher probability node; 
  end while 
 end for 
 Update
end while 

-pheromone-trails; 

Fig. 1 Pseudocode for ACO 
 
The pheromone trail update rule is given by: 
τi,j ← ρτi,j + ∆τi,j

where ρ models evaporation in the nature and ∆τi,j is newly added 
pheromone, which is proportional to the quality of the solution. 
 
The novelty in this work is the use of Intuitionistic Fuzzy 
Estimations (IFE, see [1]) of start nodes with respect to the quality of 
the solution and thus to better manage the search process. Various 
start strategies and their combinations are offered. The new 
technique is able to deal with real world problems. Like a benchmark 
problem is used Multiple Knapsack Problem (MKP) because a lot of 
real world problems can be represented by it and MKP arises as a 
subproblem in many optimization problems. 
 
The rest of the paper is organized as follows: in section 2 several 
start strategies are proposed. In section 3 the strategies are applied on 
MKP and the achieved results are compared and strategies are 
classified. At the end some conclusions and directions for future 
work are proposed. 
 
2. START STRATEGIES 
 
The known ACO algorithms create a solution starting from random 
node. But for some problems, especially subset problems, it is 
important from which node the search process has startеd. For 
example, if an ant starts from node which does not belong to the 
optimal solution, the probability to construct it is zero. The aim is to 
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use the experience of the ants from previous iteration to choose the 
better starting node. Other authors use this experience only by the 
pheromone, when the ants construct the solutions. Therefore, the 
present paper offers several start strategies. 
 
Let the graph of the problem has m nodes. The set of nodes is 
divided onto N subsets. There are different ways for dividing the set. 
Normally, the nodes of the graph are randomly enumerated. An 
example for creating the subsets, without lost of generality, is the 
following: the first number is in the first subset, the second node 
number– in the second subset, etc., the N-th node number is in the N-th 
subset, the (N + 1)-st node number is back in the first subset, etc. 
Thus there are almost equal number of nodes in the separate subsets. 
After the first iteration, the estimations Dj(i) and Ej(i) are introduced 
of the node subsets, where i ≥ 2 is the number of the current iteration 
and Dj(i) and Ej(i) are weight coeffcients of the j-th node subset 
(1 ≤  j ≤ N), which are calculated by the following formulas: 
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where i ≥ 2 is the current iteration and for each j (1 ≤  j ≤ N) 
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where fj,A is the number of the solutions among the best A%, and gj,B 
is the number of the solutions among the worst B%, where A + 

B≤100, i ≥ 2 and , where n∑ =
=

N

j j nn
1 j (1 ≤ j ≤ N) is the number of 

the solutions obtained by ants starting from nodes subset j. Initial 
values of the weight coefficients are: Dj(1) = 1 and Ej(1) = 0. 
Obviously, Fj(i) and Gj(i) ∈ [0; 1], i.e. they are IFEs. 
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Let threshold E for Ej(i) and D for Dj(i) be fixed; then the following 
five strategies to choose a start node for every ant are constructed, 
the threshold E increase at every iteration with 1/i where i is the 
number of the current iteration: 

1. If E
iD
iE

j

j >
)(
)(

, then subset j is forbidden for current iteration 

and the starting node is randomly chosen from 
{ j | j is not forbidden}; 

2. If E
iD
iE

j

j >
)(
)(

, then subset j is forbidden for current 

simulation and the starting node is randomly chosen from 
{ j | j is not forbidden}; 

3. If E
iD
iE

j

j >
)(
)(

, then subset j is forbidden for K1 consecutive 

iterations and the starting node is randomly chosen from 
{ j | j is not forbidden} (where 0 ≤ K1 ≤ “number of iterations” 
is a parameter); 

4. Let r1∈ [R; 1) and r2∈ [0; 1] be random numbers. If r 2 > r1, a 
node is randomly chosen from subset { j | Dj(i) > D }, 
otherwise a node is randomly chosen from the unforbidden 
subsets, R is chosen and fixed at the beginning. 

5. Let r1∈ [R; 1) and r2∈ [0; 1]  be random numbers. If r 2 > r1, a 
node is randomly chosen from subset { j | Dj(i) > D }, 
otherwise a node is randomly chosen from the unforbidden 
subsets, R is chosen at the beginning and increases with r3 at 
every iteration. 

 
If K1 = 0, then strategy 3 is identical to random choice of the start 
node. If K1 = 1, then strategy 3 is equal to strategy 1. If K1 = 
“maximal number of iterations”, then strategy 3 is equal to strategy 
2. Strategies 1, 2 and 3 can be called forbidding strategies, while 
strategies 4 and 5 can be called stimulating strategies. Under the 
stimulating strategies, the ants are forced to start their search from 
subsets with high value of Dj(i). If R = 0.5, then the probability for 
an ant to start from nodes subset with high value of Dj(i) is twice 
higher than the probability for it to start from another subset. For the 
forbidding strategies a fraction between Ej(i) and Dj(i) is used. This 
condition prevents some regions with several bad and several good 
solutions being forbidden. 
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More than one strategy for choosing the start node may be used, but 
there are strategies which cannot be combined. The strategies are 
distributed into two sets: St1 = {strategy 1; strategy 2; strategy 3} 
and St2 = {strategy 4; strategy 5}. The strategies from same set can 
not be used at once. Thus, a strategy from one of the sets can only be 
used or it can be combined with a strategy from the other set. Some 
sample combinations are (strategy 1), (strategy 2; strategy 5), 
(strategy 3; strategy 4). 
 
3. EXPERIMENTAL RESULTS 
 
This section analyzed the start strategy performance. The Multiple 
Knapsack Problem (MKP) is used for a test, because it is a real 
world subset problem and it has multiple applications in theory, as 
well as in practice. It also arises as a subproblem within several 
algorithms for more complex problems and these algorithms will 
further benefit from any improvement in the field of MKP. The 
following major applications can be mentioned as possible 
formulations of MKP: problems in cargo loading, cutting stock, bin-
packing, budget control and financial management. Sinha and 
Zoltner in [10] proposed to use the MKP in fault tolerance problem 
and Diffe and Helman [2] designed a public cryptography scheme 
whose security relies on the difficulty of solving the MKP. Martello 
and Toth mention in [8] that two-processor scheduling problems may 
be solved as a MKP. Other applications are industrial management, 
naval, aerospace, computational complexity theory. 
 
MKP can be thought as a resource allocation problem, where there 
are m resources (knapsacks) and n objects and every object j has a 
profit pj. Each resource has its own budget cj (knapsack capacity) 
and consumption ri,j of resource i by object j. The aim is maximizing 
the sum of the profits, while working within a limited budget. 
 
MKP can be formulated as follows: 
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where xj is 1 if the object j is chosen and 0 otherwise. 
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There are m constraints in this problem, so MKP is also called m-
dimensional knapsack problem. Let I = {1,…,m} and J = {1,…,n}, 
with ci ≥ 0 for all i∈I. A well-stated MKP assumes that pj > 0 and 

 for all i∈I and j∈J. Note that the  matrix 

and vector are both non-negative. 
∑=
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With MKP the user is not interested in solutions giving a particular 
order. Therefore, a partial solution is represented by S = {i1, i2,…,ij} 
and the most recent elements incorporated to S, ij need not be 
involved in the process for selecting the next element. Moreover, 
solutions for ordering problems have a fixed length as the user 
searches for a permutation of a known number of elements. 
Solutions of MKP, however, do not have a fixed length. The graph 
of the problem is defined as follows: the nodes correspond to the 
items, the arcs fully connect nodes. Fully connected graph means 
that after the object i the user can choose the object j, for every i and 
j if there are enough resources and object j has not been chosen yet. 
 
The computational experience of the ACO algorithm is shown using 
ten MKP instances from the “OR-Library” available online at 
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/, with 100 objects and 
10 constraints. To provide a fair comparison for the above 
implemented ACO algorithm, a predefined number of iterations, 
k = 100, is fixed for all the runs. The developed technique has been 
coded in C++ language and implemented on a Pentium 4 (2.8 Ghz). 
The parameters are fixed as follows: ρ = 0.5, a = 1, b = 1, number of 
used ants is 20, A = 30, B = 30, D = 1.5, E = 0.5, K1 = 5, R = 0.5, 
r3 = 0.01. The values of ACO parameters (ρ, a, b) are from [5] and 
they are experimentally found to be the best for MKP. The tests are 
run with 1, 2, 4, 5 and 10 nodes within the nodes subsets. For every 
experiment, the results are obtained by performing 30 independent 
runs, then averaging the fitness values. The computational time for 
choosing start strategies is negligibly small compared to the 
computational time needed for obtaining the solutions. 
 
Tests with all possible combinations of strategies and with random 
start (12 combinations) are run. Thus, the total number of tests is 
18 000. One can observe that sometimes all nodes subsets become 
forbidden and the algorithm stops before performing all iterations 
(strategies 1, 2, 3 and combinations with them). When the nodes 
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subsets consist of 10 nodes, the algorithm does not perform all 
iterations for 80 of the strategies for 10 problems. In this situation 
there are two possibilities. The first possibility is to report the 
achieved solution when the algorithm stops. The second possibility is 
to continue the algorithm performance without any strategy, only 
applying a random start. The second possibility improves the 
achieved solutions with respect to the first one, so if all nodes 
subsets become forbidden the algorithm continues without a strategy. 
 
For fair comparison of the achieved solutions by different strategies 
and node-devision, the difference d between the worst and best 
average result for every problem is divided by 10. If the average 
result for some strategy is between the worst average result and 
worst average plus d/10, it is evaluated with 1. If it is between the 
worst average plus d/10 and the worst average plus 2d/10, it is 
evaluated with 2, and so forth. If it is between the best average minus 
d/10 and the best average, it is evaluated with 10. Thus, for a test 
problem the achieved results for every strategy and every nodes 
division is evaluated with a number from 1 to 10. Then, it is summed 
the rate of all test problems for every strategy and every nodes 
division. So the rate of the strategies/node-division becomes a 
number between 10 and 100, because the benchmark problems are 
10 (see Table 1). It is a histogram like classification. 
 
Table 1 shows that any strategy achieves better solutions for every 
node-division than random start. The highest rate is when the nodes 
subsets consist of 2 nodes, for most of the strategies. When the nodes 
subsets consist of 10 nodes the rate is low because from the same 
subset several very good and several very bad solutions can start. 
The highest rate (92) is obtained under strategy combinations 1-5 
and 3-5 with two nodes in the nodes subsets. We can conclude that 
the best rate is produced by a combination of forbidding strategies 
and strategy 5, and it is better for the nodes subsets to be forbidden 
for a fixed number of iterations (1 or more), rather than for the whole 
simulation. The best obtained solutions are similar to the state-of-
the-art solutions found in the literature in this field. 
 
This modification of the ACO algorithm can be applied to other real 
world problems too. For example, ACO with start strategies for GPS 
surveying problem improves the achieved solutions with respect to 
the classical ACO with random start. 
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Table 1: Estimaton of strategies and nodes devision 

number nodes 10 5 4 2 1 

random 12 12 12 12 12 
strategy 1 46 78 73 83 79 
strategy 2 45 76 72 80 85 
strategy 3 45 80 69 80 82 
strategy 4 69 77 74 77 84 
strategy 5 65 73 78 84 80 

strategies 1-4 48 79 74 85 85 
strategies 1-5 47 81 68 92 82 
strategies 2-4 47 79 73 85 85 
strategies 2-5 45 72 71 90 83 
strategies 3-4 48 81 72 89 87 
strategies 3-5 50 73 68 92 82 

 
4. CONCLUSION 
 
This paper is addressed on ant colony optimization algorithm with 
controlled start combining five start strategies. So, the start node of 
each ant depends on the goodness of the respective region. The 
achieved solutions with strategies are better than random start. 
Future work will be focused on parameter settings which manage the 
starting procedure. It will be investigated on influence of the 
parameters on the algorithm’s performance. The aim is to study in 
detail the relationships between the start nodes and the quality of the 
achieved solutions. 
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