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Abstract. The Ant Colony Optimization (ACO) algorithms are being
applied successfully to a wide range of problems. ACO algorithms could
be good alternatives to existing algorithms for hard combinatorial opti-
mization problems (COPs). In this paper we investigate the influence of
the probabilistic model in model-based search as ACO. We present the
effect of four different probabilistic models for ACO algorithms to tackle
the Multiple Knapsack Problem (MKP). The MKP is a subset problem
and can be seen as a general model for any kind of binary problems with
positive coefficients. The results show the importance of the probabilistic
model to quality of the solutions.

1 Introduction

There are many NP-hard combinatorial optimization problems for which it is
impractical to find an optimal solution. Among them is the MKP. For such
problems the reasonable way is to look for algorithms that quickly produce
near-optimal solutions. ACO [2,4,3] is a meta-heuristic procedure for quickly
and efficiently obtaining high quality solutions of complex optimization prob-
lems [11]. The ACO algorithms were inspired by the observation of real ant
colonies. Ants are social insects, that is, insects that live in colonies and whose
behavior is directed more to the survival of the colony as a whole than to that of
a single individual component of the colony. An important and interesting aspect
of ant colonies is how ants can find the shortest path between food sources and
their nest. ACO is the recently developed, population-based approach which has
been successfully applied to several NP-hard COPs [6]. One of its main ideas is
the indirect communication among the individuals of a colony of agents, called
“artificial” ants, based on an analogy with trails of a chemical substance, called
pheromones which real ants use for communication. The “artificial” pheromone
trails are a kind of distributed numerical information which is modified by the
ants to reflect their experience accumulated while solving a particular problem.
When constructing a solution, at each step ants compute a set of feasible moves
and select the best according to some probabilistic rules. The transition proba-
bility is based on the heuristic information and pheromone trail level of the move
(how much the movement is used in the past). When we apply ACO algorithm to
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MKP various probabilistic models are possible and the influence on the results
is shown.

The rest of the paper is organized as follows: Section 2 describes the gen-
eral framework for MKP as a COP. Section 3 outlines the implemented ACO
algorithm applied to MKP. In section 4 four probabilistic models are described.
In Section 5 experimental results over test problems are shown. Finally some
conclusions are drawn.

2 Formulation of the Problem

The Multiple Knapsack Problem has numerous applications in theory as well as
in practice. It also arise as a subproblem in several algorithms for more com-
plex COPs and these algorithms will benefit from any improvement in the field
of MKP. We can mention the following major applications: problems in cargo
loading, cutting stock, bin-packing, budget control and financial management
may be formulated as MKP. In [12] there is proposed to use the MKP in fault
tolerance problem and in [1] there is designed a public cryptography scheme
whose security realize on the difficulty of solving the MKP. Martello and Toth
[10] mention that two-processor scheduling problems may be solved as a MKP.
Other applications are industrial management, naval, aerospace, computational
complexity theory.

Most of theoretical applications either appear where a general problem is
transformed to a MKP or where a MKP appears as a subproblem. We should
mention that MKP appears as a subproblem when solving the generalized as-
signment problem, which again is used when solving vehicle routing problems. In
addition, MKP can be seen as a general model for any kind of binary problems
with positive coefficients [7].

The MKP can be thought as a resource allocation problem, where we have
m resources (the knapsacks) and n objects. The object j has a profit pj, each
resource has its own budget ci (knapsack capacity) and consumption rij of re-
source i by object j. We are interested in maximizing the sum of the profits,
while working with a limited budget.

The MKP can be formulated as follows:

max
∑n

j=1 pjxj

subject to
∑n

j=1 rijxj ≤ ci i = 1, . . . , m

xj ∈ {0, 1} j = 1, . . . , n

(1)

xj is 1 if the object j is chosen and 0 otherwise.
There are m constraints in this problem, so MKP is also called m-dimensional

knapsack problem. Let I = {1, . . . , m} and J = {1, . . . , n}, with ci ≥ 0 for all
i ∈ I. A well-stated MKP assumes that pj > 0 and rij ≤ ci ≤

∑n
j=1 rij for all

i ∈ I and j ∈ J . Note that the matrix [rij ]m×n and the vector [ci]m are both
non-negative.
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In the MKP we are not interested in solutions giving a particular order. There-
fore a partial solution is represented by S = {i1, i2, . . . , ij} and the most recent
elements incorporated to S, ij need not to be involved in the process for selecting
the next element. Moreover, solutions of ordering problems have a fixed length
as we search for a permutation of a known number of elements. Solutions of
MKP, however, do not have a fixed length. We define the graph of the problem
as follows: the nodes correspond to the items, the arcs fully connect nodes. A
fully connected graph means that after the object i we can choose the object j
for every i and j if there are enough resources and object j is not chosen yet.

3 ACO Algorithm for MKP

Real ants foraging for food lay down quantities of pheromone (chemical clues)
marking the path that they follow. An isolated ant moves essentially at random
but an ant encountering a previously laid pheromone will detect it and decide to
follow it with high probability and thereby reinforce it with a further quantity of
pheromone. The repetition of the above mechanism represents the auto catalytic
behavior of real ant colony where the more the ants follow a trail, the more
attractive that trail becomes.

The above behavior of real ants has inspired ACO algorithm. This technique,
which is a population-based approach, has been successfully applied to many NP-
hard optimization problems [2,4]. The ACO algorithm uses a colony of artificial
ants that behave as co-operative agents in a mathematical space where they are
allowed to search and reinforce pathways (solutions) in order to find the optimal
ones. A solution satisfying the constraints is said to be feasible.

procedure ACO
begin

Initialize
while stopping criterion not satisfied do

Position each ant in a starting node
repeat

for each ant do
Chose next node by applying the state transition rate
Apply step-by-step pheromone update

end for
until every ant has build a solution
Update best solution
Apply offline pheromone updating

end while
end

After initialization of the pheromone trails, ants construct feasible solutions,
starting from random nodes, then the pheromone trails are updated. At each step
ants compute a set of feasible moves and select the best one (according to some
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probabilistic rules) to carry out the rest of the tour. The transition probability
is based on the heuristic information and pheromone trail level of the move.
The higher the value of the pheromone and the heuristic information, the more
profitable it is to select this move and resume the search. In the beginning, the
initial pheromone level is set to a small positive constant value τ0 and then ants
update this value after completing the construction stage.

ACO algorithms adopt different criteria to update the pheromone level. In
our implementation we use the Ant Colony System (ACS) [4] approach.

In ACS the pheromone updating stage consists of local update stage and
global update stage.

3.1 Local Update Stage

While ants build their solution, at the same time they locally update the pher-
omone level of the visited paths by applying the local update rule as follows:

τij ← (1 − ρ)τij + ρτ0, (2)

where ρ is a persistence of the trail and the term (1 − ρ) can be interpreted as
trail evaporation.

The aim of the local updating rule is to make better use of the pheromone
information by dynamically changing the desirability of edges. Using this rule,
ants will search in wide neighborhood around the best previous solution. As
shown in the formula, the pheromone level on the paths is highly related to
the value of evaporation parameter ρ. The pheromone level will be reduced and
this will reduce the chance that the other ants will select the same solution and
consequently the search will be more diversified.

3.2 Global Updating Stage

When all ants have completed their solution, the pheromone level is updated
by applying the global updating rule only on the paths that belong to the best
solution since the beginning of the trail as follows:

τij ← (1 − ρ)τij + Δτij (3)

where Δτij =

⎧
⎨

⎩

ρLgb if (i, j) ∈ best solution

0 otherwise
,

Lgb is the cost of the best solution from the beginning. This global updating rule
is intended to provide a greater amount of pheromone on the paths of the best
solution, thus the search is intensified around this solution.

Let sj =
∑m

i=1 rij . For heuristic information we use:

ηij =

⎧
⎨

⎩

pd1
j /sd2

j if sj �= 0

pd1
j if sj = 0

(4)
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Hence the objects with greater profit and less average expenses will be more
desirable.

The MKP solution can be represented by string with 0 for objects that are
not chosen and 1 for chosen objects. The new solution is accepted if it is better
than current solution.

4 Transition Probability

In this section we describe four possibilities for transition probability model. For
ant k, the probability pk

ij of moving from a state i to a state j depends on the
combination of two values:

– The attractiveness ηij of the move as computed by some heuristic.
– The pheromone trail level of the move.

The pheromone τij is associated with the arc between nodes i and j.

4.1 Proportional Transition Probability

The quantity of the pheromone on the arcs between two nodes is proportional
to the experience of having the two nodes in the solution. Thus the node j is
more desirable if the quantity of the pheromone on arc (i, j) is high. For ant k
which moves from node i to node j the rule is:

pk
ij(t) =

⎧
⎪⎨

⎪⎩

τijηij(Sk(t))∑
q∈allowedk(t) τiqηiq(Sk(t)) if j ∈ allowedk(t)

0 otherwise
, (5)

where allowedk is the set of remaining feasible states, Sk(t) is the partial solution
at step t from ant k.

4.2 Transition Probability with Sum

This probability takes into account how desirable in the past has been the node j,
independently how many ants have reached it from the node i or from some other.
Thus the node j is more desirable if the average quantity of the pheromone on
the arcs which entry in the node j is high. In this case the transition probability
becomes:

pk
ij(t) =

⎧
⎨

⎩

(∑n
i=1 τij)ηij(Sk(t))

∑
q∈allowedk(t)(

∑n
l=1 τlq)ηiq(Sk(t))

if j ∈ allowedk(t)

0 otherwise
. (6)
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4.3 Maximal Transition Probability

This probability is proportional to the maximal pheromone on the arcs which
entry in the node j. Thus the node j can be more desirable independently of the
quantity of the pheromone on the arc (i, j) if there is some other arc with high
quantity of the pheromone which entry in the node j. In this case the transition
probability is changed as follows:

pk
ij(t) =

⎧
⎨

⎩

(maxl τlj)ηij(Sk(t))∑
q∈allowedk(t)(maxl τlq)ηiq(Sk(t)) if j ∈ allowedk(t)

0 otherwise
. (7)

4.4 Minimal Transition Probability

This probability is proportional to the minimal pheromone on the arcs which
entry in the node j. Thus the node j will be more desirable if the quantity of
the pheromone on all arcs which entry in the node j is high. In this case the
transition probability is as follows:

pk
ij(t) =

⎧
⎨

⎩

(minl τlj)ηij(Sk(t))∑
q∈allowedk(t)(minl τlq)ηiq(Sk(t)) if j ∈ allowedk(t)

0 otherwise
. (8)

5 Experimental Results

In this section we describe the experimental analysis on the performance of
MKP as a function of the transition probability. We show the computational
experience of the ACS using 10 MKP instances from “OR-Library” available at
http://people.brunel.ac.uk/∼{}mastjjb/jeb/orlib, with 100 objects and
10 constraints. To provide a fair comparison for the above implemented ACS
algorithm, a predefined number of iterations, k = 400, is fixed for all the runs.
The developed technique has been coded in C++ language and implemented on
a Pentium 4 (2.8 GHz).

Because of the random start of the ants in every iteration, we can use fewer
ants than the number of the nodes. After the tests we found that 10 ants are
enough to achieve good results. Thus we decrease the running time of the pro-
gram. We run the same instance using different transition probability models
on the same random sequences for starting nodes and we find different results.
Thus we are sure that the difference comes from the transition probability. For
all 10 instances we were running experiments for a range of evaporation rates
and the parameters d1 and d2 in order to find the best parameters for every
instance. We fixed the initial pheromone value to be τ0 = 0.5. After choosing
for every problem instance the best rate for the parameters we could compare
the different transition probabilities. In Figure 1 we show the average results
over all 10 problem instances and every instance is run 20 times with the same
parameter settings.

http://people.brunel.ac.uk/~{ }mastjjb/jeb/orlib
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Fig. 1. The graphics shows the average solution quality (value of the total cost of the
objects in the knapsack) over 20 runs. Dash dot line represents proportional probability,
dash line — probability with sum, dots line — maximal probability and thick line —
minimal probability.

Our first observation is that the proportional and the minimal transition prob-
abilities show advantage over the sum and maximal transition probabilities. In
a small number of iterations (less than 50), probability with sum and minimal
probability achieve better results, but after that the proportional probability
outperforms them. The MKP is not ordered problem. It means that the quality
of the solution is not related to the order we choose the elements. Using max-
imal transition probability it is enough only one arc to have high quantity of
the pheromone and the node will be more desirable. This kind of probability is
more suitable to ordered problems: the node j is more desirable by node i than
by node q. Using transition probability with sum the node is more desirable if
the average quantity of the pheromone is high, but for some of the arcs this
quantity can be very high and for other arc it can be very low and the average
pheromone to be high. Thus we can explain the worst results with this two mod-
els of the transition probability. If the minimal probability is high, the quantity
of pheromone for all arcs which entry the node is high. If the proportional prob-
ability is high it means that after node i is good to chose node j. The last two
models of transition probability are better related to the unordered problems
and thus we can achieve better results using them.

6 Conclusion

The design of a meta-heuristic is a difficult task and highly dependent on the
structure of the optimized problem. In this paper four models of the transition
probability have been proposed. The comparison of the performance of the ACS
coupled with these probability models applied to different MKP problems are



552 S. Fidanova

reported. The goal is to find probability model which is more relevant to the
structure of the problem. The obtained results are encouraging and the ability
of the developed models to rapidly generate high-quality solutions for MKP can
be seen. For future work another important direction for current research is to
try different strategies to explore the search space more effectively and provide
good results.
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