
ACO with semi-random start applied on MKP

Stefka Fidanova

and Pencho Marinov

Institute for Parallel Processing

Bulgarian Academy of Sciences

Acad. G. Bonchev str. bl 25A

1113 Sofia, Bulgaria

Email: {stefka, pencho }@parallel.bas.bg

Krassimir Atanassov

Central Laboratory for Bio-Medical Engineering

Bulgarian Academy of Sciences

Acad. G. Bonchev str. bl 25A

1113 Sofia, Bulgaria

Email: krat@bas.bg

Abstract—Ant Colony Optimization (ACO) is a stochastic
search method that mimics the social behavior of real ants
colonies, which manage to establish the shortest route to feeding
sources and back. Such algorithms have been developed to arrive
at near-optimal solutions to large-scale optimization problems,
for which traditional mathematical techniques may fail. On this
paper semi-random start is applied. A new kind of estimation
of start nodes of the ants is made and several start strategies
are prepared and combined. The idea of semi-random start is
better management of the ants. This new technique is tested
on Multiple Knapsack Problem (MKP). Benchmark comparison
among the strategies is presented in terms of quality of the
results. Based on this comparison analysis, the performance of
the algorithm is discussed. The study presents ideas that should
be beneficial to both practitioners and researchers involved in
solving optimization problems.

I. INTRODUCTION

Many combinatorial optimization problems are fundamen-

tally hard. This is the most typical scenario when it comes

to realistic and relevant problems in industry and science.

Examples of optimization problems are Traveling Salesman

Problem [10], Vehicle Routing [12], Minimum Spanning Tree

[8], Multiple Knapsack Problem [5], etc. They are NP-hard

problems and in order to obtain solution close to the optimality

in reasonable time, metaheuristic methods are used. One of

them is Ant Colony Optimization (ACO) [3].

ACO algorithms have been inspired by the real ants be-

havior. In the nature, ants usually wander randomly, and upon

finding food return to their nest while laying down pheromone

trails. If other ants find such a path, they are likely not to keep

traveling at random, but to instead follow the trail, returning

and reinforcing it if they eventually find food. However, as

time passes, the pheromone starts to evaporate. The more time

it takes for an ant to travel down the path and back again, the

more time the pheromone has to evaporate and the path to

become less prominent. A shorter path, in comparison will be

visited by more ants and thus the pheromone density remains

high for a longer time.

ACO is implemented as a team of intelligent agents which

simulate the ants behavior, walking around the graph repre-

senting the problem to solve using mechanisms of cooperation

and adaptation. ACO algorithm requires to define the following

[1], [4]:

• The problem needs to be represented appropriately, which

would allow the ants to incrementally update the solutions

through the use of a probabilistic transition rules, based

on the amount of pheromone in the trail and other prob-

lem specific knowledge. It is also important to enforce a

strategy to construct only valid solutions corresponding

to the problem definition.

• A problem-dependent heuristic function, that measures

the quality of components that can be added to the current

partial solution.

• A rule set for pheromone updating, which specifies how

to modify the pheromone value.

• A probabilistic transition rule based on the value of the

heuristic function and the pheromone value, that is used

to iteratively construct a solution.

The structure of the ACO algorithm is shown by the pseudo-

code below (Figure 1). The transition probability pi,j , to

choose the node j when the current node is i, is based on

the heuristic information ηi,j and the pheromone trail level

τi,j of the move, where i, j = 1, , n.

pi,j =
τai,jη

b
i,j

∑

k∈allowed τ
a
i,kη

b
i,k

, (1)

The higher the value of the pheromone and the heuristic

information, the more profitable it is to select this move and

resume the search. In the beginning, the initial pheromone

level is set to a small positive constant value τ0; later, the ants
update this value after completing the construction stage. ACO

algorithms adopt different criteria to update the pheromone

level.

The pheromone trail update rule is given by:

τi,j ← ρτi,j +∆τi,j , (2)

where ρ models evaporation in the nature and ∆τi,j is new

added pheromone which is proportional to the quality of the

solution.

Our novelty is to use estimations of start nodes with respect

to the quality of the solution and thus to better manage the

search process. On the basis of the estimations we offer several

start strategies and their combinations. Like a benchmark

problem is used Multiple Knapsack Problem (MKP) because a

Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 887–891

ISBN 978-83-60810-22-4

ISSN 1896-7094

978-83-60810-22-4/09/$25.00 c© 2010 IEEE 887

Ant Colony Optimization

Initialize number of ants;

Initialize the ACO parameters;

while not end-condition do

for k=0 to number of ants

ant k choses start node;

while solution is not constructed do

ant k selects higher probability node;

end while

end for

Update-pheromone-trails;

end while

Fig. 1. Pseudocode for ACO

lot of real world problems can be represented by it and MKP

arises like a subproblem in many optimization problems.

The rest of the paper is organized as follows: in section 2

several start strategies are proposed. In section 3 the MKP is

introduced. In section 4 the strategies are applied on MKP and

the achieved results are compared and strategies are classified.

At the end some conclusions and directions for future work

are done.

II. START STRATEGIES

The known ACO algorithms create a solution starting from

random node. But for some problems, especially subset prob-

lems, it is important from which node the search process starts.

For example if an ant starts from node which does not belong

to the optimal solution, probability to construct it is zero.

Therefore we offer several start strategies.

Let the graph of the problem hasm nodes. We divide the set

of nodes on N subsets. There are different ways for dividing.

Normally, the nodes of the graph are randomly enumerated.

An example for creating of the nodes subsets, without loss

of generality, is: the node number one is in the first subset,

the node number two is in the second subset, etc. the node

number N is in the N − th subset, the node number N + 1
is in the first subset, etc. Thus the number of the nodes in the

subsets are almost equal. We introduce estimations Dj(i) and
Ej(i) of the node subsets, where i ≥ 2 is the number of the

current iteration. Dj(i) shows how good is the jth subset and

Ej(i) shows how bad is the jth subset. Dj(i) and Ej(i) are

weight coefficients of j− th node subset (1 ≤ j ≤ N), which
we calculate by the following formulas:

Dj(i) = φ.Dj(i− 1) + (1 − φ).Fj(i), (3)

Ej(i) = φ.Ej(i − 1) + (1− φ).Gj(i), (4)

where i ≥ 1 is the current process iteration and for each j (1 ≤
j ≤ N):

Fj(i) =

{

fj,A
nj

if nj 6= 0

Fj(i− 1) otherwise
, (5)

Gj(i) =

{ gj,B
nj

if nj 6= 0

Gj(i − 1) otherwise
, (6)

fj,A is the number of the solutions among the best A%, gj,B
is the number of the solutions among the worst B%, where

A+ B ≤ 100, i ≥ 2 and

N
∑

j=1

nj = n, (7)

where nj (1 ≤ j ≤ N) is the number of solutions obtained

by ants starting from nodes subset j, n is the number of

ants. Initial values of the weight coefficients are: Dj(1) = 1
and Ej(1) = 0. The parameter φ, 0 ≤ φ ≤ 1, shows the

weight of the information from the previous iterations and

from the last iteration. When φ = 0 only the information

from the last iteration is taken in to account. If φ = 0.5 the

influence of the previous iterations versus the last is equal.

When φ = 1 only the information from the previous iterations

is taken in to account. When φ = 0.25 the weight of the

information from the previous iterations is three times less than

this one of the last iteration. When φ = 0.75 the weight of the

previous iterations is three times higher than this one of the

last iteration. The balance between the weights of the previous

iterations and the last is important. At the beginning when the

current best solution is far from the optimal one, some of the

node subsets can be estimated as good. Therefore, if the value

of the parameter φ is too high the estimation can be distorted.

If the weight of the last iteration is too high then information

for good and bad solutions from previous iterations is ignored,

which can distort estimation too.

We try to use the experience of the ants from previous

iteration to choose the better starting node. Other authors

use this experience only by the pheromone, when the ants

construct the solutions [4]. Let us fix threshold E for Ej(i)
and D for Dj(i), than we construct several strategies to

choose start node for every ant, the threshold E increases

every iteration with 1/i where i is the number of the current

iteration:

1 If Ej(i)/Dj(i) > E then the subset j is forbidden

for current iteration and we choose the starting node

randomly from {j |j is not forbidden};
2 If Ej(i)/Dj(i) > E then the subset j is forbidden

for current simulation and we choose the starting node

randomly from {j |j is not forbidden};
3 If Ej(i)/Dj(i) > E then the subset j is forbidden for

K1 consecutive iterations and we choose the starting node

randomly from {j |j is not forbidden};
4 Let r1 ∈ [0.5, 1) is a random number. Let r2 ∈ [0, 1] is

a random number. If r2 > r1 we randomly choose node

from subset {j |Dj(i) > D}, otherwise we randomly

chose a node from the not forbidden subsets, r1 is chosen

and fixed at the beginning.

5 Let r1 ∈ [0.5, 1) is a random number. Let r2 ∈ [0, 1] is
a random number. If r2 > r1 we randomly choose node

888 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

from subset {j |Dj(i) > D}, otherwise we randomly

chose a node from the not forbidden subsets, r1 is chosen

at the beginning and increase with r3 every iteration.

Where 0 ≤ K1 ≤”number of iterations” is a parameter. If

K1 = 0, than strategy 3 is equal to the random choose of the

start node. If K1 = 1, than strategy 3 is equal to the strategy

1. If K1 =”maximal number of iterations”, than strategy 3 is

equal to the strategy 2.

We can use more than one strategy for choosing

the start node, but there are strategies which can not

be combined. We distribute the strategies into two sets:

St1 = {strategy1, strategy2, strategy3} and St2 =
{strategy5, strategy6}. The strategies from same set can

not be used at once. Thus we can use strategy from one

set or combine it with strategies from the other set. Exem-

plary combinations are (strategy1), (strategy2; strategy5),
(strategy3; strategy6). When we combine strategies from

St1 and St2, first we apply the strategy from St1 and accord-

ing it some of the regions (node subsets) become forbidden,

and after that we choose the starting node from not forbidden

subsets according the strategy from St2

III. MULTIPLE KNAPSACK PROBLEM

We test the ideas for controlled start on MKP. MKP is a real

world problem and is a representative of the class of subset

problems. The MKP has numerous applications in theory as

well as in practice. It also arises as a subproblem in several

algorithms for more complex problems and these algorithms

will benefit from any improvement in the field of MKP. The

following major applications can be mentioned: problems in

cargo loading, cutting stock, bin-packing, budget control and

financial management. Sinha and Zoltner [9] proposed to use

the MKP in fault tolerance problem and in [2] is designed

a public cryptography scheme whose security realize on the

difficulty of solving the MKP. Martello and Toth [7] mention

that two-processor scheduling problems may be solved as a

MKP. Other applications are industrial management, naval,

aerospace, computational complexity theory.

The MKP can be thought as a resource allocation problem,

where there are m resources (the knapsacks) and n objects

and every object j has a profit pj . Each resource has its own

budget cj (knapsack capacity) and consumption rij of resource
i by object j. The aim is maximizing the sum of the profits,

while working with a limited budget.

The MKP can be formulated as follows:

max
∑n

j=1
pjxj

subject to
∑n

j=1
rijxj ≤ ci i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n

(8)

xj is 1 if the object j is chosen and 0 otherwise.

There are m constraints in this problem, so MKP is also

called m-dimensional knapsack problem. Let I = {1, . . . ,m}
and J = {1, . . . , n}, with ci ≥ 0 for all i ∈ I . A well-stated

MKP assumes that pj > 0 and rij ≤ ci ≤
∑n

j=1
rij for all

i ∈ I and j ∈ J . Note that the [rij]m×n matrix and [ci]m
vector are both non-negative.

In the MKP one is not interested in solutions giving a

particular order. Therefore a partial solution is represented by

S = {i1, i2, . . . , ij} and the most recent elements incorporated

to S, ij need not be involved in the process for selecting the

next element. Moreover, solutions for ordering problems have

a fixed length as one search for a permutation of a known

number of elements. Solutions for MKP, however, do not have

a fixed length. The graph of the problem is defined as follows:

the nodes correspond to the items, the arcs fully connect nodes.

Fully connected graph means that after the object i one can

chooses the object j for every i and j if there are enough

resources and object j is not chosen yet.

IV. COMPUTATIONAL RESULTS

The computational experience of the ACO algorithm

is shown using 10 MKP instances from “OR-Library”

available within WWW access at http://people.

brunel.ac.uk/mastjjb/jeb/orlib/, with 100 objects and

10 constraints. To provide a fair comparison for the above

implemented ACO algorithm, a predefined number of

iterations, k = 100, is fixed for all the runs. Thus we can

observe which strategy reaches good solutions faster. If the

value of k (number of iterations) is too high, the achieved

results will be very close to the optimal solution and will be

difficult to appreciate different strategies. We apply strategies

on MMAS [11], because it is one of the best ACO approach.

The developed technique has been coded in C++ language

and implemented on a Pentium 4 (2.8 Ghz). The parameters

are fixed as follows: ρ = 0.5, a = 1, b = 1, number of used

ants is 20, A = 30, B = 30, D = 1.5, E = 0.5, K1 = 5,
r3 = 0.01. The values of ACO parameters (ρ, a, b) are from

[6] and experimentally is found that they are best for MKP.

The tests are run with 1, 2, 4, 5 and 10 nodes within the

nodes subsets and values for φ are 0, 0.25, 0.5 and 0.75.

For every experiment, the results are obtained by performing

30 independent runs, then averaging the fitness values. The

computational time which takes start strategies is negligible

with respect to the computational time which takes solution

construction.

Tests with all possible combinations of strategies and with

random start (12 combinations at all), four value for φ and five

kind of node subsets are run and every test 30 times. Thus the

all runs are 72 000. One can observe that sometimes all nodes

subsets become forbidden and the algorithm stops before

performing all iterations (strategies 1, 2, 3 and combinations

with them). So if all nodes subsets become forbidden the

algorithm performs several iterations without any strategy with

random start till some of the subsets become not forbidden.

Then the algorithm continue to apply the chosen strategy.

The problem which arises is how to compare the achieved

solutions by different strategies and different node-devisions.

Therefore the difference (interval) d between the worst and

best average result for every problem is divided to 10. If the

STEFKA FIDANOVA, PENCHO MARINOV, KRASSIMIR ATANASSOV: ACO WITH SEMI-RANDOM START APPLIED ON MKP 889

TABLE I
ESTIMATON OF STRATEGIES AND NODES DEVISIONS FOR φ = 0

number nodes 10 5 4 2 1

random 32 32 32 32 32

strat. 1 84 84 87 83 83

strat. 2 33 31 36 53 74

strat. 3 79 86 86 88 86

strat. 4 86 86 86 86 86

strat. 5 86 86 86 86 86

strat. 1-4 83 89 84 81 89

strat. 1-5 83 89 84 81 89

strat. 2-4 33 36 35 53 82

strat. 2-5 33 36 35 63 82

strat. 3-4 69 89 88 87 90

strat. 3-5 69 89 88 87 90

average result for some strategy, node devision and φ is in

the first interval with borders the worst average result and

worst average plus d/10 it is appreciated with 1. If it is in

the second interval with borders the worst average plus d/10
and worst average plus 2d/10 it is appreciated with 2 and so

on. If it is in the 10th interval with borders the best average

minus d/10 and the best average result, it is appreciated with

10. Thus for a test problem the achieved results for every

strategy, every nodes devision and every φ is appreciated from

1 to 10. After that is summed the rate of all test problems for

every strategy, every nodes devision and φ. So the rate of

the strategies/node-devision/φ becomes between 10 and 100,

because the benchmark problems are 10. It is mode of result

classification.

On Table I is shown the rate of the strategies/node-devision

when parameter φ = 0, which means that only the achieved re-

sults from the last iteration are taken in to account in the node-

subsets estimation, in bold is the best rate. We observe that the

rate of the ACO algorithm with start strategies outperforms the

traditional ACO with completely random start. Comparing the

strategies, the worst rate has strategy 3 and their combinations

with strategies 4 and 5. In strategy 3 the nodes-subsets with

high value of estimation Ej(i) become forbidden for current

simulation. So if at the beginning iterations of the algorithm

from some node-subset start only bad solutions it will be

forbidden, but it is possible from this node subset to start good

solutions too. The best rate have the combinations of strategies

1 and 3 with strategies 4 and 5. It means that it is better the

node subsets which are appreciated like bad to be forbidden

for a fixed number of iterations and it is better to forbid some

node-subsets and to stimulate ants to start from other which

looks to be good, than to apply only one strategy (forbidden

or stimulated). The worst rate with respect of node devision

is when there are 10 nodes in the node-subsets. When there

TABLE II
ESTIMATON OF STRATEGIES AND NODES DEVISIONS FOR φ = 0.25

number nodes 10 5 4 2 1

random 32 32 32 32 32

strat. 1 83 88 86 90 90

strat. 2 32 31 36 61 81

strat. 3 62 86 84 84 96

strat. 4 86 86 86 86 86

strat. 5 86 86 86 86 86

strat. 1-4 84 91 87 92 96

strat. 1-5 84 91 87 92 96

strat. 2-4 34 33 35 59 85

strat. 2-5 34 33 35 59 85

strat. 3-4 69 83 86 84 97

strat. 3-5 69 83 86 84 97

TABLE III
ESTIMATION OF STRATEGIES AND NODES DEVISIONS FOR φ = 0.5

number nodes 10 5 4 2 1

random 32 32 32 32 32

strat. 1 78 86 88 92 96

strat. 2 34 35 38 51 78

strat. 3 61 86 88 94 97

strat. 4 86 86 86 86 86

strat. 5 86 86 86 86 86

strat. 1-4 79 90 87 94 97

strat. 1-5 79 90 87 94 97

strat. 2-4 35 40 44 56 83

strat. 2-5 35 40 44 56 83

strat. 3-4 68 92 88 92 96

strat. 3-5 68 92 88 92 96

are to many nodes in the node subset then it is possible from

this subset to start good and bad solutions and it is difficult to

appreciate it. The best rate with respect to the node devision

is when in the node subsets is only one node.

On Tables II, III and IV are shown the rate of the

strategies/node-devision when parameter φ = 0.25, 0.5 and

0.75. We can make similar to the φ = 0 conclusions. For all

values of the parameter φ the best rate according node devision

is when there is only one node in node-subsets. So we put in

Table V the rate of the start strategies when the node subsets

consist one node, with bold is the best rate.

On Table V we observe that the worst rate according value

of the parameter φ is when we take in to account only the

achieved solutions from the last iteration (φ = 0). The rate

890 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

TABLE IV
ESTIMATION OF STRATEGIES AND NODES DEVISIONS FOR φ = 0.75

number nodes 10 5 4 2 1

random 32 32 32 32 32

strat. 1 71 81 85 89 92

strat. 2 35 55 52 60 87

strat. 3 56 76 88 95 95

strat. 4 86 86 86 86 86

strat. 5 86 86 86 86 86

strat. 1-4 67 83 89 94 95

strat. 1-5 67 83 89 94 95

strat. 2-4 39 47 48 58 85

strat. 2-5 39 47 48 58 85

strat. 3-4 56 81 87 94 97

strat. 3-5 56 81 87 94 97

TABLE V
ESTIMATION OF STRATEGIES AND PARAMETER φ

φ 0 0.25 0.5 0.75

random 32 32 32 32

strat. 1 83 93 96 92

strat. 2 74 81 78 87

strat. 3 86 96 97 95

strat. 4 86 86 86 86

strat. 5 86 86 86 86

strat. 1-4 89 96 97 95

strat. 1-5 89 96 97 95

strat. 2-4 82 85 83 85

strat. 2-5 82 85 83 85

strat. 3-4 90 97 96 97

strat. 3-5 90 97 96 97

of strategies when φ = 0.5 is slightly better than rate when

φ = 0.25 and φ = 0.75. So we can conclude that the balance

between information from previous iterations and from last

iteration is very important. According to the strategies, the

worst rate is when is applied traditional ACO with random

start and with strategy 2 when the subsets stay forbidden for

current simulation. The best rate are combinations of strategy

3 with strategies 4 and 5. So for better performance of the

ACO algorithm is advisable to forbid bad regions for several

iterations and to stimulate ants to start construction of the

solutions from good regions.

V. CONCLUSION

In this paper we address the modeling of the process of ant

colony optimization method by using estimations, combining

five start strategies. So, the start node of each ant depends of

the goodness of the respective region. We focus on parameter

settings which manage the starting procedure. We investigate

on influence of the parameter φ to algorithm performance. The

best solutions are achieved when ”bad” regions are forbidden

for several iterations and the probability the ants to start

from ”good” regions is higher. In future we will apply our

modification of ACO algorithm on various classes of problems.

We will investigate the influence of the estimations and start

strategies on the achieved results.

ACKNOWLEDGMENT

This work has been partially supported by the Bulgarian

National Scientific Fund under the grants Modeling Processes

with fixed development rules - DID 02/29 and Effective Monte

Carlo Methods for large-scale scientific problems - DTK

02/44.

REFERENCES

[1] E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence: From

Natural to Artificial Systems, New York,Oxford University Press, 1999.
[2] W. Diffe and M.E. Hellman, New direction in cryptography, IEEE Trans

Inf. Theory. IT-36,1976, 644-654.
[3] M. Dorigo and L.M. Gambardella, Ant Colony System: A Cooperative

Learning Approach to the Traveling Salesman Problem, IEEE Transac-
tions on Evolutionary Computation 1, 1997, 53-66.

[4] M. Dorigo and T. Stutzle, Ant Colony Optimization, MIT Press, 2004.
[5] S. Fidanova, Evolutionary Algorithm for Multiple Knapsack Problem,

Int. Conference Parallel Problems Solving from Nature, Real World
Optimization Using Evolutionary Computing, ISBN No 0-9543481-0-
9,Granada, Spain, 2002.

[6] S. Fidanova, Ant colony optimization and multiple knapsack problem,
in: Renard, J.Ph. (Eds.), Handbook of Research on Nature Inspired
Computing for Economics ad Management, Idea Group Inc., ISBN 1-
59140-984-5, 2006, 498-509.

[7] S. Martello and P. Toth, A mixtures of dynamic programming and branch-

and-bound for the subset-sum problem, Management Science 30, 1984,
756-771.

[8] M. Reiman and M. Laumanns, A Hybrid ACO algorithm for the Capac-

itate Minimum Spanning Tree Problem, In proc. of First Int. Workshop
on Hybrid Metahuristics, Valencia, Spain, 2004, 1-10.

[9] A. Sinha and A.A. Zoltner, The multiple-choice knapsack problem, J.
Operational Research 27, 1979, 503-515.

[10] T. Stutzle and M. Dorigo, ACO Algorithm for the Traveling Salesman

Problem, In K. Miettinen, M. Makela, P. Neittaanmaki, J. Periaux eds.,
Evolutionary Algorithms in Engineering and Computer Science, Wiley,
1999, 163-183.

[11] T. Stutzle and H.H. Hoos, MAX-MIN Ant System, In Dorigo M., Stutzle
T., Di Caro G. (eds). Future Generation Computer Systems, Vol 16, 2000,
889–914.

[12] T. Zhang, S. Wang, W. Tian and Y. Zhang, ACO-VRPTWRV: A New
Algorithm for the Vehicle Routing Problems with Time Windows and
Re-used Vehicles based on Ant Colony Optimization, Sixth International
Conference on Intelligent Systems Design and Applications, IEEE press,
2006, 390-395.

STEFKA FIDANOVA, PENCHO MARINOV, KRASSIMIR ATANASSOV: ACO WITH SEMI-RANDOM START APPLIED ON MKP 891

