Computational Study of IL-6 Inhibition by Low-Molecular-Weight Heparin

Peicho Petkov¹, Miroslav Rangelov², Nevena Ilieva³, Nadezhda Todorova⁴, Elena Lilkova³, Leandar Litov¹

¹Atomic Physics Department, Faculty of Physics, University of Sofia "St. Kliment Ohridski"
²Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences
³Institute for Information and Communication Technologies, Bulgarian Academy of Sciences
⁴Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences

13th International Conference on "Large-Scale Scientific Computations" June 10, 2021

Methods 00000 Results

Conclusions

Overview

1 Introduction

- IL-6
- Heparin
- Molecular Dynamics
- 2 Methods
 - Input models
 - Simulation protocol
- 3 Results
 - IL-6–LMWH interaction
 - IL-6/IL-6R α -LMWH interaction

Onclusions

 Introduction
 Methods
 Results
 Conclusions

 •0000000
 00000000
 00000000
 IL-6

Biological background

Moderate to severe cases of Covid-19 may suffer from Cytokine Release Syndrome (CRS):

- Large numbers of white blood cells are activated and release pro-inflammatory cytokines.
- This activates more white blood cells in a positive feedback loop of pathogenic inflammation.
- The dysregulated release of pro-inflammatory cytokines can be life-threatening and lead to systemic hyper-inflammation, hypotensive shock, and multi-organ failure.

 Introduction
 Methods
 Results
 Conclusions

 0000000
 00000000
 00000000
 00000000

 IL-6
 IL-6
 IL-6

Interleukine 6 (IL-6)

- Pleiotropic signalling molecule with both pro- and anti-inflammatory functions.
- Produced in response to tissue damage and infections.
- Involved in inflammation, including stimulation of acute phase protein synthesis, regulation of immune response and hematopoiesis.
- 212 amino acids, organized in an α -helical bundle of 4 α -helices and two long loops.
- Very low levels under normal conditions, but can raise many thousandfold during inflammation.
- Systemic overexpression of IL-6 playing pathological role in chronic inflammation, autoimmunity and cancer.

 Introduction
 Methods
 Results
 Co

 ○○○●○○○○
 ○○○○○○○○○○
 ○○○○○○○○○○○○○
 Heparin

Unfractionated heparin

- Naturally occurring glycosaminoglycan;
- Used as an anticoagulant to prevent the formation of clots and extension of existing clots within the blood;
- Native heparin molecular weight ranges from 3 to 30 kDa, but pharmacological unfractionated heparin weights 12–15 kDa;
- Heparin is a polymer of repeating disaccharide units of 1→4 linked uronic acid (β-D-glucuronic or α-L-iduronic acid) and D-glucosamine (N-acetylated or N-sulfated);
- Each saccharide monomer can be further 2-, 3- or 6-O-sulfated;
- This makes heparin one of the biological macromolecules with the highest charge density in the body.

Introduction 00000000 Heparin Methods 00000 Results 00000000 Conclusions

Low Molecular Weight derivatives of Heparin (LMWH)

- Low molecular weight heparins are produced by chemical or enzymatic depolymerization of unfractionated heparin;
- Average chain molecular weight ranges from 3 to 8 kDa;
- Different manufacturing processes produce structural variations at the reducing and non-reducing ends of the carbohydrate chains;
- In addition to their anticoagulant properties, in recent years LMWH attract research interest for their anti-inflammatory effects.

Introduction	Methods	Results	Conclusions
00000000	00000	0000000	
Molecular Dynamics			

Molecular dynamics

Integrate Newton's equations of motion:

$$m_i \frac{d^2 \mathbf{r}_i}{dt^2} = \mathbf{F}_i \tag{1}$$

$$\mathbf{F}_{i} = -\nabla_{i} U\left(\{\mathbf{r}_{i}\}\right) \tag{2}$$

The potential energy function is called force field:

$$U(\{\mathbf{r}_i\}) = \sum_{bond} K_l (l - l_0)^2 + \sum_{angle} K_{\theta} (\theta - \theta_0)^2 + \sum_{torsion} K_{\phi} (1 + \cos(n\phi - \delta)) + \sum_{torsion}^N \sum_{j=i+1}^N \left(4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^6 \right] + \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}} \right)$$
(3)

Introduction	Methods	Results	Conclusions
00000000	00000	0000000	
Molecular Dynamics			

Molecular mechanics force field

Methods 00000 Results

Conclusions

Molecular Dynamics

Leap frog integrator

 Introduction
 Methods
 Results

 ○○○○○○○○
 ●○○○○
 ○○○○○○○○

 Input models

Protein structures

IL-6:

- PDB ID 1ALU;
- The missing residues, ⁵²SerSerLysGluAlaLeuAlaGluAsn⁶⁰, added using the loop-modeling interface to MODELLER of UCSF Chimera;
- 10 ns equilibration.
- IL-6/IL-6R α complex:
 - PDB ID 1P9M;
 - 10 ns equilibration.

- LMW heparin model
 - Based on a literature review, the following hexasaccharide sequence was chosen as a model molecule for general LMWH: GlcNAc(6S) (1→4) GlcA (1→4) GlcNS(6S) (1→4) IdoA(2S) (1→4) GlcNS (1→4) GlcA(2S).
 - Each oligosaccharide chain has a net charge of -9e.

Introduction 00000000 Input models Conclusions

LMW heparin model

Methods

00000

 The Glycan Reader & Modeler module of the CHARMM-GUI server was used for generation of a three-dimensional structure, corresponding to the chosen carbohydrate sequence, as well as topology using the latest version of the CHARMM36 carbohydrate force field.

Results

• The topology was converted to a GROMACS-compatible topology using the parmed module of Ambertools 16.

Introduction 00000000 Input models Methods 00000 Results

Conclusions

LMWH-protein starting structures

- The MOE software package used for preparation of the initial structures of the complexes of IL-6 and LMWH, and IL-6/IL6Rα and LMWH.
- The oligosaccharide was docked in IL-6 and IL-6/IL6R α complex in proximity to IL-6 binding sites I and II.

Introduction 0000000 Simulation protocol Methods

Results

Conclusions

Production run protocol

- GROMACS MD simulation package, version 2016.3;
- CHARMM36 force filed + modified TIP3P water model;
- Rectangular simulation boxes with 2 nm to the edges;
- Periodic boundary conditions;
- Constraints on all bonds;
- Leapfrog integrator with 2 fs timestep;
- NPT ensemble at 310K (v-rescale, $\tau_T = 0.25 p s^{-1}$) and 1 atm (Parrinello-Rahman, $\tau_P = 1.0 p s^{-1}$);
- PME electrostatics (*r_{coloumb}*=1.2nm) + shifted VdW (*r_{switch}*=0.1 nm, *r_{vdw}*=1.2 nm);

 Introduction
 Methods
 Results
 Conclusions

 0000000
 00000
 00000000
 IL-6-LMWH interaction

IL-6–LMWH Complex

- A stable complex between the cytokine and the oligosaccharide throughout the 250 ns MD run.
- The carbohydrate binds to IL-6 at Arg^{24} , Lys^{27} , Arg^{30} , Leu^{33} , Ser^{37} , Arg^{40} , Cys^{50} , and Glu^{51} from helix A and Lys^{171} , Gln^{175} , Arg^{179} and Arg^{182} from helix D.

Introduction 0000000 IL-6–LMWH interaction Method: 00000 Results

Conclusions

IL-6 Electrostatic Potential upon LMWH binding

The complex is stabilised through a large number of polar interactions between the positively charged amino acids in the cytokine and the negatively charged sulphates in the LMWH chain.

	аа	d [Å]	E [kcal/mol]
	Leu ¹⁹	2.29	-11.4
	Arg^{182}	2.31	-11.2
X Andrew C	Arg ³⁰	2.35	-10.6
	Lys ¹⁷¹	2.36	-10.5
	Arg^{30}	2.39	-10.1
	Lys^{171}	2.44	-9.5
	Arg^{30}	2.46	-9.3
	Arg ¹⁷⁹	2.48	-9.0
	Arg ¹⁸²	2.49	-9.0

Results 0000000

IL-6-LMWH interaction

IL-6 SASA upon LMWH binding

■ IL6 ■ IL6 + Heparin

Method 00000 Results

Conclusions

IL-6/IL-6R α –LMWH interaction

IL-6/IL-6R α -LMWH complex position 1

The oligosaccharide is strongly bound to residues Arg^{40} , Lys^{41} , and Arg^{168} of IL-6, which are not among the direct participants in the complex formation.

Method 00000 Results

Conclusions

IL-6/IL-6R α –LMWH interaction

IL-6/IL-6R α -LMWH complex position 2

The oligosaccharide binds to residues Arg^{30} of IL-6 helix A, Lys^{252} of IL-6R α and comes in close proximity to Tyr^{31} of IL-6 helix A. This position is unstable during a 250 ns MD run.

Methods 00000 Results

Conclusions

IL-6/IL-6R α -LMWH interaction

IL-6/IL-6R α -Mg²⁺-LMWH complex

The complex is stabilised when a divalent ion is added to the system, in this case a ${\rm Mg}^{2+}.$

Results 00000000

IL-6/IL-6R α -LMWH interaction

IL-6 SASA upon LMWH binding to the IL-6/IL-6R α /Mg²⁺ complex

Methods 00000 Results

Conclusions

IL-6/IL-6R α -LMWH interaction

Inhibition of recruitment of gp130 to the IL-6/IL-6R α -Mg²⁺-LMWH complex

LMWH, in the presence of Mg ions, blocks binding site II, (IL-6/gp130) and being positioned in front of helix A, effectively prevents the formation of the complex with gp130.

Introduction	Methods	Results	Conclusions
00000000	00000	0000000	
Conclusions			

- LMWH oligosaccharides interact with IL-6 by binding to 4 of the 7 aa residues in binding site I, blocking that way its binding to the receptor IL-6Rα.
- LMWH oligosaccharides interact with the complex IL-6/IL-6Rα, which prevents further binding of this complex to gp130.
- Hence, the computational modelling results indicate that LMWH could be useful in the treatment of a cytokine storm by inhibiting IL-6 activity, especially in the context of the trans-signalling mechanism.

Methods 00000 Results

Conclusions

Acknowledgments

This work was supported in part by the Bulgarian Science Fund (Grant KP-06-DK1/5/2021) and by the Bulgarian Ministry of Education and Science (contract D01–205/23.11.2018) under the National Scientific Program "Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICTinSES)", approved by DCM # 577/17.08.2018.

Computational resources were provided by the BioSim HPC Cluster at the Faculty of Physics at Sofia University "St. KI. Ohridski".

Methods 00000 Results

Conclusions

Thank You!