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Abstract Numerical methods applicable to the approximation of spectral
fractional diffusion operators in multidimensional domains with general ge-
ometry are analyzed. Over the past decade, several approaches have been
proposed to approximate the inverse operator A−α, α ∈ (0, 1). Despite their
different origins, they can all be written as a rational approximation. Let the
matrix A be obtained after finite difference or finite element discretization of
A. The BURA (Best Uniform Rational Approximation) method was intro-
duced to approximate the inverse matrix A−α based on an approximation of
the scallar function zα, α ∈ (0, 1), z ∈ [0, 1].

In this paper we study BURA and BURA-based methods for fractional
powers of sparse symmetric and positive definite (SPD) matrices, presentiing
the concept, general framework and error analysis. Our contributions concern
approximations of A−α and Aα for arbitrary α > 0, thus significantly expand-
ing the range of available currently results. Assymptotically accurate error
estimates are obtained. The rate of convergence is exponential with respect to
the degree of BURA. Numerical results are presented to illustrate and better
interpret the theoretical estimates.

Keywords fractional elliptic operators · BURA method · error estimates ·
computational complexity

Mathematics Subject Classification (2010) 65F08 · 65N30 · 65N22

Nikola Kosturski1

Institute of Information and Communication Technologies, Bulgarian Academy of Sciences,
“Acad. G. Bontchev” Str., Block 25A, Sofia – 1113, Bulgaria
E-mail: kosturski@parallel.bas.bg

Svetozar Margenov2,∗

Institute of Information and Communication Technologies, Bulgarian Academy of Sciences,
“Acad. G. Bontchev” Str., Block 25A, Sofia – 1113, Bulgaria
E-mail: margenov@parallel.bas.bg ∗ corresponding author



2 N. Kosturski, S. Margenov

1 Introduction

Let us consider the second order self-adjoint elliptic equation

−∇ · (a(x)∇v(x)) = g(x), for x ∈ Ω,

v(x) = 0, for x ∈ ∂Ω,
(1.1)

where Ω is a bounded domain in Rd, d ≥ 1, assuming that 0 < a0 ≤ a(x),
a0 is a constant. With the problem (1.1) we associate the self-adjoint positive
definite operator A defined in terms of the weak form of (1.1), namely, v(x)
is the unique function in V = H1

0 (Ω) satisfying∫
Ω

(
a(x)∇v(x) · ∇θ(x)

)
dx =

∫
Ω

g(x)θ(x) dx for all θ ∈ V. (1.2)

For g ∈ L2(Ω), (1.2) can be written in the form

Av = g. (1.3)

Let us consider now the the fractional diffusion equation

Aαu = f, (1.4)

where f ∈ L2(Ω) and α > 0. We follow the spectral definition of Aα which
can be written in the form

Aαu =

∞∑
i=1

λα
i (u, ϕi)ϕi so that u =

∞∑
i=1

λ−α
i (f, ϕi)ϕi. (1.5)

Here λi ∈ (0,∞) and ϕi are the eigenvalues and eigenfunctions of A, and
(·, ·) is the inner product in L2(Ω). It is important to note that λ1 > λ > 0
is uniformly bounded from below. Such a bound can be obtained using the
coercivity of the biliner form in (1.2) and the Poincaré-Friedrichs inequality
[32]. A problem-oriented discussion on the spectral properties of A in the
context of the BURA method can be found in [20].

The inverse of the spectral fractional operator A−α can be equivalently
defined by Dunford-Taylor integral, which in turn can be transformed, when
α ∈ (0, 1), into the Balakrishnan integral, e.g. [3],

u = A−αf =
sin(πα)

π

∫ ∞

0

ν−α(νI +A)−1f dν. (1.6)

The following fractional order linear system is a discrete form of (1.5):

Aαu = f , or equivalently u = A−αf . (1.7)

For simplicity of presentation, we will assume in what follows that A ∈ RN×N

is a sparse symmetric and positive definite (SPD) matrix. This is, for example,
valid in the case of a finite-difference approximation on a uniform grid of the
differential operator in (1.1). Then u ∈ RN approximates u at the interior N
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grid points, and f ∈ RN denotes the vector of the values of f at the same grid
points. Similarly to (1.3), the spectral decomposition of A is used to define
Aα, thus obtaining the equalities:

Aαu =

N∑
i=1

µα
i (f , Ψi)Ψi so that u =

N∑
i=1

µ−α
i (f , Ψi)Ψi. (1.8)

Here µi > 0 and Ψj are the eigenvalues and eigenvectors of A, and (·, ·) is the
Euclidean inner product. We can show that as an approximation of λ1, µ1 > 0
is also uniformly bounded from below.

Remark 1 If the finite element discretization is applied to (1.2), the matrix A
in (1.7) is expressed by the stiffness matrix K and the mass matrix M in the
form A = M−1K. The mass and stiffness matrices are sparse and SPD, and A
is also SPD with respect to the energy inner product associated with M. This
allows the general framework of SPD matrix methods to be applied, preserving
computational efficiency when dealing only with sparse matrices (see e.g. [19,
20]).

The fractional diffusion equation (1.4) is non-local. In the discrete case,
the matrix Aα in (1.7) is SPD but dense. Except for some simplified cases,
we are unable to compute the eigenvalues and eigenfunctions/eigenvectors of
A. Therefore, the formulas (1.5) and (1.8) are not applicable to the numerical
solution of the problem.

The ideas in the work of Caffarelli and Silvestre [11] are among the strongest
drivers in the later development over past decade of numerical methods for
spectral fractional in space diffusion problems. They have proved that the
fractional Laplacian for α ∈ (0, 1) can be obtained from the harmonic exten-
sion problem to the upper half space as the operator that maps the Dirichlet
boundary condition to the Neumann condition. As a result, the solution of
fractional Laplacian problem is obtained from the relation u(x) = U(x, 0)
where U : Ω × R+ → R is a solution of the equation

−div
(
y1−2α∇U(x, y)

)
= 0, (x, y) ∈ {Ω × R+}.

Here U(·, y) satisfies the boundary conditions in (1.1) and in addition

lim
y→∞

U(x, y) = 0 as well as lim
y→0+

(
−y1−2αUy(x, y)

)
= f(x), x ∈ Ω.

Although very different in their origin, there is a number of approaches
that can be seen as transformation of the d-dimensional non-local fractional
Laplacian with α ∈ (0, 1) to a (d + 1)-dimensional standard (local) equation.
Without seeking completeness of the list, among them are:

A1. Extension from Ω ⊂ Rd to an elliptic problem in Ω × (0,∞), see e.g. [30,
31];

A2. Reformulation as a pseudo-parabolic problem in (x, t) ∈ Ω× (0, 1), see e.g.
[14,17,35];
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A3. Methods based on approximation of the Dunford-Taylor integral represen-
tation of the solution, [8,9,10];

A4. Methods based on the best uniform rational approximation (BURA) of zα,
z ∈ [0, 1], see e.g. [21,20,22].

As shown in [24], methods that implement approaches A1.-A3. can be inter-
preted as some rational approximation of Aα. In this sense (when applicable)
BURA methods have better computational complexity in terms of the number
of auxiliary sparse solutions of SPD systems involved.

A survey on numerical methods for spectral space-fractional diffusion prob-
lems is provided in [19]. Among the results in the last few years, we can note
the following areas and some of the publications related to them: (i) further de-
velopment of efficient numerical methods for space-fractional differential equa-
tions [1,4,12,16]; (ii) time-dependent space-fractional diffusion problems [13,
15,36]; (iii) fractional Sobolev spaces in coupled and multiphysics problems,
[7,23,27]; (iv) fractional elliptic stochastic equations, [2,6,26].

Our research is motivated by the increased interest in the further devel-
opment of robust and computationally efficient numerical methods for wider
classes of problems that involve fractional powers of diffusion operators. We
analyze approximations of A−α and Aα for arbitrary α > 0. Thereby we sig-
nificantly expand the theory of BURA methods. Here, along with BURA, we
also analyze BURA-like methods. The latter are defined as the product of a
certain best uniform rational approximation and some integer power of A. The
new results substantially build on the results for the α ∈ (0, 1) case, which has
been intensively studied over the last decade.

The contribution of this paper can be divided into two parts. The part
related to solving the system Aαu = f contains both comprehensive theoreti-
cal and experimental results. The main point here is the conclusion that the
BURA method is preferable and more efficient than the BURA-like method.
In some ways, the part about evaluating Aαf is even more challenging. For this
problem, theoretical error estimates have been obtained only for the BURA-
like method. However, the presented numerical experiments show that the
corresponding BURA method again has the advantage.

The paper is organized as follows. Basic results on best uniform rational
approximation of zα on [0, 1] for α > 0 are presented in Section 2. Then, some
implementation issues and computational complexity of the related BURA
methods are discussed. The numerical solution of system Aαu = f based
on BURA approximation of A−α is analysed in Section 3. The BURA-based
method for approximate matrix vector multiplication with Aα is considered
in the next section. It is worth noting that this problem is equivalent to solv-
ing fractional order linear SPD systems with a negative power. The numerical
results included in the last Sections 2 - 3 build on the better understanding
of the theoretical error estimates. Short concluding remarks are given at the
end.
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2 Best uniform rational approximation of zα

2.1 Exponential convergence error estimate

Known basic results in the general case of α > 0 are presented in this section.
Taking the diagonal of the Walsh table we consider Rk to be the set of rational
functions

Rk =
{
rk(z) := Pk(z)/Qk(z), Pk ∈ Pk, and Qk ∈ Pk, monic

}
with Pk set of algebraic polynomials of degree k. The best uniform rational
approximation (BURA) rα,k(z) of z

α on [0, 1] is then defined as

rα,k(z) := argmin
rk(z)∈Rk

max
z∈[0,1]

|rk(z)− zα|. (2.1)

The problem (2.1) has been studied extensively in the past, see e.g. [34]. De-
noting the error by

Eα,k := max
z∈[0,1]

|rα,k(z)− zα|, (2.2)

it is shown that there is a constant Cα > 0, independent of k, such that

Eα,k ≤ Cαe
−2π

√
kα. (2.3)

The asymptotic behaviour of Cα is analysed in [34], where the following esti-
mate is proven in Theorem 1:

lim
k→∞

e2π
√
αkEα,k = 41+α| sinπα|

and therefore
lim
k→∞

Eα,k = e−2π
√
αk41+α| sinπα|. (2.4)

Remark 2 The limes (2.4) gives a sharp asymptotic approximation of Eα,k.
So, for example, for α = 1.5 and sufficiently large k we get

E1.5,k ≈ 32e−π
√
6k.

2.2 Implementation issues

The min-max problem (2.1) is highly nonlinear. In [22], the Remez algorithm
is used to find the best uniform rational approximation of zα. Due to expo-
nential clustering of the poles and zeros of rα,k around zero the algorithm
is sensitive to the precision of the computer arithmetic. For example, in [37]
results for six values of α ∈ (0, 1) are reported for degree k ≤ 30 by using
computer arithmetic with 200 significant digits. So, although doable, the Re-
mez algorithm was considered as a challenge to a wider application of BURA
method for higher degrees k.
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This difficulty is avoided by AAA (Adaptive Antoulas-Anderson) method
proposed in [29]. The numerical stability of AAA comes from barycentric rep-
resentation of rational functions as a quotient of two partial fractions:

rk(z) =

k∑
i=1

ai
z − ti

/ k∑
i=1

bi
z − ti

.

The numbers {tk} are not the poles of rk, but rather a set of support points
that are chosen to enable stability, even when poles are exponentially clus-
tered. Further improvement of convergence is proposed in [25] and its software
implementation BRASIL [33] which is used in the numerical tests in next two
sections.

Let us consider the BURA method introduced in [20]. The BURA approx-
imation of the solution of (1.8) is defined as

u ≈ µ−α
1 rα,k(µ1A−1)f . (2.5)

The roots ζi and poles di of rα,k(z) satisfy the interlacing inequalities [22,34]

0 > ζ1 > d1 > ζ2 > d2 > · · · > ζk > dk. (2.6)

Then rα,k(z) can be represented as a sum of partial fractions. This allows to
write the BURA approximation of A−α in the form

A−α ≈ c̃0I+
k∑

i=1

c̃i(A− d̃iI)−1, (2.7)

where c̃i ≥ 0 and d̃i < 0. Thus, the BURA method reduces solving the dense
linear system (1.8) (the non-local fractional diffusion problem) to solving k
systems with sparse SPD matrices A− d̃iI.

The exponential convergence rate (2.3-2.4) and the representation of the
algorithm in the form (2.7) characterize the computational efficiency of the
BURA methods. The basic properties and performance issues presented above
are studied in detail in the case of α ∈ (0, 1) in [20], see also [19,22]. The aim
of the research in the next two sections is to extend the constructions and
analysis of BURA-based methods for arbitrary positive fractional (excluding
integers) degree α, that is for α ∈ R+ \ Z.

3 Solution of linear systems: approximation of A−α

In this section we analyze methods for numerical solution of the system

Aαu = f , α ∈ R+ \ Z. (3.1)

Two variants of exponentially convergent methods that use BURA approxima-
tion of the inverse of fractional power of symmetric SPD matrix are analysed.
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3.1 BURA method

Following (2.5) we consider the BURA approximation w in the form

w := µ−α
1 rα,k(µ1A−1)f .

The analysis in [20] (see also [19] and the references therein) is for α ∈ (0, 1).
In the following theorem, we extend the study to α ∈ R+ \ Z.

Theorem 1 For each α ∈ R+\Z, the BURA approximation w of the solution
of (3.1) u satisfies the exponential error estimate

||u−w||ℓ2 ≤ Cαµ
−α
1 e−2π

√
kα||f ||ℓ2 . (3.2)

Proof We follow the approach suggested in [22]. Let us write u in the form

u = µ−α
1 (µ1A−1)αf .

Utilizing the orthonormal basis of eigenvectors of A we get the representations

f =

n∑
i=1

(Ψi, f)Ψi,

u = µ−α
1

n∑
i=1

(
µ1

µi

)α

(Ψi, f)Ψi = µ−α
1

n∑
i=1

ναi (Ψi, f)Ψi,

w = µ−α
1

n∑
i=1

rα,k

(
µ1

µi

)
(Ψi, f)Ψi = µ−α

1

n∑
i=1

rα,k(νi)(Ψi, f)Ψi,

where νi := µ1/µi ∈ (0, 1]. Then

||u−w||2ℓ2 = µ−2α
1

n∑
i=1

(ναi − rα,k(νi))
2
(Ψi, f)

2

≤ µ−2α
1 max

νi

|ναi − rα,k(νi)|2
n∑

i=1

(Ψi, f)
2.

Now, applying (2.4), we conclude that

||u−w||ℓ2 ≤ µ−α
1 Eα,k||f ||ℓ2 ≤ Cαµ

−α
1 e−2π

√
kα||f ||ℓ2 ,

thereby competing the proof. 2

Corollary 1 For every arbitrary small ϵ > 0, there exits integer k such that

||u−w||ℓ2 ≤ (1 + ϵ)µ−α
1 e−2π

√
kα41+α| sinπα| ||f ||ℓ2 . (3.3)

This asymptotic estimate follows directly from (3.2), where (2.4) is applied
to Cα.
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3.2 BURA-based method

In this section, we consider an alternative approach reducing the problem to
the currently well-studied case of fractional order in (0, 1). We write α ∈ R+\Z
in the form

α = ⌊α⌋+ β := m+ β, m := ⌊α⌋ ∈ Z, β ∈ (0, 1).

Then, Aα = AmAβ and

u = A−mA−βf = µ−m−β
1

n∑
i=1

νm+β
i (Ψi, f)Ψi,

where following the notations from previous section, νi = µ1/µi ∈ (0, 1]. Here,
we analyze the BURA-based approximation w

w := A−mµ−β
1 rβ,k(µ1A−1)f . (3.4)

Theorem 2 For each α ∈ R+\Z, the introduced in (3.4) BURA-based approx-
imation w of the solution u of (3.1) satisfies the exponential error estimate

||u−w||ℓ2 ≤ C(α−⌊α⌋)µ
−α
1 e−2π

√
k(α−⌊α⌋)||f ||ℓ2 . (3.5)

Proof In contrast to the representation in the proof of Theorem 1, the BURA-
based approximation is presented in the form

w := µ−m−β
1

n∑
i=1

(
µi

µ1

)−m

rβ,k

(
µ1

µi

)
(Ψi, f)Ψi

= µ−m−β
1

n∑
i=1

νmi rβ,k(νi)(Ψi, f)Ψi.

Now, νmi ∈ (0, 1] is used to get the estimates

||u−w||2ℓ2 =
(
µ−m−β
1

)2 n∑
i=1

[
νm+β
i − νmi rβ,k(νi)

]2
(Ψi, f)

2

≤
(
µ−m−β
1

)2

max
νi

[
νmi

(
νβi − rβ,k(νi)

)]2 n∑
i=1

(Ψi, f)
2

≤
(
µ−m−β
1

)2

E2
β,k||f ||2ℓ2 .

Finally

||u−w||ℓ2 ≤ C(α−m)µ
−α
1 e−2π

√
k(α−m)||f ||ℓ2 , (3.6)

which completes the proof. 2

Corollary 2 For every arbitrary small ϵ > 0, there exits integer k such that

||u−w||ℓ2 ≤ (1+ϵ)µ−α
1 e−2π

√
k(α−⌊α⌋)41+(α−⌊α⌋)| sinπ(α−⌊α⌋)| ||f ||ℓ2 . (3.7)

Here, the asymptotic estimate follows from (3.5), applying (2.4) to bound
C(α−⌊α⌋).
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3.3 Comparative analysis

Theorem 1 and Theorem 2 as well as the corresponding asymptotic estimates
(3.3) - (3.7) show a clear advantage of BURA compared to the BURA-based
method. Now let’s consider, for example, the case α = 1.5. Without any lim-
itations on the conclusions, we can assume for simplicity of comparison that
µ1 = 1. Then, applying Corollary (3.3) and Corollary (3.7), we obtain the
following estimates for the asymptotic (i.e., for sufficiently large k ) behavior
of the relative errors:

– BURA method:
||u−w||ℓ2

||f ||ℓ2
≈ 32e−π

√
6k; (3.8)

– BURA-based method:

||u−w||ℓ2
||f ||ℓ2

≈ 8e−π
√
2k. (3.9)

As can be seen, for this particular example the estimates are quite close.

3.4 Best uniform rational approximation of z−α, z ∈ [1, κ̄] and BRASIL
based experimental study.

We assume in this section that κ̄ ≥ κ(A) and consider the best uniform rational
approximation r̂α,k,κ̄ of z−α, z ∈ [1, κ̄] defined as

r̂α,k,κ̄(z) := argmin
rk(z)∈Rk

max
z∈[1,κ̄]

|rk(z)− z−α|, (3.10)

denoting the corresponding error by

Êα,k,κ̄ := max
z∈[1,κ̄]

|r̂α,k,κ̄(z)− z−α|. (3.11)

We consider the approximation ŵ of u,

ŵ := µ−α
1 r̂α,k,δ(

1

µ1
A)f . (3.12)

Lemma 1 For each α ∈ R+ \Z, the approximation ŵ of the solution of (3.1)
u satisfies the error estimate

||u− ŵ||ℓ2 ≤ µ−α
1 Êα,k,κ̄||f ||ℓ2 . (3.13)

Proof Following the spectral decomposition approach from the proof of The-
orem 3.2 we get the representations

f =

n∑
i=1

(Ψi, f)Ψi,
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u = µ−α
1

n∑
i=1

(
µ1

µi

)α

(Ψi, f)Ψi = µ−α
1

n∑
i=1

ν̂−α
i (Ψi, f)Ψi,

ŵ = µ−α
1

n∑
i=1

r̂α,k,κ̄

(
µi

µ1

)
(Ψi, f)Ψi = µ−α

1

n∑
i=1

r̂α,k,κ̄(ν̂i)(Ψi, f)Ψi,

where ν̂i := µi/µ1 ∈ [1, κ(A)] ⊂ [1, κ̄]. Then

||u− ŵ||2ℓ2 = µ−2α
1

n∑
i=1

(
ν̂−α
i − r̂α,k,κ̄(ν̂i)

)2
(Ψi, f)

2

≤ µ−2α
1 max

ν̂i

|ν̂−α
i − r̂α,k,κ̄(ν̂i)|2

n∑
i=1

(Ψi, f)
2

= µ−2α
1 Ê2

α,k,κ̄||f ||2ℓ2 ,

thus completing the proof. 2

Degree

E
rr

o
r

1.00E-14

1.00E-11

1.00E-8

1.00E-5

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

BRASIL BURA method BURA-based method

Fig. 1 Relative error of ŵ (r̂α,k,κ̄ is computed by BRASIL with κ̄ = 1012), and the corre-
sponding estimates (3.8) of BURA and (3.9) of BURA-based methods versus the degree k,
α = 1.5.

The definition (3.12) more directly addresses the problem of the approxi-
mation of A−αf . It can also be seen that the estimate (3.13) looks quite similar
to (3.2). Here, the essential difference is that we have no theoretical analysis
of either the properties of the best uniform rational approximation r̂α,k,κ̄ or

the estimate of Êα,k,κ̄.
Now the software BRASIL (best rational approximation by successive in-

terval length adjustment) [33] is used to compute r̂α,k,κ̄ and the correspond-

ing error Êα,k,κ̄. For direct comparison with (3.8) and (3.9), we assume that
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µ1 = 1 and run test problems for α = 1.5 and κ̄ = 1012, varying the degree
3 ≤ k ≤ 26. The test results of are shown in Fig. 1. We see that the relative
error of ŵ practically coincides with that of BURA calculated by (3.8), which
illustrates the accuracy of Theorem 1. As expected, the advantage of BURA is
pronounced compared to the BURA-based approximation, becoming stronger
as k increases.

4 Matrix vector multiplication: approximation of Aα

Computing v = Aαf is equivalent to solving a system with A−α. At the same
time, the theory of the best uniform rational approximation of zs, z ∈ [0, 1]
[34] does not include the case of negative powers s. This is the reason why
we proceed directly with the construction of a BURA-based method. As will
bee shown, the matrix vector multiplication with Aα is computationally more
expensive task than solving a system with the same matrix.

4.1 BURA-based method

Here, we write α ∈ R+ \ Z in the form

α = ⌈α⌉ − γ := M − γ, M := ⌈α⌉ ∈ Z, γ ∈ (0, 1).

Then, Aα = AMA−γ and

v = AMA−γf =

n∑
i=1

µM−γ
i (Ψi, f)Ψi = µM−γ

1

n∑
i=1

ν
−(M−γ)
i (Ψi, f)Ψi,

where, as in the previous sections, νi = µ1/µi ∈ (0, 1].
Here, we analyze the following BURA-based approximation v of v:

v := AMµ−γ
1 rγ,k(µ1A−1)f . (4.1)

Theorem 3 For each α ∈ R+ \ Z, the introduced in (4.1) BURA-based ap-
proximation v of v = Aα satisfies the error estimate

||u−w||ℓ2 ≤ C⌈α⌉−α µα
1κ

⌈α⌉(A) e−2π
√

k(⌈α⌉−α)||f ||ℓ2 . (4.2)

Proof The BURA-based approximation is presented in the form

v := µM−γ
1

n∑
i=1

(
µi

µ1

)M

rγ,k

(
µ1

µi

)
(Ψi, f)Ψi

= µM−γ
1

n∑
i=1

ν−M
i rγ,k(νi)(Ψi, f)Ψi.
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Now,

||v − v||2ℓ2 =
(
µM−γ
1

)2 n∑
i=1

[
ν
−(M−γ)
i − ν−M

i rγ,k(νi)
]2

(Ψi, f)
2

≤
(
µM−γ
1

)2

max
νi

[
ν−M
i (νγi − rγ,k(νi))

]2 n∑
i=1

(Ψi, f)
2

≤
(
µM−γ
1

)2

(κ(A))2M E2
β,k||f ||2ℓ2 ,

where ν−1
i ≤ κ(A) is used. Finally

||u−w||ℓ2 ≤ Cγµ
M−γ
1 κM (A) e−2π

√
kγ ||f ||ℓ2 , (4.3)

which completes the proof. 2

As with the previous theorems, the following corollary is true.

Corollary 3 For every arbitrary small ϵ > 0, there exits integer k such that

||v−v||ℓ2 ≤ (1+ ϵ)µα
1κ

⌈α⌉(A) e−2π
√

k(⌈α⌉−α)41+(⌈α⌉−α)| sinπ(⌈α⌉−α)| ||f ||ℓ2 .
(4.4)

Unlike the case of solving systems with Aα, the estimate here depends on
the condition number of A. At the same time, it is worth noting that for a
given matrix the error exponentially decreases as k increases.

4.2 Comparative analysis.

Here, we consider the discussed BURA-based method for α ∈ (0, 1). This
case is currently of primary interest due to the fact that such matrix-vector
multiplications naturally arise in the solution of time-dependent problems,
including a sub-diffusive elliptic term. As in the similar study in Section 3.3,
we assume that µ1 = 1. Thus, for α ∈ {0.25, 0.5, 0.75}, the estimate (4.4) leads
to the following asymptotic bounds of the relative errors:

– α = 0.25:
||v − v||ℓ2

||f ||ℓ2
≈ 4κ(A)e−π

√
3k (4.5)

– α = 0.5:
||v − v||ℓ2

||f ||ℓ2
≈ 8κ(A)e−π

√
2k (4.6)

– α = 0.75:
||v − v||ℓ2

||f ||ℓ2
≈ 4κ(A)e−π

√
k (4.7)
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4.3 Best uniform rational approximation of zα, z ∈ [1, κ̄] and BRASIL based
experimental study.

We follow the notation from previous section, that is κ̄ ≥ κ(A). Here we
consider the best uniform rational approximation řα,k,κ̄ of zα, z ∈ [1, κ̄] defined
as

řα,k,κ̄(z) := argmin
rk(z)∈Rk

max
z∈[1,κ̄]

|rk(z)− zα|. (4.8)

In this case the error reads as

Ěα,k,κ̄ := max
z∈[1,κ̄]

|řα,k,κ̄(z)− zα|. (4.9)

Now we introduce the approximation v̌ of v,

v̌ := µ−α
1 řα,k,δ(

1

µ1
A)f . (4.10)

Lemma 2 For each α ∈ R+ \ Z, the approximation v̌ of v = Aα(f) satisfies
the error estimate

||v − v̌||ℓ2 ≤ µα
1 Ěα,k,κ̄||f ||ℓ2 . (4.11)

Proof The approach is rather similar to the proof of Lemma 1:

f =

n∑
i=1

(Ψi, f)Ψi,

v = µα
1

n∑
i=1

(
µi

µ1

)α

(Ψi, f)Ψi = µα
1

n∑
i=1

ν̂αi (Ψi, f)Ψi,

v̌ = µα
1

n∑
i=1

řα,k,κ̄

(
µi

µ1

)
(Ψi, f)Ψi = µα

1

n∑
i=1

řα,k,κ̄(ν̂i)(Ψi, f)Ψi,

ν̂i := µi/µ1 ∈ [1, κ(A)] ⊂ [1, κ̄]. Therefore

||v − v̌||2ℓ2 = µ2α
1

n∑
i=1

(ν̂αi − řα,k,κ̄(ν̂i))
2
(Ψi, f)

2

≤ µ2α
1 max

ν̂i

|ν̂αi − řα,k,κ̄(ν̂i)|2
n∑

i=1

(Ψi, f)
2

= µ2α
1 Ě2

α,k,κ̄||f ||2ℓ2 ,

which completes the proof. 2

Again, BRASIL [33] is used to perform a set of numerical tests where řα,k,κ̄
and Ěα,k,κ̄ are computed. For direct comparison with (4.5), (4.6) and (4.7), we
assume that µ1 = 1, κ̄ = κ(A), and run test problems for α ∈ {0.25, 0.5, 0.75}
and κ̄ ∈ {104, 106, 108, 1012, 1014}, varying the degree k ∈ {4, 8, 12, 16, 20, 24}.
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As well as in the previous section, we are also interested in the behaviour of
the poles of řα,k,κ̄.

Detailed information about the errors Ěα,k,κ̄ of the best uniform rational
approximation řα,k,κ̄ computed by BRASIL is presented in Table 1. The be-
haviour is complex, and as expected, the accuracy depends nonlinearly on k,
α, and κ̄. A general observation is that larger α and larger κ̄ have a cumula-
tive effect leading to an increase in error. The data presented can be used as a
practical guide for choosing the minimum degree k required to achieve a given
accuracy for a given problem. So, for example, bold numbers indicate the row
to the right of which the error is greater than 10−2. Therefore, if this is the
desired accuracy, k should be chosen large enough so that we are to the left of
this line.

α k \ κ̄ 106 108 1010 1012 1014

0.25 4 0.0717879 0.4081965 1.5929635 5.3930242 17.426749
0.25 8 0.0006294 0.0100670 0.0733356 0.3482379 1.3030811
0.25 12 5.433E-06 0.0002446 0.0034735 0.0262502 0.1353156
0.25 16 4.672E-08 5.920E-06 0.0001635 0.0019666 0.0142936
0.25 20 4.011E-10 1.430E-07 7.682E-06 0.0001469 0.0015038
0.25 24 3.444E-12 3.451E-09 3.606E-07 1.097E-05 0.0001580
0.50 4 0.6066483 7.2019398 73.487885 736.39463 7365.4671
0.50 8 0.0051205 0.1460175 1.9760122 20.730924 2085.0364
0.50 12 0.0000439 0.0035143 0.0888404 1.2199808 12,12.945
0.50 16 3.758E-07 8.469E-05 0.0041613 0.0891009 1.1721118
0.50 20 3.219E-09 2.041E-06 0.0001950 0.0066353 0.1209103
0.50 24 2.768E-11 4.919E-08 9.139E-06 0.0004943 0.0136298
0.75 4 3.0330156 99.393589 3147.5719 99539.733 3147727.6
0.75 8 0.0213472 1.1587447 38.756285 1228.6761 38857.543
0.75 12 0.0001793 0.0257681 1.2302894 40.654230 1288.1467
0.75 16 1.524E-06 0.0006128 0.0540855 2.2213180 71.933281
0.75 20 1.301E-08 1.468E-05 0.0025040 0.1537364 5.5821657
0.75 24 1.130E-10 3.527E-07 0.0001167 0.0112863 0.5282139

Table 1 Errors Ěα,k,κ̄ computed by BRASIL.

The graphs in Fig. 2 and 3 show the behaviour of Ěα,k,κ̄ for α = 0.5
and k ∈ {4, 6, 8, 10, 12}. Errors obtained by estimate (4.6) (Fig. 2) and those
computed by BRASIL (Fig. 3) are compared. In both cases, we clearly see
the exponential convergence rate with respect to k. We also observe a strong
advantage of the best rational approximation ř0.5,k,κ̄ computed by BRASIL.

In estimate (4.11), Ěα,k,κ̄ grows linearly as κ(A) increases. However, the
data in Table 1 may provoke the question of whether the growth is always
linear. For example, for α = 0.5 and k = 4 we see a factor similar to κα(A) in
Ěα,k,κ̄ when κ̄ ∈ {108, 1010, 1012, 1014}. This issue is addressed in Fig. 4 where
the plots for α ∈ {0.25, 05, 0.75} are shown. In all cases, we see how the error
growth becomes increasingly closer to linear for sufficiently large κ̄.
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Fig. 2 Errors Ě0.5,12,κ̄ versus degree k ∈ {4, 6, 8, 10, 12} for κ̄ ∈ {104, 106, 108, 1010, 1012}
estimated by (4.6).
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Fig. 3 Errors Ě0.5,12,κ̄ versus degree k ∈ {4, 6, 8, 10, 12} for κ̄ ∈ {104, 106, 108, 1010, 1012}
computed by BRASIL.

5 Concluding remarks

This paper presents a general approach to solving problems involving fractional
powers of sparse SPD matrices, accompanied by systematic theoretical and
experimental error analysis.

The proposed methods and algorithms for approximation of A−α and Aα

for arbitrary α > 0 significantly extends the results of [20,22]. The resulting
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Fig. 4 Errors Ěα,12,κ̄ computed by BRASIL versus κ̄ ∈ {106, 108, 1010, 1012, 1014, 1016,
1018}.

BURA and BURA-based methods have an exponential rate of convergence
with respect to power k, regardless of the condition number κ(A). The meth-
ods and algorithms for matrix-vector multiplication with Aα also have an
exponential rate of convergence with respect to k for a given upper bound
κ̄ ≥ κ(A). However, theoretical estimates and numerical experiments show
that the error grows linearly with κ̄. Thus, it turns out that matrix-vector
multiplication is a more complex problem than solving systems with Aα. This
conclusion is consistent with related results on multigrid methods for discrete
fractional Sobolev spaces [5] and the discussions in [19].

The algorithmic implementation of the BURA method introduced in [20]
fundamentally exploits the interlacing property of real roots and poles of the
best uniform rational approximation of zα on [0, 1] for α ∈ (0, 1). In the general
case of positive or negative α, we need a detailed consideration of this issue,
which is beyond the scope of the present paper. Such a question does not
apply to BURA-based variants, which are superposition of a certain integer
degree of A and BURA for α ∈ (0, 1). In this sense, we note some advantages
of BURA-based methods, although their accuracy is relatively lower.

All the methods discussed in this study reduce the non-local problem to a
set of auxiliary linear systems with sparse SPD matrices. The additive BURA-
AR and multiplicative BURA-MR methods introduced in [18] follow the ob-
servation that the sparse SPD matrices involved possess extremely different
properties. As a result, solution methods with improved computational com-
plexity are developed. Although significantly different in origin, the results re-
cently published in [28] relate to the same phenomenon. In [18,28], α ∈ (0, 1).
The importance of this topic is enhanced in the context of the new results pre-
sented here. This is especially true in the case of negative α (or matrix-vector
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multiplication), where larger k are needed to compensate for the influence of
κ(A).
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