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Abstract. In our previous work we have studied the performance of a parallel program, based on a direction splitting approach,
solving time dependent Stokes equation. In it, we have used a rectangular uniformmesh, combined with a central difference scheme
for the second derivatives. In our work, we were targeting massively parallel computers, as well as clusters of multi-core nodes.
Therefore, the developed implementation used hybrid parallelization based on the MPI and OpenMP standards. Specifically, (i)
between-node parallelism was supported by using MPI-based communication, while (ii) inside-node parallelism was supported by
the OpenMP. In this way, by matching “structure of parallelization” with the architecture of modern large-scale computers, we
have attempted at maximizing parallel efficiency of the program.
This paper presents an experimental performance study of the developed parallel implementation on a supercomputer using Intel
Xeon processors, as well as Intel Xeon Phi co-processors. The experimental results show an essential improvement when running
experiments for a variety of problem sizes and number of cores / threads.

INTRODUCTION

The objective of this paper is to analyze the parallel performance of a fractional time stepping technique, based on a
direction splitting strategy, developed to solve the incompressible Navier-Stokes equations. Specifically, we consider
the alternating directions algorithm, which was proposed in [1, 2]. Its key idea consists of using a projection scheme
for solving unsteady Navier-Stokes equations. In this method, the pressure equation is derived from a perturbed
form of the continuity equation, in which the incompressibility constraint is penalized in a negative norm induced
by the direction splitting. The standard Poisson problem for the pressure correction is replaced by the series of one-
dimensional second-order boundary value problems. This technique is proved to be stable and convergent (for all
necessary details, see [1, 2]).
Initial results concerning parallel performance of the direction splitting algorithm for solving of 3D Stokes equation

have been reported in [3]. Analysis of experimental results indicated that the algorithm is very well suited for dis-
tributed memory computers but its performance on a single multi-core node of a cluster was unsatisfactory. In other
words, proposed implementation was not capable of taking advantage of multiple threads that could be running on
individual cores within a single node. Next, in [4], we used LAPACK subroutines (see, [5]), from a multi-threaded
library, for the solution of tridiagonal linear systems (which is the key computational component of the approach in
question). The experimental results showed that the code needs additional improvements. Further, in [6] we have
developed a hybrid parallel code based on combination of the MPI and the OpenMP standards [7, 8, 9, 10, 11]. In our
parallel implementation of the partition method, each MPI process owned a small number of rows of the tridiagonal
matrix, but the linear system has multiple right hand sides. Thus, in hybrid code, each OpenMP thread solves a tridi-
agonal system with a small number of rows and a small number of right hand side vectors. The performance of the
hybrid parallel code (combining the MPI with the OpenMP) was highly efficient on a number of parallel computer
systems with multi-core nodes.
The aim of this paper is to analyze parallel performance of the developed hybrid parallel code on a hybrid computer

system, where each node consists of a multi-core Intel Xeon processors and many-core Intel Xeon Phi co-processors.
The remainder of the paper is organized as follows. The alternating directions algorithm, for the time-dependent

Stokes equation is described in next section. Results of numerical tests are presented and analyzed in third section.
Finally, some conclusions and future steps in our work are included in the last section.
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ALTERNATING DIRECTIONS ALGORITHM FOR STOKES EQUATION

In our work, we consider the time-dependent Stokes equations written in terms of velocity u and pressure p:
⎧⎪⎨
⎪⎩

ut −νΔu+∇p= f in Ω× (0,T)
∇ ·u= 0 in Ω× (0,T)
u|∂Ω = 0, ∂np|∂Ω = 0 in (0,T )
u|t=0 = u0, p|t=0 = p0 in Ω

, (1)

where f is a smooth source term, ν is the kinematic viscosity, and u0 is a solenoidal initial velocity field, with a zero
normal trace. The time interval [0,T ] is discretized on a uniform mesh and τ is the time step. We solve the problem
(1) in the domain Ω = (0,1)3, for t ∈ [0,T ] with Dirichlet boundary conditions.
In 2010, Guermond and Minev [1, 2] introduced a novel fractional time stepping technique for solving the incom-

pressible Navier-Stokes equations. This technique is based on a direction splitting strategy. They used a singular
perturbation of the Stokes equation. In this way, the standard Poisson problem in the projection schemes was replaced
by series of one-dimensional second-order boundary value problems.
Usage of central differences for the discretization in space, for the one-dimensional boundary value problems, leads

to the solution of tridiagonal linear systems. Wang [12] proposed a partitioning algorithm for solving large tridiagonal
systems of linear equations. The partitioning algorithm was primarily aimed at more coarse-grained parallel computa-
tion, where the number of processors is many times smaller than the number of unknowns. We have developed hybrid
parallel code [6] based on an application of Wang’s partitioning method for solving the tridiagonal system of linear
equations, which arise in the direction splitting algorithm.

NUMERICAL EXPERIMENTS

To establish real-world characteristics of the proposed approach, we have considered time-dependent Stokes equations
(1). We solved the problem in time interval [0,2] and the discretization in time was done with time step τ = 10−2. The
kinematic viscosity was ν = 10−3. The discretization in space used mesh sizes h1 = 1

n1−1 , h2 =
1

n2−1 , and h3 =
1

n3−1
in x1,x2, and x3 direction respectively.

Experimental setup

Let us now report on the experiments performedwith the parallel implementation of the algorithm. A portable parallel
code was implemented in C. As outlined above, the hybrid parallelization is based on joint application of the MPI and
the OpenMP standards [7, 8, 9, 10, 11]. We use the LAPACK subroutines DPTTRF and DPTTS2 (see [5]) for solving
tridiagonal systems of equations for the unknowns corresponding to the internal nodes in each sub-domain. The same
subroutines are used to solve the reduced tridiagonal systems.
In our experiments, times were collected using the MPI provided timer. In all cases we report best times from

multiple runs. However, it should be stressed that in all of our experiments resulted in times with very small variance
in timings. In what follows, we report the elapsed time Tp (in seconds), when using mMPI processes and k OpenMP
threads per MPI process. During the numerical experiments, we have tested our code on a single node, for the number
of OpenMP threads varying from one to the maximal number of threads available on that node. On multiple nodes we
report the best results for the number of OpenMP threads varying from the number of cores per node to the maximal
available number of threads.
Let us denote the global number of threads by p. Keeping in mind all their well-known limitations, we report the

parallel speed-up Sp = T1/Tp and the parallel efficiency Ep = Sp/p, as the simplest and easiest to grasp measures of
parallel performance.

Experimental results

The parallel code has been tested on cluster computer system Avitohol, at the Advanced Computing and Data Centre
of the Institute of Information and Communication Technologies of the Bulgarian Academy of Sciences.
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TABLE I. Execution time (in seconds) for solving of 3D problem using only processors of a single node of the Avitohol.
n1 n2 n3 k

1 2 4 8 16 32
176 176 176 428.34 364.45 207.58 117.09 76.85 47.50
176 176 352 919.95 781.84 437.26 243.64 165.37 133.79
176 352 352 2053.28 1978.74 952.83 511.12 342.74 204.86
352 352 352 4325.95 4095.75 2302.03 1116.27 731.64 464.67
352 352 704 9006.75 8222.57 4542.77 2412.82 1436.73 902.04
352 704 704 20658.20 19452.40 10476.10 5548.34 3091.60 1845.12
704 704 704 49080.20 46796.60 24264.30 12075.30 6506.90 3993.44

The computer system Avitohol is constructed with HP Cluster Platform SL250S GEN8. It has 150 servers, and two
8-core Intel Xeon E5-2650 v2 8C processors and two Intel Xeon Phi 7120P co-processors per node. Each processor
runs at 2.6 GHz. Processors within each node share 64 GB of memory. Each Intel Xeon Phi has 61 cores, runs at
1.238 GHz, and has 16 GB of memory. The maximal number of threads for one Intel Xeon processor is 16 (two
threads per core), for one Intel Xeon Phi is 244 (four threads per core). Nodes are interconnected with a high-speed
InfiniBand FDR network (for more details, see ���������������	�	
����). We used the Intel C compiler, and
compiled the code using the following options: “-O3 -qopenmp” for the processors and “-O3 -qopenmp -mmic” for
the co-processors. To use the LAPACK subroutines, we linked our code to the optimized Intel Math Kernel Library
(MKL). Intel MPI was used to execute the code on the Avitohol computer system.
Tables I and II present times collected on the Avitohol when using only the Intel Xeon processors to run the code.
Table I shows that using only processors on one node the best execution time is obtained using 32 OpenMP threads.

We gain from the effect of hyper-threading for solving of discrete problems for all mesh sizes used in this set of
experiments. Moreover, in all cases, adding more threads results in time reduction. Even for the smallest problem,
increasing number of threads from 16 to 32 results in relative speed-up of 1.6. For the largest problem the same
increase in the number of threads results in relative speed-up of 1.62. This indicates that, from the point of view of
the solver, potential for gaining performance by increasing number of threads has not been exhausted. Finally let us
observe that, for the smallest problem, the overall speed-up resulting from increasing number of threads from 1 to 32
is 9, while for the largest problem it increases to 12.3.
The execution time on 2 to 8 nodes (again, using only Xeon processors) is presented in Table II. Recall that results

on a single node can be found in Table I. We report results for k = 16 and k = 32 threads. Here, slightly different
results are observed. We used bold numbers to mark the best execution time, for 16 and 32 OpenMP threads for the
corresponding number of nodes. The results show that, for up to 4 nodes, we gain from the effect of hyper-threading,
using 32 threads, for all problems (mesh sizes). Increasing the number of nodes from 5 to 8 for the four “smallest”

TABLE II. Execution time (in seconds) for solving of 3D problem using only processors on many nodes of the Avitohol.
nodes

2 3 4 5 6 8
n1 n2 n3 k=16
176 176 176 35.97 24.72 18.42 15.81 10.89 8.22
176 176 352 73.31 51.85 35.88 35.09 23.96 19.05
176 352 352 163.31 107.40 74.50 80.81 52.67 37.32
352 352 352 354.51 226.06 175.37 136.80 107.29 81.17
352 352 704 734.36 454.10 350.37 281.39 224.98 177.53
352 704 704 1541.51 884.62 738.06 558.83 455.97 367.33
704 704 704 3161.31 1928.48 1554.34 1410.72 924.94 782.11
n1 n2 n3 k=32
176 176 176 33.73 23.25 14.16 16.39 15.26 12.40
176 176 352 52.08 38.59 34.76 36.01 27.63 22.86
176 352 352 103.65 97.65 50.82 77.42 54.84 42.42
352 352 352 242.25 181.51 141.41 125.73 106.19 81.94
352 352 704 471.27 358.89 273.91 258.27 196.69 147.93
352 704 704 951.30 607.79 494.84 428.49 392.48 301.39
704 704 704 1960.77 1192.85 949.38 908.34 611.76 526.62
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TABLE III. Speed-up for solving of 3D problem using only processors.
n1 n2 n3 p

2 4 8 16 32 64 96 128 160 192 256
176 176 176 1.18 2.06 3.66 5.57 9.02 12.7 18.4 30.3 27.1 39.3 52.1
176 176 352 1.18 2.10 3.78 5.56 6.88 17.7 23.8 26.5 26.2 38.4 48.3
176 352 352 1.04 2.15 4.02 5.99 10.02 19.8 21.0 40.4 26.5 39.0 55.0
352 352 352 1.06 1.88 3.88 5.91 9.31 17.9 23.8 30.6 34.4 40.7 53.3
352 352 704 1.10 1.98 3.73 6.27 9.98 19.1 25.1 32.9 34.9 45.8 60.9
352 704 704 1.06 1.97 3.72 6.68 11.20 21.7 34.0 41.8 48.2 52.6 68.5
704 704 704 1.05 2.02 4.06 7.54 12.29 25.0 41.2 51.7 54.0 80.2 93.2

discrete problems (corresponding to coarse mesh size) the best time is obtained using 16 OpenMP threads. However,
as the problem size increases, use of 32 threads becomes more competitive. For the three “largest” problems use of
all available threads leads to best results. For the smallest problem, on 2 nodes there is almost no performance gain
when increasing the number of threads from 16 to 32. However, for the largest problem, on 2 nodes, moving from 16
to 32 threads results in relative speed-up of 1.6. On 8 nodes, for the smallest problem, increasing number of threads
from 16 to 32 results in a slowdown. However, for the largest problem, the relative speed-up is 1.48. In summary, it is
clear that for the considered problems, and the computer we have run our experiments on, we have established limits
of gains that can be achieved due to the effect of hyper-threading.
To provide an insight into performance of the parallel algorithm using only processors of the Avitohol, the obtained

speed-up is reported in Table III. Let us note that in order to solve the problem with mesh sizes n1 = n2 = n3 = 704
we need 60 GB of memory. Since the memory on one node is 64 GB it is the largest discrete problem that we can
solve on one node. For larger problems we could not run the code on a single node and thus the speed-up could not
be calculated.
It can be seen that on small number of cores largest speed-up is obtained for the smaller problems. Only starting

from eight cores speed-up obtained on the largest problem starts to dominate. On eight nodes, for the smallest problem,
efficiency of 20% is obtained. Efficiency increases with the problem size and reaches 55% for the largest problem
reported.
Let us now consider what effects on performance has use of Xeon Phi co-processors. Tables IV and V present times

collected on the Avitohol using only Intel Xeon Phi co-processors (no processors used for solving the computational
problem).
It can be seen, for all problems, adding threads results in decrease of total execution time. This indicates, again, that

for the proposed solution approach, the potential for performance gain when using OpenMP-based parallelization has
not been exhausted. For the smallest problem, the speed-up resulting from using 244 threads is 54. For the largest
problem, speed-up almost reaches 60. This means that in the largest case the efficiency is 25%.
Table V contains results obtained when running the code on up to eight nodes, but only using the Xeon Phi co-

processor. Results reported in the table are for k= 244 threads. Here, let us note that the memory of one co-processor
is 16 GB and the largest discrete problem that we can solve on one co-processor is for n1 = n2 = n3 = 352. For
larger problems we used at least two co-processors and for the problem with n1 = n2 = n3 = 704 we need at least six
co-processors (on three nodes).
Interestingly, our experiments (again) touched the limit of parallelization. Specifically, when executing the code

on eight nodes, for the smallest discrete problem (n1 = n2 = n3 = 176) the best execution time (23.07 seconds) was
obtained using only 120 OpenMP threads (this result is not explicitly visible in Table V. It was only for the larger
problems when use of k= 244 threads resulted in shortest execution time.
One can see the “strange” results when the parallel algorithm was executed on five nodes. Here, the performance

TABLE IV. Execution time (in seconds) for solving of 3D problem using only one co-processor of the Avitohol.
n1 n2 n3 k

1 8 30 60 120 240 244
176 176 176 3966.12 1303.91 419.46 215.64 124.69 82.80 73.50
176 176 352 9633.71 2801.63 1005.47 461.99 258.81 179.14 154.44
176 352 352 20847.60 6908.14 2372.71 921.83 521.99 380.74 344.65
352 352 352 44186.10 18227.90 4387.60 2106.86 1182.09 771.75 737.53
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TABLE V. Execution time (in seconds) for solving of 3D problem using only co-processors of the Avitohol (k = 244).
n1 n2 n3 nodes

1 2 3 4 5 6 8
176 176 176 52.44 34.96 34.17 24.52 38.30 23.48 �����

176 176 352 105.23 64.69 64.38 38.81 71.67 36.56 37.05
176 352 352 209.43 119.87 118.08 65.24 133.62 65.99 65.01
352 352 352 372.31 191.23 156.18 102.56 191.95 84.32 84.94
352 352 704 706.28 370.73 299.66 202.76 321.81 164.48 165.24
352 704 704 759.41 600.55 419.52 626.77 312.25 318.35
704 704 704 916.12 847.58 905.80 483.65 495.89

was worse than on four nodes. The reason for this is the parallelization approach used in our implementation (see, [3]
for more details). In general, we decompose the computational domain into sub-domains and the number of sub-
domains is equal to the number of MPI processes. Further, the entries of the vectors, corresponding of the mesh points
in one sub-domain, are assigned to one MPI process. Using this approach, execution of the algorithm on four nodes
leads to decomposition of the domain into 2× 2× 2 sub-domains. Thus, solution of the one dimensional problems
in the projection scheme require solving of linear systems with approximately the same size. In such way very good
performance is achieved. On the contrary, running the algorithm on five nodes leads to decomposition of the domain
into 5× 2× 1 sub-domains. Small linear system are being solved in the x1 direction, while large systems are solved
in the x3 direction. This is the reason for worse performance of the algorithm on five nodes.
Table VI shows the obtained speed-up of the parallel algorithm using only co-processors of the Avitohol. For the

smallest case, speed-up on 8 nodes is 168, while for the largest case, where it was possible to solve the problem on a
single node, speed-up was 520. For the largest solved problem, speed-up when increasing number of nodes from 4 to
8 was 1.8. This indicates that there is still some potential for further time reduction (by using more nodes).
It is clear that performance on eight nodes does not bring substantial performance gains over the performance on

six nodes. As a matter of fact, for the smallest problem, the computing resources are “over-provisioned”. Here, again,
we can see that we are touching the limits of parallelization for the investigated problem and solution method.
Let us now consider what happens when full-blown hybrid parallelization is applied. Here, Table VII shows the

best execution times collected on the Avitohol using Intel Xeon processors working together with the Intel Xeon Phi
co-processors. In each case, the optimal number of threads has been used (see, Table VII for the details).
First, let us note that, again, performance on 5 nodes is worse than on 4. This happens for the same reasons as

described above. Nevertheless, even for the smallest problem, wall-clock time reduction has been observed for up to
8 nodes.
For the smallest problem, the relative speed-up on eight nodes is 2.6. For the largest problem, on the other hand, the

relative speed-up reaches 6.6. Therefore, for this series of experiments, limits of parallelization have not been reached
(in particular, for the largest problem).
Table VIII presents the number of threads used to obtain the execution time in Table VII.
Here, we can see that for almost all problems and number of nodes the best results are obtained using 244 threads

on Intel Xeon Phi. In general, for large problems the best performance is observed using 32 OpenMP threads on
processors. For middle size problems, increasing the number of nodes and at the same time decreasing the number

TABLE VI. Speed-up for solving of 3D problem using only co-processors.
n1 n2 n3 p

8 30 60 120 240 244
176 176 176 3.04 9.46 18.39 31.81 47.90 53.96
176 176 352 3.44 9.58 20.85 37.22 53.78 62.38
176 352 352 3.02 8.79 22.62 39.94 54.76 60.49
352 352 352 2.42 10.07 20.97 37.38 57.25 59.91
n1 n2 n3 p

488 976 1464 1952 2440 2928 3904
176 176 176 75.63 113.45 116.07 161.73 103.55 168.93 167.56
176 176 352 91.55 148.92 149.63 248.20 134.41 263.47 260.03
176 352 352 99.54 173.92 176.56 319.53 156.03 315.91 320.68
352 352 352 118.68 231.06 282.92 430.85 230.19 524.00 520.19
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TABLE VII. Execution time (in seconds) for solving of 3D problem using processors and co-processors of the Avitohol.
n1 n2 n3 nodes

1 2 3 4 5 6 8
176 176 176 37.45 24.60 20.97 20.96 22.06 17.80 14.23
176 176 352 67.24 42.16 34.01 33.55 37.06 27.34 21.98
176 352 352 127.26 72.73 60.15 60.15 66.57 44.56 35.20
352 352 352 244.83 131.32 87.28 86.72 89.56 61.92 53.73
352 352 704 468.64 253.22 162.65 160.53 190.32 120.29 100.89
352 704 704 956.65 493.84 311.13 308.42 311.95 229.65 171.68
704 704 704 1875.35 995.79 585.30 527.91 445.27 401.58 283.39

TABLE VIII. The number of threads used to obtain the best execution time in Table VII. We use the following notation: mc×
kc+mϕ × kϕ means mc MPI processes on processors, kc OpenMP threads on processors, mϕ MPI processes on coprocessors, kϕ
OpenMP threads on coprocessors.

n1 n2 n3 nodes
1 2 3 4 5 6 8

176 176 176 2×16+ 4×8+ 6×8+ 8×8+ 10×8+ 12×8+ 16×8+
2×244 4×240 6×240 8×244 10×120 12×244 16×120

176 176 352 2×16+ 4×16+ 6×8+ 4×16+ 10×8+ 6×16+ 16×8+
2×244 4×244 6×244 8×244 10×244 12×244 16×244

176 352 352 2×16+ 4×16+ 6×8+ 8×8+ 10×8+ 6×16+ 16×8+
2×244 4×244 6×244 8×244 10×244 12×244 16×244

352 352 352 2×16+ 4×16+ 6×16+ 4×16+ 10×8+ 6×16+ 16×8+
2×244 4×244 6×244 8×244 10×244 12×244 16×244

352 352 704 2×16+ 4×16+ 6×16+ 8×16+ 10×16+ 6×16+ 16×16+
2×244 4×240 6×244 8×244 10×244 12×244 16×244

352 704 704 2×16+ 4×16+ 6×16+ 8×16+ 10×16+ 6×32+ 16×16+
2×244 4×244 6×240 8×244 10×244 12×244 16×244

704 704 704 4×8+ 4×16+ 3×32+ 8×16+ 10×16+ 12×16+ 16×16+
2×244 4×244 6×244 8×244 10×244 12×244 16×244

of OpenMP threads to 16 ensures better performance. Finally, for small problems the best performance is observed
using 16 OpenMP threads on processors.
Let us also compare the performance when solving the problem only on processors, only on co-processors and

using hybrid approach. To be able to see directly compare results spread in the tables above, we have created Table IX
in which we have brought results (from tables above) for up to eight nodes for (i) only processors (for the best number
of threads), (ii) only co-processors (for the best number of threads), and (iii) the hybrid approach (for the best number
of threads).

TABLE IX. Execution time for n1 = n2 = n3 = 176,352,704
n1 n2 n3 nodes

1 2 3 4 5 6 8
only processors

176 176 176 47.50 33.73 23.25 14.16 15.81 10.89 8.22
352 352 352 464.67 242.25 181.51 141.41 125.73 106.19 81.17
704 704 704 1960.77 3993.44 1192.85 949.38 908.34 611.76 526.62

only co-processors
176 176 176 52.44 34.96 34.17 24.52 38.30 23.48 23.07
352 352 352 372.31 191.23 156.18 102.56 191.95 84.32 84.94
704 704 704 916.12 847.58 905.80 483.65 495.89

hybrid approach
176 176 176 37.45 24.60 20.97 20.96 22.06 17.80 14.23
352 352 352 244.83 131.32 87.28 86.72 89.56 61.92 53.73
704 704 704 1875.35 995.79 585.30 527.91 445.27 401.58 283.39
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From the table we can see that for smallest problem, for number of nodes from four to eight, use of only processors
outperforms the remaining two approaches. This seems to be the clear case of Amdahl’s effect. The smallest problem
is too small for the number of threads (and nodes) applied to it.
Situation changes when the two larger problems are considered. Here, the hybrid approach is a clear winner. This

seems to indicate that if the computing system consists of Xeon processors and Phi co-processors, then there may be
reasons to use only processors, or to use hybrid architecture. However, there does not seem to be a reason (at least for
the type of problems we are interested in) to use only co-processors.
Finally, we compare the performance of the parallel algorithm using only processors, only co-processors, and using

both processors and co-processors. The best time obtained on up to eight nodes for three discrete problems is shown
in Figure 1.
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FIGURE 1. Execution time for n1 = n2 = n3 = 176,352,704

CONCLUDING REMARKS AND FUTURE WORK

We have studied the parallel performance of a hybrid implementation of the direction splitting algorithm for solving
of the 3D time dependent Stokes equation on a finite time interval and on a uniform rectangular mesh. This paper is
an extension of our previous work and consist of an experimental performance study of a parallel implementation on
a supercomputer using Intel Xeon processors as well as Intel Xeon Phi co-processors. The experimental results show
that when problems are small, using Xeon processors together with Phi co-processors may result in over-provisioning
of computing power. Moreover, it is rather difficult to justify use of only co-processors. Finally, when problems are
large enough, use of hybrid architecture results in clear advantage.
In the current version of our parallel implementation, the computational domain is decomposed into sub-domains.

The sizes of all sub-domains are almost the same. In order to tune the implementation and to have good performance
we tested the algorithm running various number of MPI processes on processors while using one MPI process per
co-processor. As a next step, in order to achieve better load balance on the hybrid architecture, we have to make
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further changes in the MPI code. In this way we can avoid or at least minimize the delay caused by different load in
the Intel Xeon processors and Intel Xeon Phi co-processors.
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