Krassimir Georgiev

LIST OF CITATIONS HAVE BEEN FOUND

  1. S. Margenov, K. Georgiev, Hadjikov L.,Novakova M. (1987), An effective approach for Boundary Element Method application to friction Contact Problems, Proc. of 9-th Int. Conf. on Boundary Elements, Vol.2, W.Germany, pp. 439-445
    In:
    1.1. J. H. Kane, H. Wang and B. L. K. Kumar (1990), Nonlinear thermal analysis with a boundary element zone condensation technique, J. of Computational Mechanics, Vol. 7, No. 2, pp. 107-122
    1.2. H. Wang, K. Guru Prasad and J. H. Kane (1993), Three dimensional boundary formulations for nonlinear thermal shape sensitivities, J. of Computational Mechanics, Vol. 11, No. 2-3, pp. 123-139

  2. K. Georgiev and S. Margenov (1989), Boundary element method realization on a systolic processor, In: Proc. of the 10-th Symposium on Algorithms (Algorithms’89), pp. 91-94, Strbske Pleso
    In:
    2.1. Matthias Pester and Sergej Rjasanow (1994), A Parallel Preconditioned Iterative Realization of the Panel Method in 3D, Preprint-Reihe der Chemnitzer DFG-Forschergruppe\Scientic Parallel Computing, SPC 94 18
  3. M. Neytcheva, A. Padiy, M. Mellaard, K. Georgiev, O. Axelsson (1996), Scalable and Optimal Iterative Solvers for Linear and Nonlinear Problems, Technical report MRI 9613, Mathematical Research Institute, University of Nijmegen, The Netherlands
    In:
    3.1. Yousef Saad, Jun Zhang (1999), A Multi-Level Preconditioner with Applications to the Numerical Simulation of Coating Problems, Iterative Methods in Scientific Computations II, D. R. Kincaid et. al. (Eds.), IMACS Series, ISBN 0-123-45678-9
    3.2. Yousef Saad, Jun Zhang (1999), BILUTM: A domain-based multilevel block ILUT preconditioner for general sparse matrices, SIAM J. Matrix Anal. Appl., Vol. 21, No. 1, pp. 279–299
    3.3 Jun Zhang (2000), Sparse approximate inverse and multilevel block ILU preconditioning techniques for general sparse matrices, Applied Numerical Mathematics 35, pp. 67–86
    3.4. Lutz Grosz (2000), How to vectorize the algebraic multilevel iteration, ACM Transactions on Mathematical Software, Volume 26, Issue 2 , pp. 293 - 309
    3.5. M. R. Larin (1996), Algebraic multilevel incomplete factorization methods for five-point difference matrices, Report 9636, Department of Mathemetics, Catholic University of Nijmegen, Nijmegen, The Netherlands

  4. Z. Zlatev, I. Dimov, K. Georgiev (1996), Three-dimensional version of the Danish Eulerian Model, ZAMM Zeitschrift fur Angewandte Mathematic und Mechanik, 76, pp. 337-340
    In:
    4.1. Byun, D., Schere, K.L. (2006), Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system, Applied Mechanics Reviews 59 (1-6), pp. 51-76
    4.2. Sahin, C., Thandavan, A., Alexandrov, V.N. (2005), Grid enablement of the Danish Eulerian Air Pollution Model, LNCS 3726, pp. 745-754
    4.3. Schlunzen K.H., Krell U. (2004), Atmospheric parameters for the North Sea: A review, Senckenbergiana Maritima 34 (1-2), pp. 1-52
    4.4. I. Farago, A. Havasi (2001), The mathematical background of operator splitting and the effect of non-commutativity , LNCS 2179, pp. 264-271
    4.5. J. Carlos Mouriño, María J. Martín, Patricia González and Ramón Doallo (2006), Dynamic Load-Balancing for the STEM-II Air Quality Model, Lecture Notes in Computer Science, 3980, pp. 701-710
    4.6. The Changing North Sea: Knowledge, Speculation and New Challenges Synthesis and New Conception of North Sea Research (SYCON), J. Sondermann, S. Beddig, I. Kruncke, G. Radach, K. Heinke Schlunzen (Eds.), Zentrum fur Meeres- und Klimaforschung der Universitat Hamburg, 2001

  5. K. Georgiev (1996), On an Iterative Solution of the Convection-Diffusion Problems, in: Iterative Methods in Linear Algebra, II, Eds. S. Margenov, P. Vassilevski, IMACS, Series in Comp. and Appl. Math., Vol. 3, pp. 80-90
    In:
    5.1. Yvan Notay (2000), A robust algebraic multilevel preconditioner for non-symmetric M-matrices, Numerical Linear Algebra with Applications, Vol. 7, Issue 5, pp 243-267
    5.2. Yvan Notay (1999), A robust algebraic preconditioner for nite dierence approximations of convection-diusion equations, Report GANMN 99-01, Service de Metrologie Nucleaire, Universite Libre de Bruxells

  6. J. Brandt, I. Dimov, K. Georgiev, I. Uria, Z. Zlatev (1997), Numerical algorithms for the three-dimensional version of the Danish Eulerian Model, in: "Regional Modelling of Air Pollution in Europe" (G. Geernaert, A. Hansen, Z. Zlatev Eds.), 249-262
    In:
    6.1. R. Bochrishvili (1999), On some adaptive numerical methods for linear advestion equations NATO Science Series, 2. Environmental Security-Vol. 57 Kluwer Acad. Publ., pp. 69-78
    6.2. D. Gordeziani, E. Gordeziani (2007), Mathematical modelling and numerical solution of some problems of water and atmosphere pollution, NATO Security through Science Series, "Air, Water and Soil Quality Modelling for Risk and Impact Assessment", A. Ebel, T. Davitashvili (Eds.), Vol. 2007, pp. 195-210

  7. Dimov I., Georgiev K., Ostromsky T., Zlatev Z. (2004), Computational challenges in the numerical treatment of large air pollution models, Ecological Modelling, 179 (2), pp. 187-203
    In:
    7.1. Dorigo, W.A., Zurita-Milla, R., de Wit, A.J.W., Brazile, J., Singh, R., Schaepman, M.E. (2007), A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling, International Journal of Applied Earth Observation and Geoinformation 9 (2), pp. 165-193
    7.2. Moreira, D.M., Tirabassi, T., Vilhena, M.T., Carvalho, J.C. (2005), A semi-analytical model for the tritium dispersion simulation in the PBL from the Angra I nuclear power plant, Ecological Modelling 189 (3-4), pp. 413-424
  8. Z. Zlatev, I. Dimov, K. Georgiev (1994), Modeling the long-range transport of air pollutants, IEEE Computational Science & Engineering, 1 (3), pp. 45-52.
    In:
    8.1. Heard, A.C., Pilling, M.J., Tomlin, A.S. (1998), Mechanism reduction techniques applied to tropospheric chemistry, Atmospheric Environment 32 (6), pp. 1059-1073

  9. Z. Zlatev, I. Dimov, K. Georgiev (1994), Parallel sparse matrix algorithms for air pollution models, Parallel and Distributed Computing Practices, 2, No.4, pp. 429-442
    In:
    9.1. Nelson H. F. Beebe (2003), A Complete Bibliography of Parallel and Distributed Computing Practices,Center for Scientific Computing, University of Utah, USA

  10. J. Brandt, I. Dimov, K. Georgiev, J. Wasniewski, Z. Zlatev (1996), Coupling the advection and the chemical parts of large air pollution models, Lecture Notes in Computer Science, 1184, Springer, pp. 65-76
    In:
    10.1 J. Brandt, J. H. Christensen, and L. M. Frohn (2002), Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model, Atmos. Chem. Phys. Discuss., 2, pp. 825-874
Up Back