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Abstract. Quasi-Monte Carlo methods are based on the idea that ran-
dom Monte Carlo techniques can often be improved by replacing the un-
derlying source of random numbers with a more uniformly distributed de-
terministic sequence. Quasi-Monte Carlo methods often include standard
approaches of variance reduction, although such techniques do not nec-
essarily directly translate. In this paper we present a quasi-Monte Carlo
method for integration that combines a separation of the domain into
uniformly small subdomains with the approach of importance sampling.
Theoretical estimates for the error bounds and the convergence rate are
established. A large number of numerical tests of the proposed method
are presented and compared with crude Monte Carlo and weighted uni-
form sampling. All methods are realized using pseudorandom numbers,
and Sobol, Halton and Faure quasirandom sequences. The numerical re-
sults confirm the improved convergence of the proposed method when
the integrand has bounded derivatives.

1 Introduction

Multidimensional numerical quadratures are of great importance in many practi-
cal areas, ranging from atomic physics to finance. The crude Monte Carlo method
has rate of convergence O(N−1/2) which is independent of the dimension of the
integral, and that is why Monte Carlo integration is the only practical method
for many high-dimensional problems. Much of the efforts to improve Monte Carlo
are in construction of variance reduction methods which speed up the computa-
tion.

Quasi-Monte Carlo methods are based on the idea that random Monte Carlo
techniques can often be improved by replacing the underlying source of random
numbers with a more uniformly distributed deterministic sequence. Quasi-Monte
Carlo methods often include standard approaches of variance reduction, although
such techniques do not necessarily directly translate. The fundamental feature
underlying all quasi-MCMs, however, is the use of a quasi-random sequence.
In this paper we study the convergence of a quasi-Monte Carlo method for
numerical integration that combines separation of the domain and importance
sampling.
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2 The Method

Consider the Monte Carlo estimation of the integral:

I[f ] =
∫

D

f(x)p(x) dx, (1)

where f(x) is an integrable function, x ∈ D = [0, 1]d and p(x) ≥ 0 is a probability
density function, such that

∫
D
p(x)dx = 1.

The Monte Carlo integration error is

E[εN [f ]2]1/2 = σ[f ]N−1/2 (2)

where

σ[f ] =
(∫

D

(f(x)p(x)− I[f ])2dx
)1/2

εN [f ] =
∫

D

f(x)p(x)dx − 1
N

N∑
n=1

f(ξn). (3)

The error depends on the sequence (factor N−1/2) and on the function (factor
σ[f ]). All variance reduction methods attack the factor σ[f ].

The main idea of stratification is as follows. Split the integration region D
into N pieces with

D =
M⋃

j=1

Dj , Di ∩ Dj = 0, i �= j; (4)

and take Nk random variables in subdomain Dk with

M∑
k=1

Nk = N. (5)

In each subdomain choose points ξ(k)n distributed with density p(k)(x) such that

p(k)(x) = p(x)/pk, pk =
∫

Dk

p(x)dx. (6)

The stratified Monte Carlo formula is:

IN [f ] =
M∑

k=1

pk

Nk

Nk∑
n=1

f(ξ(k)n ). (7)

Stratification always lowers the integration error if the distribution on points is
balanced. The resulting error for stratified quadrature is

εN ≈ N−1/2σs, σ
2
s =

M∑
k=1

σ(k)
2
. (8)
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Since the variance over a subdomain is always less than the variance over the
whole domain, that is σs ≤ σ, the stratification always lowers the integration
error.

In [4] was proposed a combination of stratification with importance sampling.
First, consider one-dimensional case. Partition [0,1] into N subintervals:

x0 = 0; xN = 1; Di ≡ [xi−1, xi];

xi =
Ci

f(xi−1)(N − i+ 1)
, i = 1, ..., N − 1 (9)

where

Ci = 1/2[f(xi−1) + f(1)](1− xi−1), i = 1, . . . , N − 1;

If f(x) ∈ H(1, L)[0,1], there exist constants Li, such that

Li ≥
∣∣∣∣∂f∂x

∣∣∣∣ for any x ∈ Di. (10)

Moreover, for the above scheme there exist constants c1i
and c2i

such that

pi =
∫

Di

p(x) dx ≤ c1i/N, i = 1, . . . , N (11)

and

sup
x1i

,x2i
∈Di

|x1i − x2i | ≤ c2i/N, i = 1, . . . , N. (12)

Theorem. Let f(x) ∈ H(1, L)[0,1]. Then for the importance separation (9)-(12)
of D

εN ≈
√
2[1/N

N∑
j=1

(Ljc1jc2j )
2]1/2N−3/2.

Now consider the multidimensional case. For the analogous importance separa-
tion the following statement is fulfilled (M = N):

εN ≈
√
2d

[
1
N

N∑
i=1

(Lic1ic2i)
2

]1/2

N−1/2−1/d.

The disadvantage of the above described methods is the increased computational
complexity. The accuracy is improved (in fact, importance separation gives the
theoretically optimal accuracy, [4]) but the price is increased number of addi-
tional computations which makes these methods impractical for large d.
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3 Implementation Using Quasirandom Sequences

The use of quasirandom sequences in place of the usual pseudorandom num-
bers often improves the convergence of the numerical integration. QRNs are
constructed to minimize a measure of their deviation from uniformity called
discrepancy, which is defined as follows. Consider a set xi of N points in the
d-dimensional unit cube. The discrepancy of this set is

DN = supE

∣∣∣∣# of xi ∈ E

N
− m(E)

∣∣∣∣ . (13)

Here E is a subrectangle of the unit cube, m(E) is the volume of E, and the sup
is taken over all such subrectangles. Most common, the sup is taken only over
all subrectangles with one vertex at 0, thus defining the star discrepancy D�,
which is used in the famous Koksma-Hlawka inequality:

Theorem (Koksma-Hlawka). For any sequence xn and any function with
bounded variation, the integration error is bounded as

εN [f ] ≤ V [f ]D�
N , (14)

where V [f ] is the variation of f in the Hardy-Krausse sense.
A quasirandom, or low-discrepancy, sequence is a sequence which satisfies

the condition that

DN ≤ Cd
logd N

N
, (15)

where Cd is a constant for the sequence, independent of N , but which may
depend on the dimension d.

There have been many constructions of low discrepancy point sets that have
achieved star discrepancies as small as O(N−1(logN)d). Most notably there
are the constructions of Hammersley, Halton, [3], Soból, [9], Faure, [2], and
Niederreiter, [7].

In the presented numerical results, we use multidimensional Halton, Sobol
and Faure sequences, [9].

3.1 Importance Separation Using QRNs

Here we consider a modification of the method called importance separation and
described in section 2. The goal is to have trade-of between the good convergence
rate of the method and its computational complexity. We slightly modify the
separation of the given domain, which, in the onedimensional case is:

x0 = 0; xM = 1; Di ≡ [xi−1, xi];

xi =
Ci

(M − i+ 1)
, i = 1, ...,M − 1 (16)
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where
Ci = 1/2[f(xi−1) + f(1)](1− xi−1), i = 1, . . . ,M − 1.

We consider M to be significantly less then N , and M QRNs are generated in
each subdomain. The goal is to have in some sense better distribution properties
having in mind the behavior of the integrand.

The variance in each subinterval is:

V [f ] =
∫ xi

xi−1

∣∣∣∣ dfdxdx
∣∣∣∣ ≤ Li(xi − xi−1) ≤ Li

c′

M
.

Applying Koksma-Hlawka inequality for each subinterval we have∣∣∣∣∣∣
∫ xi

xi−1

f(x)dx −
N/M∑
j=1

f(xj)

∣∣∣∣∣∣ ≤ Li
c′

M

1
N/M

=
Lic

′

N
.

Obviously, the error estimation for the whole interval is better than the error
estimation of the crude MCM. The multidimensional case is analogous.

4 Numerical Results

A lot of numerical experiments have been done. Here we present the results of
solving of two multidimensional integrals, which are used as test examples in [6].

Example 1. The first example is Monte Carlo integration over I5 = [0, 1]5 of
the function

f1(x) = exp

(
5∑

i=1

ai x
2
i

2 + sin(
∑5

j=1,j �=i xj)
2

)
,

where a = (1, 12 ,
1
5 ,

1
5 ,

1
5 ).

Example 2. The second example is Monte Carlo integration over I7 = [0, 1]7

of the function

f2(x) = e1−(sin2(π
2 x1)+sin2(π

2 x2)+sin2(π
2 x3)) arcsin

(
sin(1) +

x1 + · · ·+ x7
200

)
.

In our numerical experiments we compare the results of:
Crude Monte Carlo:

IN [f ] =
1
N

N∑
n=1

f(xn)

Weighted uniform sampling method:

IN [f ] =
∑N

n=1 f(xn)∑N
n=1 h(xn)
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Importance separation using PRNs and 3 type of QRNs for Example 2 (error versus number of realizations).
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Fig. 1. Crude MC, IS and WUS using PRNs and Sobol QRNs for Example 1 (error
versus number of realizations).
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Fig. 2. Importance separation using PRNs and 3 types of QRNs for Example 1 (error
versus number of realizations).
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Importance separation using PRNs and 3 type of QRNs for Example 2 (error versus number of realizations).
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Fig. 3. Crude MC, IS and WUS using PRNs and Sobol QRNs for Example 2 (error
versus number of realizations).
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Fig. 4. Importance separation using PRNs and 3 types of QRNs for Example 2 (error
versus number of realizations).
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Importance separation:

IN [f ] =
M∑

k=1

pk

Nk

Nk∑
n=1

f(ξ(k)n ).

All algorithms are realized with PRNs and QRNs.
The numerical results for the accuracy of the described methods for com-

puting the multidimensional quadratures are presented on Figures 1, 2, 3 and 4.
The results are presented as a function of N , number of samples, and as a func-
tion of the error, which is computed with respect to the exact solution. Figure 1
and 2 show the results of the crude, weighted uniform sampling and importance
separation for both integrals and all methods are performed both with pseudo-
random and quasi-random sequences. The importance separation method leads
to smaller errors. The most important fact is that using importance separation
we have very good accuracy even using small sample. Figure 3 and 4 show the ac-
curacy of importance separation method using different quasirandom sequences.
The best results are obtained using the Sobol sequence.
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