
Implementation of Monte Carlo Algorithms for
Eigenvalue Problem Using MPI

I. Dimov1, V. Alexandrov2, and A. Karaivanova1

1 Central Laboratory for Parallel Processing, Bulgarian Academy of Sciences,
Acad. G. Bonchev St.,bl. 25 A, 1113, Sofia, Bulgaria,

dimov@amigo.acad.bg, anet@copern.acad.bg,
WWW home page: http://www.acad.bg/BulRTD/math/dimov2.html

2 Department of Computer Science University of Liverpool
Chadwick Building Peach Street, Liverpool, L69 7ZF, UK

vassil@csc.liv.ac.uk

Abstract. The problem of evaluating the dominant eigenvalue of real
matrices using Monte Carlo numerical methods is considered.
Three almost optimal Monte Carlo algorithms are presented:
– Direct Monte Carlo algorithm (DMC) for calculating the largest ei-

genvalue of a matrix A. The algorithm uses iterations with the given
matrix.

– Resolvent Monte Carlo algorithm (RMC) for calculating the smallest
or the largest eigenvalue. The algorithm uses Monte Carlo iterations
with the resolvent matrix and includes parameter controlling the
rate of convergence;

– Inverse Monte Carlo algorithm (IMC) for calculating the smallest
eigenvalue. The algorithm uses iterations with inverse matrix.

Numerical tests are performed for a number of large sparse test matrices
using MPI on a cluster of workstations.

1 Introduction

Monte Carlo methods give statistical estimates for the functional of the solution
by performing random sampling of a certain random variable whose mathema-
tical expectation is the desired functional. They can be implemented on parallel
machines efficiently due to their inherent parallelism and loose data dependen-
cies. Using powerful parallel computers it is possible to apply Monte Carlo me-
thod for evaluating large-scale irregular problems which sometimes are difficult
to be solved by the well-known numerical methods.

Let J be any functional that we estimate by Monte Carlo method; θN be
the estimator, where N is the number of trials. The probable error for the usual
Monte Carlo method [5] is defined as parameter rN for which Pr{|J − θN | ≥
rN} = 1/2 = Pr{|J − θN | ≤ rN}. If the standard deviation is bounded, i.e.
D(θN) < ∞, the normal convergence in the central limit theorem holds, so we
have

rN ≈ 0.6745D(θN)N−1/2. (1)

V. Alexandrov and J. Dongarra (Eds.): PVM/MPI’98, LNCS 1497, pp. 346–353, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Implementation of Monte Carlo Algorithms 347

In this paper we present Monte Carlo algorithms for evaluating the dominant
eigenvalue of large real sparse matrices and their parallel implementation on
a cluster of workstations using MPI. These three algorithms use the idea of
the Power method combined with Monte Carlo iterations by the given matrix,
the resolvent matrix and the inverse matrix correspondingly. In [6], [5], [3], [4]
one can find Monte Carlo methods for evaluation the dominant (maximal by
modulus) eigenvalue of an integral operator. In [7], [8] Monte Carlo algorithms
for evaluating the smallest eigenvalue of real symmetric matrices are proposed.
Here we generalize the problem.

Power method.
Suppose A ∈ Rn×n is diagonalizable, X−1AX = diag(λ1, . . . , λn), X =

(x1, . . . , xn), and |λ1| > |λ2| ≥ . . . ≥ |λn|. Given f (0) ∈ Cn, the power method
([1]) produces a sequence of vectors f (k) as follows:

z(k) = Af (k−1),
f (k) = z(k)/||z(k)||2,
λ(k) = [f (k)]HAf (k), k = 1, 2,

Except for special starting points, the iterations converge to an eigenvector
corresponding to the eigenvalue of A with largest magnitude (dominant eigen-
value) with rate of convergence:

|λ1 − λ(k)| = O

(∣∣∣∣λ2

λ1

∣∣∣∣
k
)

. (2)

Consider the case when we want to compute the smallest eigenvalue. To
handle this case and others, the power method is altered in the following way:
The iteration matrix A is replaced by B, where A and B have the same eigenvec-
tors, but different eigenvalues. Letting σ denote a scalar, then the three common
choices for B are: B = A−σI which is called the shifted power method, B = A−1

which is called the inverse power method, and B = (A − σI)−1 which is called
the inverse shifted power method.

Table 1. Relationship between eigenvalues of A and B

B Eigenvalue Eigenvalue
of B of A

A−1 1
λA

1
λB

A − σI λA − σ λB + σ

(A − σI)−1 1
λA−σ

σ + 1
λB

Computational Complexity: Having k iterations, the number of arithme-
tic operations in Power method is O(4kn2 + 3kn), so the Power method is not

348 I. Dimov, V. Alexandrov, and A. Karaivanova

suitable for large sparse matrices. In order to reduce the computational
complexity we propose a Power method with Monte Carlo iterations.

2 Monte Carlo Algorithms

2.1 Monte Carlo Iterations

Consider a matrix A = {aij}n
i,j=1, A ∈ Rn×n, and vectors f = (f1, . . . , fn)t ∈

Rn×1 and h = (h1, . . . , hn)t ∈ Rn×1. The algebraic transformation Af ∈ Rn×1 is
called iteration and plays a fundamental role in iterative Monte Carlo methods.

Consider the following Markov chain:

k0 → k1 → . . . → ki, (3)

where kj = 1, 2, . . . , n for j = 1, . . . , i are natural numbers. The rules for
constructing the chain (3) are:

Pr(k0 = α) =
|hα|∑n

α=1 |hα| ,

P r(kj = β|kj−1 = α) =
|aαβ |∑n

β=1 |aαβ | , α = 1, . . . , n.

Such a choice of the initial density vector and the transition density matrix
leads to almost optimal Monte Carlo algorithms for matrix computations.

Now define the random variables Wj using the following recursion formula:

W0 =
hk0

pk0

, Wj = Wj−1
akj−1kj

pkj−1kj

, j = 1, . . . , i. (4)

2.2 Direct Monte Carlo Algorithm

The dominant eigenvalue can be obtained using the iteration process mentioned
in the Introduction:

λmax = limi→∞
(h, Aif)

(h, Ai−1f)
,

where we calculate scalar products having in mind (see, [5], [6], [2]) that

(h, Aif) = E{Wifki
}, i = 1, 2, (5)

Thus we have

λmax ≈ E{Wifki
}

E{Wi−1fki−1}

Implementation of Monte Carlo Algorithms 349

2.3 Inverse Shifted Monte Carlo Algorithm (Resolvent MC
Method)

Now consider an algorithm based on Monte Carlo iterations by the resolvent
matrix Rq = [I − qA]−1 ∈ Rn×n. The following presentation holds

[I − qA]−m =
∞∑

i=0

qiCi
m+i−1A

i, |qA| < 1.

Having in mind that (see, [3], [7])

([I − qA]−mf, h) = E

{ ∞∑
i=0

qiCi
m+i−1(A

if, h)

}
, (6)

we have the following Monte Carlo algorithm:

λmin ≈ 1
q

(
1 − 1

µ(m)

)
=

(A[I − qA]−mf, h)
([I − qA]−mf, h)

=

E
∑∞

i=1 qi−1Ci−1
i+m−2Wif(xi)

E
∑∞

i=0 qiCi
i+m−1Wif(xi)

=
E
∑l

i=0 qiCi
i+m−1Wi+1f(xi+1)

E
∑l

n=0 qiCi
i+m−1Wif(xi)

, (7)

where W0 = hk0
pk0

, Wi are defined by (4) and Cj
i are binomial coefficients.

Let us note that if q > 0 the algorithm evaluates λmax, if q < 0, the algo-
rithm evaluates λmin without matrix inversion. This parameter may be used as
parameter controlling the convergency.

The coefficients Cn
n+m are calculated using the formula

Ci
i+m = Ci

i+m−1 + Ci−1
i+m−1.

The RMC algorithm has strong requirements about matrices for which it
can be applied: the error from the Power method applied on the resolvent ma-
trix determines the value of the parameter m; the error which comes from the
representation of the resolvent matrix as a series determines the value of the
parameter l, and also the values of m and l are not independent, since they
determine the binomial coefficients Cl

m=l−1 which grow exponentially with l.

2.4 Inverse Monte Carlo Algorithm

This algorithm can be applied when A is a non-singular matrix. The algorithm
has high efficiency when the smallest by modulus eigenvalue of A is much smaller
than the other eigenvalues. This algorithm can be implemented in two ways:

350 I. Dimov, V. Alexandrov, and A. Karaivanova

– First,
1. Calculate the inversion of matrix A. For example, an efficient algorithm
for evaluating the inverse matrix is proposed in [9].
2. Apply the Direct Monte Carlo Algorithm using the iterations with the
inverse matrix.
Remark. It is not allways necessary to calculate A−1 because the vectors
fk can be evaluated by solving the following systems of equations:

Afj = fj−1, j = 1, . . . , i,

where fj = A−jfj−1 and f0 is the starting vector.
– Second, to apply Resolvent Monte Carlo algorithm with q = −1, i.e.

λmin ≈ E
∑l

i=0 Ci
i+m−1Wi+1f(xi+1)

E
∑l

n=0 Ci
i+m−1Wif(xi)

2.5 Balancing of Errors

There are two kind of errors in Power method with Monte Carlo iterations:

– systematic error (from Power method, see (2)):

O

(∣∣∣∣µ2

µ1

∣∣∣∣
k
)

,

where µi = λi if B = A, µi = 1
λi

if B = A−1, µi = λi − σ if B = A − σI,
µi = 1

λi−σ if B = (A − σI)−1 and λi and µi are the eigenvalues of A and B
correspondingly;

– stochastic error (because we calculate mathematical expectations approxi-
mately, see (1)):

O(D(θN)N−1/2)

To obtain good results the stochastic error must be approximately equal to
the systematic one. (It is not necessary to use ”a large” number of realizations
N in order to have ”a small” stochastic error if the systematic error is ”big”.)

2.6 Computational Complexity

The mathematical expectation of the total number of operations for the Resol-
vent MC Method ([7], [8] is:

ET1(RMC) ≈ 2τ

[
(k + γA)lA +

1
2
dlL

]
lN + 2τn(1 + d), (8)

where l is the numbers of moves in every Markov chain, N is the number of
Markov chains, d is the mean value of the number of non-zero elements per row,
γA is the number of arithmetic operations for calculation the random variable

Implementation of Monte Carlo Algorithms 351

(in our code-realization of the algorithm γA = 6), lA and lL are arithmetic
and logical suboperations in one move of the Markov chain, k is the number of
arithmetic operations for generating the random number (k is equal to 2 or 3).

The main term of (8) does not depend on the matrix size n. This means that
the time required for calculating the eigenvalue by RMC practically does not
depend n. The parameters l and N depend on the spectrum of the matrix, but
does not depend on its size n. The above mentioned result was confirmed for a
wide range of matrices during the realized numerical experiments (see Table 3).

3 Numerical Tests

The numerical tests are made on a cluster of 48 Hewlett Packard 900 series 700
Unix workstations under MPI (version 1.1). The workstations are networked
via 10Mb switched ethernet segments and each workstation has at least 64Mb
RAM and run at least 60 MIPS. Each processor executes the same program
for N/p number of trajectories, i.e. it computes N/p independent realizations
of the random variable (here p is the number of processors). At the end the
host processor collects the results of all realizations and computes the desired
value. The computational time does not include the time for initial loading of the
matrix because we consider our problem as a part of bigger problem (for example,
spectral portraits of matrices) and suppose that every processor constructs it.

The test matrices are sparse and storaged in packed row format (i.e. only
nonzero elements). The results for average time and efficiency are given in tables
2 and 3 and look promising. The relative accuracy is 10−3.

We consider the parallel efficiency E as a measure that characterize the
quality of the proposed algorithms. We use the following definition:

E(X) =
ET1(X)
pETp(X)

,

where X is a Monte Carlo algorithm, ETi(X) is the expected value of the com-
putational time for implementation the algorithm X on a system of i processors.

4 Conclusion

Parallel Monte Carlo algorithms for calculating the eigenvalues are presented
and studied. They can be applied for well balanced matrices (which have nearly
equal sums of elements per row) in order to provide good accuracy.

We propose to use them when one have to calculate the dominant eigenvalue
of very large sparse matrices since the computational time is almost independent
of the dimension of the matrix and their parallel efficiency is superlinear.

5 Acknowledgements

This work was partially supported by the Ministry of Science, education and
Technology of Bulgaria under grant I501/95 and by the European Community

352 I. Dimov, V. Alexandrov, and A. Karaivanova

Table 2. Implementation of Direct Monte Carlo Algorithm using MPI
(number of trajectories - 100000).

1pr. 2pr. 2pr. 3pr. 3pr. 4pr. 4pr. 5pr. 5pr.

T (ms) T (ms) E T (ms) E T (ms) E T (ms) E

matrix
n = 128 34 17 1 11 1.03 8 1.06 7 0.97
matrix
n = 1024 111 56 0.99 37 1 27 1.003 21 1.06
matrix
n = 2000 167 83 1 56 1 42 1 35 0.96

Table 3. Implementation of Resolvent Monte Carlo Algorithm for evalua-
tion of λmax using MPI (number of trajectories - 100000; q > 0).

1pr. 2pr. 2pr. 3pr. 3pr. 4pr. 4pr. 5pr. 5pr.

T (ms) T (ms) E T (ms) E T (ms) E T (ms) E

matrix
n = 128 18 9 1 6 1 4 1.1 3 1.2
matrix
n = 1024 30 15 1 10 1 7 1.06 6 1
matrix
n = 2000 21 11 0.99 7 1 5 1.04 4 1.04

grant CP960237 (Study of Stability of Physical Systems Using Parallel Compu-
ters).

References

1. G. H. Golub, Ch. F. Van Loon, Matrix Computations, The Johns Hopkins Univ.
Press, Baltimore and London, 1996.

2. J.H. Halton, Sequential Monte Carlo Techniques for the Solution of Linear Systems,
TR 92-033, University of North Carolina at Chapel Hill, Department of Computer
Science, 46 pp., 1992.

3. G.A. Mikhailov, A new Monte Carlo algorithm for estimating the maximum eigen-
value of an integral operator, Docl. Acad. Nauk SSSR, 191, No 5 (1970), pp.
993 – 996.

4. G.A. Mikhailov, Optimization of the ”weight” Monte Carlo methods (Nauka, Mos-
cow, 1987).

5. I.M. Sobol, Monte Carlo numerical methods, Nauka, Moscow, 1973.

Implementation of Monte Carlo Algorithms 353

6. V.S.Vladimirov, On the application of the Monte Carlo method to the finding of the
least eigenvalue, and the corresponding eigenfunction, of a linear integral equation,
in Russian: Teoriya Veroyatnostej i Yeye Primenenie, 1, No 1 (1956),pp. 113
– 130.

7. I. Dimov, A. Karaivanova and P. Yordanova, Monte Carlo Algorithms for cal-
culating eigenvalues, Springer Lectur Notes in Statistics, v.127 (1998) (H.
Niederreiter, P. Hellekalek, G. Larcher and P. Zinterhof, Eds)), pp.205-220.

8. I. Dimov, A. Karaivanova Parallel computations of eigenvalues based on a Monte
Carlo approach, Journal of MC Methods and Appl., 1998 (to appear).

9. Megson, G., V. Alexandrov, I. Dimov, Systolic Matrix Inversion Using a Monte
Carlo Method, Journal of Parallel Algorithms and Applications , 3, No 1
(1994), pp. 311-330.

	Introduction
	Monte Carlo Algorithms
	Monte Carlo Iterations
	Direct Monte Carlo Algorithm
	Inverse Shifted Monte Carlo Algorithm (Resolvent MC Method)
	Inverse Monte Carlo Algorithm
	Balancing of Errors
	Computational Complexity

	Numerical Tests
	Conclusion
	Acknowledgements

