

INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGIES BULGARIAN ACADEMY OF SCIENCE

Supercomputer Simulation of Radio Frequency Hepatic Tumor Ablation

5/9/2017

Department of Scientific Computations

http://www.iict.bas.bg

Mathematical Model

- The RF ablation destroys the unwanted tissue by heating, arising when the energy dissipated by the electric current flowing through the RF probe is converted to heat.
- Bio-heat equation:

IICT

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot k \nabla T - c_s \nabla \cdot (\mathbf{v}^T) + J \cdot E - h_{bl} (T - T_{bl})$$
$$\nabla \cdot \sigma \nabla V = 0, \quad E = -\nabla V, \quad J = \sigma(T) E$$

• Arrhenius equation, is used to assess the level thermal cell necrosis:

$$\alpha(t) = \frac{1}{e^{\Omega(t)}}$$

$$\Omega(t) = \ln\left(\frac{C(0)}{C(t)}\right) = A \int_0^t e^{-\frac{\Delta E}{RT(\tau)}} d\tau$$

2

Impact of Blood Circulation

Blood circulation is not included (left); Portal vane included (center); Portal vane and capillary network included (right)

Test Problem	V ₁ [cm ³]	Impact	V _{4.6} [cm ³]	Impact
Without blood circulation	20.7		14.0	
Portal vane is included	10.8	1.91	6.7	2.09
Portal vane and capillary network are included	7.8	2.65	5.3	2.64

Towards Total Efficiency

Total Weak Scalability on IBM Blue Gene/P									
Ν	Р	Δt[s]	V ₁ [cm ³]	V _{4.6} [cm ³]	N _{it}	T[s]			
2 183 424	128	5	12.857	9.102	642	1 723			
17 467 392	1 024	1.25	12.829	9.130	1610	6 170			

A bipolar RF probe is simulated. V_1 and $V_{4.6}$ stay for the volume of efficient ablation where the cells are destroyed with a probability of 66% and 99% respectively.

- There are 8 times more processors and 4 times larger (DOF) problem at each time step.
- Then we have additionally 4 times more time steps but only 3.58 times increase of the parallel time.
- This means that the related total efficiency is $E_{total} = 111\%$.

Publications

[1] N. Kosturski, S. Margenov, and Y. Vutov: Calibration of Parameters for Radio-Frequency Ablation Simulation, LNCS 8353 (2014), 611-618

[2] N. Kosturski, S. Margenov, Y. Vutov, Computer Simulation of RF Liver Ablation on an MRI Scan Data, AIP Conf. Proc. 1487 (2013), 120-126

[3] N. Kosturski, S. Margenov, Y. Vutov, Comparison of Two Techniques for Radio-frequency Hepatic Tumor Ablation through Numerical Simulation, AIP Conf. Proc. 1404 (2011), 412-419

[4] N. Kosturski, S. Margenov, Supercomputer Simulation of Radio-Frequency Hepatic Tumor Ablation, AIP Conference Proceedings 1301 (2011), 486-493

The presented results are obtained in collaboration with AMET Ltd: http://amet-bg.com/en/