The Randomized Setting for Linear Multivariate Problems Defined over L_2

Henryk Woźniakowski Columbia University and University of Warsaw

We study the approximation of a continuous linear operator $S_d : F_d \to G_d$, where F_d is a weighted L_2 space of *d*-variate functions and G_d is an arbitrary Hilbert space. The approximation is considered in the randomized setting for algorithms from the class Λ^{std} if they use only function values, or from the class Λ^{all} if they use arbitrary linear functionals. It is known that randomization for the class Λ^{all} does not help in the sense that it yields essentially the same results as in the worst case setting for the class Λ^{all} . Our main goal is to verify what is the power of the class Λ^{std} in the randomized setting and when it matches the power of Λ^{all} in the randomized or, equivalently, in the worst case setting.

In particular, we prove that the *n*th minimal randomized error of algorithms that use at most *n* function values at randomized points for approximation of a continuous linear functional S_d is

$$e^{\operatorname{ran}}(n, S_d; \Lambda^{\operatorname{std}}) = \frac{a_n \|S_d\|}{\sqrt{n}} \quad \text{with} \quad a_n \in [1/2, 1].$$

Hence, all non-zero continuous functionals S_d admit essentially the same error bounds and the speed of convergence in the randomized setting.

On the other hand, if the singular values of S_d behave as $\Theta(n^{-p})$ then the *n*th minimal errors for the classes Λ^{std} and Λ^{all} behave respectively as

$$e^{\operatorname{ran}}(n, S_d; \Lambda^{\operatorname{std}}) = \Theta\left(n^{-\min(1/2, p)}\right),$$

$$e^{\operatorname{ran}}(n, S_d; \Lambda^{\operatorname{all}}) = \Theta\left(n^{-p}\right).$$

Hence, for $p \leq 1/2$ the power of Λ^{std} is the same as the power of Λ^{all} .

We also study various notions of tractability, i.e., how the minimal randomized errors depend on the number d of variables. It turns out that tractability for classes Λ^{std} and Λ^{all} are equivalent but sometimes with different exponents of tractability.