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This talk is based on Yuan Xia’s joint work with Mike Giles: , .
Due to time limits, we recommend interested readers to refer to the
draft paper [XG11b] on numerical analysis and numerical results in
[XG11a], [Xia11]. The methodology we use is the same to [Gil07].
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Multilevel Approach for geometric Brownian SDEs
Given a scalar SDE driven by a Brownian diffusion

dS(t) = a(S, t) dt + b(S, t) dW (t),

to estimate E[P] := E[f (S(T ))] where the path-dependent payoff
P can be approximated by P̂` using 2` uniform timesteps, we use

E[P̂`] = E[P̂0] +
L∑

l=1
E[P̂`−P̂`−1].

E[P̂`−P̂`−1] is estimated using N` simulations with same W (t) for
both P̂` and P̂`−1,

Ŷ` = N−1
`

N∑̀
i=1

(
P̂(i)
` −P̂(i)

`−1

)
Yuan Xia joint work with Mike Giles Numerical Analysis of Multilevel Monte Carlo for Scalar Jump-diffusion SDEs



Multilevel MC approach
Jump-diffusion SDEs with constant jump rate

Bounded state-dependent rate case

Numerical and analysis results for variance of ML estimator
using Milstein scheme

Option Plain diffusion Jump-diffusion
numerics analysis numerics analysis

Lipschitz O(h2) O(h2) O(h2) O(h2)
Asian O(h2) O(h2) O(h2) O(h2)
lookback O(h2) o(h2−δ) O(h2) o(h2−δ)

barrier O(h3/2) o(h3/2−δ) O(h3/2) o(h1−δ)

digital O(h3/2) o(h3/2−δ) O(h3/2) o(h3/2−δ)

Table: numerical V` convergence rate for const rate jump-diffusion
SDEs and analysis results proved.
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MLMC Theorem

Theorem
Let P be a functional of the solution of a stochastic o.d.e., and P̂`
the discrete approximation using a timestep h` = 2−` T .

there exist independent estimators Ŷ` based on N` Monte Carlo
samples, with computational complexity (cost) C`, and positive
constants α≥ 1

2 , β, c1, c2, c3 such that

i)
∣∣∣E[P̂` − P]

∣∣∣ ≤ c1 hα`

ii) E[Ŷ`] =

 E[P̂0], l = 0

E[P̂` − P̂`−1], l > 0
iii) V[Ŷ`] ≤ c2 N−1

` hβ`
iv) C` ≤ c3 N` h−1

`
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Theorem
there exists a positive constant c4 such that for any ε<e−1 there
are values L and N` for which the multilevel estimator

Ŷ =
L∑

l=0
Ŷ`,

has Mean Square Error MSE ≡ E
[(

Ŷ − E[P]
)2
]
< ε2

with a computational complexity C with bound

C ≤


c4 ε
−2, β > 1,

c4 ε
−2(log ε)2, β = 1,

c4 ε
−2−(1−β)/α, 0 < β < 1.
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Jump-diffusion SDEs

To capture the characteristics of fat-tail return distribution and the
volatility smile effect, Merton introduced jump-diffusion SDEs to
model stock price:

dS(t) = a(S(t−), t) dt +b(S(t−), t) dWt +c(S(t−), t) dJt , (1)

where the jump item Jt is a compound Poisson process
N(t)∑
i=1

(Zi − 1), the jump magnitude Zi satisfies some probability

distribution, and N(t) is a Poisson process with intensity
λ = λ(St , t), independent of the Brownian motion.
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Assumptions on the SDEs
We assume that the drift function a ∈ C1,1(R×R+), volatility
function b ∈ C2,1(R×R+) and jump coefficient c a measurable
function on R×R+ × E satisfy the following conditions where
L0 ≡ ∂/∂t + a ∂/∂S and L1 ≡ b ∂/∂S.

A1 (uniform Lipschitz condition): for ϕ = a, b, L1b, c, λ, there
exists K1 such that

|ϕ(x , t)− ϕ(y , t)| ≤ K1 |x−y |
A2 (linear growth bound): for
ϕ = a, b, L0a, L1a, L0b, L1b, L0L1b, L1L1b, c, there exists K2
such that

|ϕ(x , t)| ≤ K2 (1 + |x |)
A3 (additional Lipschitz condition): there exists K3 such that

|b(x , t)− b(x , s)| ≤ K3 (1 + |x |)
√
|t−s|
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A jump-adapted Milstein discretisation

In the constant rate case, we use Platen’s jump-adapted
approximation [Pla82], which combines jump times
J = {τ1, τ2, . . . , τm} and the usual fixed-time grid.
The jump-adapted Milstein scheme on level `, for
n = 0, . . . , nT − 1 := N(T ) + 2` − 1 is

Ŝ−n+1 = Ŝn + an hn + bn ∆Wn + 1
2 b′

n bn (∆W 2
n − hn), (2)

Ŝn+1 =

{
Ŝ−n+1 + c(Ŝ−n+1, tn+1)(Zi − 1), when tn+1 = τi ;

Ŝ−n+1 , otherwise.
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Strong convergence of the scheme

[BLP05] defines a continuous time interpolant of (2):

ŜKP(t) = Ŝn+an (t−tn)+bn (Wt−Wn)+ 1
2 b′n bn

(
(Wt−Wn)2 − (t−tn)

)
,

(3)
for tn≤ t≤ tn+1 and proves

Theorem

Provided the assumptions A1-A3 are satisfied, then for m = 2
there exists a constant Cm such that for the solution to (1) and (3)

E
[

sup
0≤t≤T

|S(t)− ŜKP(t)|m
]
< Cm hm, E

[
sup

0≤t≤T
|ŜKP(t)|m

]
< Cm.

Their result can be generalized to any integer m ≥ 2 with the same
methodology.
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Lipschitz payoff

For the case where the payoff is a Lipschitz function of the value of
the underlying asset at maturity (e.g. European vanilla option),

P = f (S(T )).

In the numerical discretisation, the estimator is defined by

P̂ = f (ŜnT ),

By the strong convergence theorem, we have:

Theorem
This approximation for Lipschitz payoffs has V` = O(h2

` ).
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Brownian Bridge interpolant

By approximating the diffusion part as having constant drift and
volatility within each timestep, we define the interpolant

Ŝ(t) = Ŝn + vn (Ŝ−n+1−Ŝn) + bn
(

W (t)−Wn − vn (Wn+1−Wn)
)

(4)
where vn ≡ (t − tn)/hn. We can then use Brownian Bridge results
to construct multilevel estimators for various payoffs.

Theorem

If Ŝ(t) is the interpolant defined by (4) and ŜKP(t) is the
Kloeden-Platen interpolant defined by (3) then

E
[

sup
[0,T ]

∣∣∣Ŝ(t)− ŜKP(t)
∣∣∣m] = O((h log h)m),
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Lookback option

The payoff is: P = exp(−rT ) (S(T )−min0≤t≤T S(t)) .
The Brownian interpolated jump-adapted Milstein MC estimator
would be P̂ = exp(−rT )

(
Ŝ(T )−min0≤t≤T Ŝ(t)

)
.

Using Hölder inequality and Theorem 3 we obtain

Theorem

The multilevel approximation for a lookback option which is a
uniform Lipschitz function of S(T ) and inf [0,T ] S(t) has
V` = o(h2−δ

` ) for any δ>0.
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Barrier option

Payoff is P = f (S(T )) 1{MT>B},MT = min0≤t≤T S(t).

One estimator is P̂ = f (Ŝ(T ))1{M̂T>B}, M̂ = min0≤t≤T Ŝ(t).

Theorem
Provided inf

[0,T ]
S(t) has a bounded density in the neighbourhood of

B, then the multilevel estimator for a down-and-out barrier option
has variance V` = o(h1−δ

` ) for any δ>0.

A better estimator uses expectation conditional on path values at
two endpoints of each interval. Numerical evidence suggest
V` = o(h3/2−δ

` ), but we cannot get an analytical bound at the
moment.
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Digital option

The digital payoff is P = 1{S(T )>K}, we use conditional
expectation to reduce variance of P̂ = 1{Ŝ(T )>K}:

P̂ f
` = E

[
1{Ŝ f

nT >K
} | Ŝ f

nT−1

]
.

Distinguishing three circumstances of last jump times we can prove:

Theorem
Provided b(K ,T ) 6= 0, and S(t) has a bounded density in the
neighborhood of K, then the multilevel estimator for a digital
option has variance V` = o(h3/2−δ

` ) for any δ>0.
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State-dependent intensity

The case of bounded state-dependent intensity is discussed by
Glasserman & Merener [GM04] who use a thinning approach.
The idea is to use a constant rate λsup Poisson process to generate
candidate jump times. This is a superposition of two jump process:

1 Desired process with rate λ(S(τ−), τ);
2 Zero-jump process with rate λsup − λ(S(τ−), τ).
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Thinning Algorithm

Hence we can have acceptance-rejection procedure:
1 Generate the jump-adapted time grid using Poisson process

with constant rate λsup;
2 Simulate each interval of time grid using appropriate

discretisation scheme;
3 When the endpoint τ is a jump time, generate a uniform

random number U ∼ [0, 1]

1 If p =
λ(S(τ−), τ)

λsup
> U, accept τ add jump to the state value;

2 Otherwise turn to step 2.

Yuan Xia joint work with Mike Giles Numerical Analysis of Multilevel Monte Carlo for Scalar Jump-diffusion SDEs



Multilevel MC approach
Jump-diffusion SDEs with constant jump rate

Bounded state-dependent rate case

Adopting multilevel

When using simple thinning, jump candidate selection may differ
on fine and coarse grids, enlarging variance.
To circumvent this, we change the measure so that the probability
of acceptance is the same on fine and coarse path:

Ef [P̂`]− Ec [P̂`−1] = EQ[P̂`
∏
τ

R f
τ − P̂`−1

∏
τ

Rc
τ ].

In both fine and coarse path, the acceptance probability for a
candidate jump under the measure Q is defined to be 1

2 . The
corresponding Radon-Nikodym derivatives are

Rτ =

{
2pτ , if U < 1

2 ;
2(1− pτ ), if U ≥ 1

2 ,
pτ =

λ(S(τ−), τ)

λsup
.
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Variance order, change of measure
We can rewrite the estimator to bound two parts:

(
P̂` − P̂`−1

) NT∏
i=1

Rc
i + P̂`

NT∑
j=1

(
R f

j − Rc
j

) j−1∏
i=1

R f
i

NT∏
i=j+1

Rc
i .

The bound for the first one is implied from bound in constant rate
case and the Radon-Nikodym derivative part is bounded by strong
convergence result.

Theorem
Let P̂`, P̂`−1 be ML estimator for constant rate, then for arbitrary
p > 1, the multilevel estimator for a thinning with change of
measure has the variance
V` ≤ Cp

(
E
[(

P̂l − P̂l−1
)2p
])1/p

+ O
(
(h` log h`)2).
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Weak convergence of the estimator

To fulfill the complexity theorem, we also need to justify weak
convergence of the estimator for each payoffs.

Constant rate case
Lipschitz case can be implied from strong convergence of the
scheme.
Lookback case is derived from the bound of discrepancy
between KP interpolant and Brownian interpolant, discrepancy
between KP interpolant and analytic solution.
For Barrier/Digital payoff we assume boundedness of density
of Smin at B/density of ST at K and use extreme value theory
argument.

Path-dependent rate case, we split the estimator into two
parts and bound them accordingly.
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Conclusion

Multilevel jump-adapted approach for scalar jump-diffusion
SDEs is supported through numerical analysis to bound the
convergence of the multilevel correction variance.
We bound the variance for European call, Asian, lookback,
barrier and digital options in the constant jump rate case.
We extend the analysis to cover bounded state-dependent
intensities.
We also prove weak convergence for each payoff.
Consequently, O(ε−2) computational complexity is proved for
all cases except for the barrier option for which the best that
can currently be proved is o(ε−2−δ) for any strictly positive δ.
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