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Basic definitions Uniform distribution modulo 1
Discrepancy
Van der Corput Sequence

Discrepancy function

Let w = (Xp)n>1, Xn € [0, 1), be a one-dimensional infinite
sequence. For N > 1 and for an interval J := [, 5) C [0, 1),

A(J, N,w)
gives the number of indices n < N, for which x, € J. We call

AN, w) = A(J’N’V"*’) _ ).

the discrepancy function of the interval J, where A(J) denotes the
length of the interval J respectively the Lebesgue measure.
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Basic definitions Uniform distribution modulo 1
Discrepancy
Van der Corput Sequence

Uniform distribution modulo 1

Definition

A sequence w = (xp)n>1 is said to be uniformly distributed
modulo 1 (for short u.d. mod 1) if for every subinterval J C [0, 1)
we have

Wolfgang Ch. Schmid (University of Salzburg) Generalized van der Corput Sequences



Basic definitions Uniform distribution modulo 1
Discrepancy
Van der Corput Sequence

Discrepancy

Definition

Let x1,...,xy be a finite sequence of real numbers and let / be the
unit interval. The number

Dy = DN(X17 000 7XN) = SUp|A(J, N, {X17 °00 ’XN})’
JCI

is called the extreme discrepancy of the given sequence. For an
infinite sequence w of real numbers Dy(w) should denote the
discrepancy of the initial segment formed by the first N terms of w.

4

(star discrepancy Dy;: replace J by J* = [0, ) with 0 < o < 1)
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Basic definitions Uniform distribution modulo 1
Discrepancy
Van der Corput Sequence

Diaphony

Another measure of the irregularities of distribution of an infinite
sequence is due to Zinterhof (1976)

Definition
The diaphony F of the first N points of w is defined

2\ 1/2
o) 1 1 N ”i
1T MXp
Fy(w):=1[2- Zﬁ NZexp T
m=1 n=1

Or in terms of the discrepancy function:

1 1
F,%,(w) = 2772/0 /0 A2([a,ﬁ), N,w)dadp.
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Basic definitions Uniform distribution modulo 1
Discrepancy
Van der Corput Sequence

The crucial point of the concept of discrepancy is that the notion
of uniform distribution can be covered by it.

A sequence w = (xp)p>1 is uniformly distributed modulo 1 if and
only if

lim D =0
Ninoo N(w) 0
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Low discrepancy sequences

There are several examples of one dimensional sequences with
NDp(w) = O(log N).

It is therefore convenient to introduce the term low discrepancy
sequence for sequences with this property. Moreover low
discrepancy sequences can be compared by computing this constant

i Dp(w)
imsup————=.
N—o0 |0g N
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Van der Corput Sequence

Van der Corput Sequence

@ Base b > 2, integers n

o b-adic representation of n =37, aj(n)b/

Van der Corput Sequence in Base b:

Sb = (¢6(n)) 4o with

8
QO
—
S
~

¢b(n) = : [;.I'+1 € [0’ 1)

@ ¢y ... radical inverse function

e For n=(am-1,-..,a1,a0)p we have
¢b(n) = (O.ao ce amfl)b
e Compare 45 = (0.am-1...a0)p
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Basic definitions Uniform distribution modulo 1
Discrepancy
Van der Corput Sequence

Halton Sequence and Hammersley Point Set

s-dimensional generalization: choose s pairwise coprime bases b;.

Halton Sequence in Bases by, ..., bs:
H = (H(n)),>o with

H(n) = (6, (n), .-, dp,(n)) € [0,1)°

The following point set of N points is closely connected:

Hammersley Point Set in Bases by, ..., bs_1:

Hn = (Hn(n))p =g with

Hu(n) = (5790 (n); - 0, (n) € [0,2)°
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Van der Corput Sequence in Base 5
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Generalized van der Corput sequences

Generalized Van der Corput Sequence

® b>2,Y =(0j);5, sequence of permutations of
{0,1,...,b—1} _
o b-adic representation of n =32, a;(n)b/

Generalized Van der Corput Sequence sz in Base b

sz(n) _ i Uj(aj(n))

bitl
j=0

e For (0j) = (o) constant: write ST = 57
@ Original van der Corput sequence for the identical permutation

Generalized 2-Dimensional Hammersley Point Set HE.N in

Base b
n

MYy = {(SE(n),N) 1 0<n< /v}
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Generalized van der Corput sequences

Example
n| ... 525150 X,
0| 000 @ _
o) _ 3
A
3| 003 3 1
5 5
Let b =5, 4 004 @Z%
o=(6351%) 5| 010 ONNE O
6| 011 Dyl _3, 3
7| 012 Byl _2, 3
g o013 B ob_1,43
o o014 W ol_4, 3
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Generalized van der Corput sequences

Generalized Van der Corput Sequence in Base 5

sous
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Basic tools
Main Theorems
Work of H. Faure Results

Contributions of Faure

@ Detailed study of generalized van der Corput sequences

@ Proved explicit formulae for various discrepancy measures for
generalized van der Corput sequences

@ Developed a technique to compute according constants and
therefore to classify permutations

@ Found good permutations (— recent improvements)
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Basic Tools

@ Observations are based on system of basic ¢f ,-functions

@ Combinations of these functions suffice to prove formulae for
different discrepancy measures

@ These functions can even be used to study more dimensional
sequences and point sets
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Analysis of the irregularities of distribution |

For o € G, IetZ":( (0)/b, ()/b o(b —1)/b) For

he{0,1,....,b—1} and x € [571, %), whereke{l ., b} we
define
Definition

7 (x) = A([0, 1), k, 25) — hx if 0< h<o(k—1),
Phh) = (b= h)x — A8, 1), k, 25)  ifo(k—1) < h< b,

where for a sequence w = (x),>1 we denote by A(J, k,w) the
number of indices 1 < n < k such that x, € J.
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Main Theorems
Work of H. Faure Results

Analysis of the irregularities of distribution Il

In the main theorems the following classes of functions based on
the basic ©7  appear:

b—1
’ ag r
SOZ (") = (@b,h) )
h=0
o . I o o \2
Xb =5 Z(S%,h' - ‘Pb,h) )
h£h!
Yg = sup }@g,h' — ‘PZ,h' .
0<h<h’<b

V.

(See Pausinger for some properties and for a graph of a x-function)

Wolfgang Ch. Schmid (University of Salzburg) Generalized van der Corput Sequences



Basic tools
Main Theorems
Work of H. Faure Results

Illustration

Example with b=3 and o0 = (81 %)

Figure: 3, (blue), 3, (green),

o (1) (2)
@37 (red)

Figure: ¢35’
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Discrepancy: explicit formula and asymptotic behaviour

Faure:

Let N be an integer with N > 1, then

NDn(SF) Z% < )

Let

n

Qp gy 1= mfsup i;qb( ) ,
J

21xeRr

then

. N'DN(SJ) ap o
o) = | b/ _ 29
s(55) ',ijop log N log b
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V-Function in Base 5
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V-Function in Base 5
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V-Function in Base 5

10+
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V-Function in Base 5

14t
12t

10+
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Diaphony: explicit formula

Let N be an integer with N > 1, then

NPF(S7) = x2S xg(Nb ) /82

j=1

(See Pausinger for an asymptotic behaviour like before and for
lower bounds)
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Results for discrepancy and diaphony

o 2(co

S(55) = limsup PR A(SE) = imsup B0
Discrepancy:

o Faure (1992): permutation o3¢ with s(S5:°) = 0.366. ..

@ Pirsic/S (2008): slight improvements in base 36

@ Polt (2008): s(Sgs°) =0.360. ..

@ Ostromoukhov (2009): s(Sgs*) = 0.353...
Diaphony:

o Chaix/Faure (1993): f(S73°) = 1.315...

o Pausinger/S (2010): f(Sg77) =1.137...
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Results for L, and L, Discrepancy

@ Faure/Pillichshammer (2008): existence of permutations such
that the L, discrepancy is of best possible order
Explicit permutations for the L, discrepancy

o Faure/Pillichshammer/Pirsic/S (2009): exact formula for the
L, discrepancy for special permutations
— 2-dimensional finite point sets with the lowest value of L,
discrepancy known (0.179...)
Recently improved to 0.176. .. by Bilyk et al. (symmetrized
Fibonacci sets)

o Faure/Pillichshammer (2009): new results for the L,
discrepancy of 2-dimensional digitally shifted Hammersley
point sets in base b
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