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Monte Carlo integration methods
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Latin Hypercube sampling

..

Latin Hypercube sampling is a type of  Stratified Sampling.

To sample N points in d-dimensions

Divide each dimension in N equal intervals => Nd subcubes.

Take one point in each of the subcubes so that being projected to 
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lower dimensions points do not overlap



Latin Hypercube sampling
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Deficiencies of LHS sampling

..

1) S i b dl l d ( )1) Space is badly explored (a)

2) Possible correlation between variables (b)

3) Points can not be sampled sequentially3) Points can not be sampled sequentially 

=> Not suited for integration
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Discrepancy. Quasi Monte Carlo. 
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QMC. Sobol’ sequences

(ln  )Convergence: for all LDS
nO N

N
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ε
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.
Sobol' LDS:

.

1. Best uniformity of distribution as N goes to infinity.
2. Good distribution for fairly small initial sets.
3 A f t t ti l l ith3. A very fast computational algorithm.

"Preponderance of the experimental evidence amassed to datePreponderance of the experimental evidence amassed to date 
points to Sobol' sequences as the most effective quasi-Monte Carlo 
method for application in financial engineering."

Paul Glasserman Monte Carlo Methods in Financial Engineering
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Paul Glasserman, Monte Carlo Methods in Financial Engineering, 
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Sobol LDS. Property A and Property A’

A low-discrepancy sequence is said to satisfy Property A if for any binary segment 
(not an arbitrary subset) of the n-dimensional sequence of length 2n there is 
exactly one point in each 2n hyper-octant that results from subdividing the unit 
hypercube along each of its length extensions into halfhypercube along each of its length extensions into half.

A low-discrepancy sequence is said to satisfy Property A’ if for any binary segment 
(not an arbitrary subset) of the n-dimensional sequence of length 4n there is 
exactly one point in each 4n hyper octant that results from subdividing the unit

.

exactly one point in each 4n hyper-octant that results from subdividing the unit 
hypercube along each of its length extensions into four equal parts.

.
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Distributions of 4 points in two dimensions

Property A

NoMC -> No

..

LHS -> No

Sobol’  -> Yes
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Distributions of 16 points in two dimensions

Property A’

NoMC -> No

..

LHS -> No

Sobol’  -> Yes
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Comparison of Discrepancy I.
Low Dimensions
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Comparison of Discrepancy II
High Dimensionsg
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All sampling methods in high-dimensions 
have comparable discrepancy
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Do QMC methods loose their efficiency in higher 
dimensions ?dimensions ?
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ANOVA decomposition and Sensitivity Indices

Consider a model
x is a vector of input variables
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Sobol’ Sensitivity Indices (SI)
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Effective dimensions
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Classification of functions

Type B,C. Variables are Type A. Variables are yp ,
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When LHS is more effective than MC ?
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Classification of functions

Function 
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How to monitor convergence of 
MC LHS and QMC calculations ?MC, LHS and QMC calculations ?

The root mean square error is defined asThe root mean square error is defined as 
1/2

2

1

1 ( )
K

k
d N

k

I I
K

ε ⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑

.

K is a number of independent runs

MC and LHS: all runs should be statistically independent ( use a 

1kK =⎝ ⎠

. y p (
different seed point ).

QMC: for each run a different part of the Sobol' LDS was used ( 
start from a different index number )

0 1cN α α− < <

start from a different index number ).

The root mean square error is approximated by the formula

MC:    0.5
QMC 1

, 0 1cN
α

α

≤

< <
≈

21

QMC: 1
LHS:  ?

α
α
≤
∼



Integration error vs. N. Type A
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Integration error. Type A
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Integration error vs. N. Type B
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Integration error. Type B functions
Dominant low order indicesDominant low order indices
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The integration error vs. N. Type C
Dominant higher order indices: 1
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Integration error for type C functions
Dominant higher order indicesg
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The integration error vs. N. Function 1A
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LHS: it is not possible to incrementally add a new point while keeping 
the old LHS design



Evaluation of quantiles I. Low quantile

Distribution  dimension n = 5.

are independent standard normal variates
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Low quantile (percentile for the cumulative distribution function) = 0.05
A superior convergence of the QMC method



Evaluation of quantiles II. High quantile

Distribution  dimension n = 5.

are independent standard normal variates
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High quantile (percentile for the cumulative distribution function) = 0.95
QMC convergences faster than MC and LHS



Summary

Sobol’ sequences possess additional uniformity properties which MC andSobol  sequences possess additional uniformity properties which MC and 
LHS techniques do not have (Properties A and A’).

Comparison of L discrepancies shows that the QMC method has the

.

Comparison of L2 discrepancies shows that the QMC method has the 
lowest discrepancy in low dimensions ( up to 20).

QMC method outperforms MC and LHS for types A and B functions.QMC method outperforms MC and LHS for types A and B functions 
(problems with low effective dimensions)

LHS h d f MC l f B f iLHS method outperforms MC only for type B functions. 

QMC remains the most efficient method among the three techniques for 
non-uniform distributions
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