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Monte Carlo integration: basic setting
We want to estimate µ0 = E[X ] where X is the output of a stochastic
simulation. Basic Monte Carlo (MC) method:

I Generate n independent replicates of X , say X1, . . . ,Xn;

I estimate µ0 by X̄n =
1

n

n∑
i=1

Xi .

Strong law of large numbers: X̄n → µ0 with probability 1 when n→∞.
For confidence interval on µ0, can use central limit theorem:

P
[
µ0 ∈

(
X̄n −

cαSn√
n

, X̄n +
cαSn√

n

)]
≈ 1− α

where S2
n is an estimator of σ2 = Var[X ].

Accuracy of estimator X can be measured by half-width cαn
−1/2σ or

relative half-width cαn
−1/2σ/µ0 of confidence interval.

Other types of situations: estimate a quantile, optimization, etc.
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Example: a static network reliability problem

The system has d components, in state 1 (failed) or 0 (operating).
System state: B = (B1, . . . ,Bd).
Complementary structure function: Φ : {0, 1}d → {0, 1}.
System failed iff X

def
= Φ(B) = 1.

Unreliability: u = P[Φ(B) = 1].

Monte Carlo: Generate n i.i.d. realizations of B, say B1, . . . ,Bn, compute
Xi = Φ(Bi ) for each i , and estimate u by X̄n = (X1 + · · ·+ Xn)/n.

For example, easy if the components are independent and P[Bj = 1] = qj .
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In our examples, Φ is defined via a graph (or network).
Link j “works” iff Bj = 0.
The system works if all nodes in a given set K are connected.
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Given the Bj ’s, X = Φ(B) is easy to evaluate by graph algorithms
(e.g., minimal spanning tree).
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Here, u is very close to 0 (failure is a rare event). For example, if
u = 10−10, the system will fail only once per 10 billion runs on average.

In fact, X is Bernoulli with E[X ] = u, Var[X ] = u(1− u), and

MSE[X̄n]
here
= Var[X̄n] =

u(1− u)

n
≈ u

n
.

We want at least to beat the trivial estimator Y = 0, for which
MSE[Y ] = bias2[Y ] = u2.

When u is small, a relevant quality measure is the relative error

RE[X̄n]
def
=

√
MSE[X̄n]

u
here
=

√
1− u√
nu

→∞ when u → 0.

For example, if u ≈ 10−10, to have RE[X̄n] ≤ 10% we need n ≈ 1012.
Requires much more efficient methods than crude MC!
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Examples of situations involving rare events

I Probability that the completion time of a large project exceeds a
given threshold.

I Probability of buffer overflow, or mean time to overflow, in a
queueing system.

I Proportion of packets lost in a communication system.

I Probability of a large loss from an investment portfolio.

I Ruin probability for an insurance firm.

I Value-at-risk (quantile estimation).

I Expected amount of radiation that crosses a given protection shield.

I Air traffic control.

I Mean time to failure or other reliability or availability measure for a
highly reliable system (e.g., fault-tolerant computers, safety systems).

I Artificial settings: counting problems, combinatorial optimization, etc.
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A framework for asymptotic analysis

We estimate a small quantity µ0 = µ0(ε) > 0, where µ0(ε)→ 0 when the
rarity parameter ε→ 0, by an unbiased estimator X = X (ε) ≥ 0.

In a queueing system with buffer size B and s servers, we can take
ε = 1/B if we are interested in very large values of B, and ε = 1/s if we
are interested in what happens when there is a large number of servers.

In a reliability model, the failure probabilities or failure rates may be taken
as polynomial functions of ε.

We study the asymptotic behavior when ε→ 0 to understand what
happens when ε is very small.

With standard MC, we often have RE[X (ε)]→∞ when ε→ 0.
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Classical robustness properties in this context

Commonly-used characterizations of X (ε) in rare-event setting:

I It has bounded relative error (BRE) (bounded relative variance) if

lim
ε→0

Var[X (ε)]

µ2
0(ε)

<∞.

I It is logarithmically efficient (LE) or asymptotically optimal if

lim
ε→0

lnE[X 2(ε)]

2 lnµ0(ε)
= 1.

Means (roughly) that if µ0(ε)→ 0 at an exponential rate, then the
standard deviation converges at least at the same exponential rate.

I BRE is stronger than LE, and can be more difficult to reach.
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Generalization: BRM-k and LE-k

L., Blanchet, Glynn, Tuffin (2010)

An estimator X (ε) with mean µ0(ε) has bounded relative moment of order
k (BRM-k) if

lim sup
ε→0

E[X k(ε)]

µk0(ε)
<∞.

It has logarithmic efficiency of order k (LE-k) if

lim
ε→0

lnE[X k(ε)]

k lnµ0(ε)
= 1.

Interesting and relevant for situations where we need estimators of the
variance or of other moments higher than the mean.

Relevant for the validity of Berry-Esseen bound, for example.

Is BRM-k the best that we can hope for?
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Vanishing relative moments

X (ε) has vanishing relative centered moment of order k (VRCM-k) if

lim sup
ε→0

E[|X (ε)− µ0(ε)|k ]

µk
0(ε)

= 0.

True if and only if
lim sup
ε→0

E[X k(ε)]

µk
0(ε)

= 1.

It has vanishing relative variance or relative error (VRE), if

lim sup
ε→0

σ(ε)

µ0(ε)
= 0.

When VRCM occurs, the rare event difficulty is reversed! May seem
strange and perhaps unachievable at first sight, but does happen.

Challenge in rare-event simul.: build estimators with these properties.

Is VRCM the best we can dream of?
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Ultimate dream: a zero-variance estimator

Can be achieved in principle via importance sampling (IS) or via control
variates (CV), as we will see later in the talk.

Exact implementation of this is impractical, since it would require the
knowledge of µ0 (and usually much more) in the first place.

But by plugging crude approximations of the unknown quantities in place
of the exact ones in the zero-variance sampling strategies, we may reduce
the variance tremendously, and sometimes the convergence rate as well.

This is what we call approximate zero-variance simulation.

Has been studied for IS by Booth (1985, 1987), Kollman et al. (1999),
Baggerly et al. (2000), and for CV by Henderson and Glynn 2002, Gobet
and Maire (2006), and Kim and Henderson (2006, 2007), among others.
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Importance Sampling (IS)

Suppose X = h(Y ) where Y is a random vector with density f .
Instead of generating Y from f , we can generate it from another density
f̃ , such that f̃ (y) > 0 whenever h(y)f (y) 6= 0. We have

E[X ] =

∫
h(y)f (y)dy =

∫ [
h(y)f (y)

f̃ (y)

]
f̃ (y)dy = Ẽ

[
h(Y )f (Y )

f̃ (Y )

]
,

where Ẽ is the expectation under the new density f̃ .

To estimate µ0 = E[X ] with IS, we generate Y1, . . . ,Yn i.i.d. from density
f̃ and compute

X̄is,n =
1

n

n∑
i=1

h(Yi )
f (Yi )

f̃ (Yi )
.

We want to select f̃ so that Var[h(Y )f (Y )/f̃ (Y )] is small under f̃ .
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Theorem: If h ≥ 0, then taking f̃ (y) proportional to h(y)f (y) gives zero
variance:

Xis = h(Y )
f (Y )

f̃ (Y )

is a constant, which must equal µ0.

Hard to implement, but can sometimes be approximated.

Also works if Y has a discrete distribution:
∫

is replaced by
∑

.

Also, Y can be a stochastic process or another type of random object.
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VRCM implies convergence to a zero-variance
sampling measure
Suppose

µ0(ε) = EPε [X (ε)] =

∫
Ω
X (ε, ω)dPε(ω)→ 0

when ε→ 0. The zero-variance measure P∗ε here satisfies

dP∗ε(ω)

dPε(ω)
=

X (ε, ω)

µ0(ε)
.

Theorem (L., Blanchet, Glynn, Tuffin 2010).
If X (ε) has VRCM-(1 + δ) for some δ > 0, then

lim
ε→0

sup
A∈F
|Pε(A)− P∗ε (A)| = 0.

That is, the sampling distribution must converge in total variation to the
zero-variance measure associated with X (ε), regardless of what sampling
strategy we use (IS or not).
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Proof (uses Jensen’s inequality):

sup
A∈F
|P∗ε(A)− Pε(A)| ≤ sup

A∈F
|EPε [(dP∗ε/dPε) I(A)]− EPε [I(A)]|

≤ EPε |dP∗ε/dPε − 1|

≤ E1/(1+δ)
Pε

[
|dP∗ε/dPε − 1|(1+δ)

]
≤ E1/(1+δ)

Pε

[
|X (ε)/µ0(ε)− 1|(1+δ)

]
= [c1+δ(ε)]1/(1+δ)

ε→0−→ 0.
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A discrete-time Markov chain (DTMC) framework

A Markov chain {Yj , j ≥ 0} with (large) state space Y, and a set of
absorbing states ∆ ⊂ Y.

Stopping time: τ = inf{j : Yj ∈ ∆}.
Transition kernel: P(C | y) = P[Yj ∈ C | Yj−1 = y).

One-step cost c(y , y ′) for each transition y → y ′.

Total cost: X =
∑τ

j=1 c(Yj−1,Yj).

Expected cost-to-go from state y : µ(y) = E[X | Y0 = y ].

We assume that E[τ | Y0 = y ] <∞ and µ(y) <∞ for all y ∈ Y.

Want to estimate µ0 = µ(y0) for some initial state y0.

This covers a wide range of situations, including a finite time horizon.
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Recurrence equation for µ

The function µ : Y → R satisfies the recurrence (Poisson) equation

µ(y) = E[c(y ,Y1) + µ(Y1) | Y0 = y ] =

∫
Y

[c(y , z) + µ(z)]dP[dz | y ]

for y 6∈ ∆, and µ(y) = 0 for y ∈ ∆.

If Y is finite, this becomes a linear system of equations. But can be huge!

If Y is continuous, one may approximate µ by a linear combination of
basis functions, or more generally by tuning the parameters of a
parameterized function, v(y ; θ).

These techniques are used in machine learning and approximate dynamic
programming.

Limitation: the error can be large and difficult to estimate, or the
approximation can be too costly to compute. Then, we may use
simulation.
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Dynamic IS and its interpretation as a Markov
decision process (MDP)

At each step of the Markov chain, we can change the transition kernel P
for another kernel P̃. That is, P̃(C | y) = P̃[Yj ∈ C | Yj−1 = y).

Want to select the transition kernels dynamically in a way that minimizes
the variance. The decision (selection) at each step may depend on past
and current history.

An optimal (selection) policy gives zero variance. It takes

dP̃(y1 | y) proportional to dP(y1 | y)[c(y , y1) + µ(y1)],

with proportionality constant 1/µ(y).

We can approximate it by using an approximation v of µ.
Often, a crude approximation of µ can be computed cheaply.
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IS for a discrete-time Markov chain

We change P to P̃ such that Ẽ[τ ] <∞ and
P̃(C | y) > 0 whenever

∫
C [c(y , y1) + µ(y1)]dP(y1 | y) > 0.

The estimator X is replaced by

Xis =
τ∑

j=1

c(Yj−1,Yj)

j∏
i=1

(dP/dP̃)(Yi | Yi−1).

Theorem. If we choose P̃ so that

(dP̃/dP)(y1 | y) =


c(y , y1) + µ(y1)

µ(y)
if µ(y) > 0,

1 if µ(y) = 0,

then Xis has zero variance.
Proof: E.g., by backward induction on j .
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An example where zero-variance gives Ẽ[τ ] =∞
Is zero variance always the perfect thing?

0 1 2

1/2

1/2

1/3

1/3

1/3

Cost c(y) = 1 for y = 1, 2, and c(2) = 0.
Here, µ(y) is the expected number of transitions before reaching state 2,
given that we are in state y . We have µ(2) = 0.

Zero-variance IS gives p̃(2|y) = 0 for y = 0, 1, so the chain will never
reach the stopping time τ under these new probabilities!
We have zero variance but infinite computing cost.

Trick to resolve this: add a cost δ > 0 to any transition that enters ∆.
Afterwards, subtract δ to the final (zero-variance) estimator.
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Here, µ(y) is the expected number of transitions before reaching state 2,
given that we are in state y . We have µ(2) = 0.

Zero-variance IS gives p̃(2|y) = 0 for y = 0, 1, so the chain will never
reach the stopping time τ under these new probabilities!
We have zero variance but infinite computing cost.

Trick to resolve this: add a cost δ > 0 to any transition that enters ∆.
Afterwards, subtract δ to the final (zero-variance) estimator.
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Example 2: A birth-and-death process

0 1 2 · · · · · · B − 1 B

1

1− p1

p1

1− p2

p2

1− pB−1

pB−1

1

Let τ = inf{j > 0 : Yj ∈ {0,B}} and define µ(y) = P[Yτ = B | Y0 = y ].
We want to estimate µ0 = µ(1), the probability of reaching B before
coming back to 0.

We have the recurrence:

µ(y) = pyµ(y + 1) + (1− py )µ(y − 1)

for y = 1, . . . ,B − 1, with µ(0) = 0 and µ(B) = 1. Zero-variance change
of measure gives

p̃y = pyµ(y + 1)/µ(y) for y ≥ 1.

Because µ(0) = 0, we also see that p̃1 = 1 and that no sample path will
ever return to 0 under zero-variance IS.
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Example 2 with py = p for 1 ≤ y ≤ B − 1

For ρ = p/(1− p) 6= 1/2, it is known that µ(y) = (1− ρ−y )/(1− ρ−B), so

p̃y =
1− ρ−y−1

1− ρ−y
p =

(1− ρy+1)

(1− ρy )

1

ρ
p.

Those probabilities do not depend on B, but depend on y .
The cycles do not contribute to the likelihood ratio:

py−1

p̃y−1

(1− py )

(1− p̃y )
= 1.

For large B, µ(y) = (ρB−y − ρB)/(1− ρB)≈ ρB−y .
This approximation leads to VRCM-k if p → 0 and fixed B,
because then ρB−y/µ(y)→ 1.
If B →∞ for fixed p < 1/2, it gives (only) BRM-k.
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Case where py = p, ρ = p/(1− p).

0 1 2 · · · · · · B − 1 B

1

0

(1−ρ2)
(1−ρ)

p
ρ = 1

1− (1−ρ3)
(1−ρ2)

p
ρ

(1−ρ3)
(1−ρ2)

p
ρ

1− (1−ρB )
(1−ρB−1)

p
ρ

(1−ρB )
(1−ρB−1)

p
ρ

1

Approximation with µ(y) ≈ ρB−y : note that p/ρ = 1− p and 1− p/ρ = p.

0 1 2 · · · · · · B − 1 B

1

p

1− p

p

1− p

p

1− p

1
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First-Passage Probability in a Markov Chain
A,B ⊂ Y, A ∩ B = ∅, ∆ = A ∪ B.

µ(y) = P[hitting B before A]. Want to estimate µ(y0).

We have µ(y) = 1 for y ∈ B and µ(y) = 0 for y ∈ A.
Here, P, A, and B may depend on ε.

Zero variance IS:

P̃ (dy1 | y) = P (dy1 | y)
µ(y1)

µ(y)
.

Approximation:

Pv (dy1 | y) = P (dy1 | y)
v (y1)

w (y)
,

where v : Y → [0,∞) is a good approximation of µ(·) and

w (y) =

∫
y1∈Y

P (dy1 | y) v (y1) .
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IS estimator of µ(y0):

X = X (ε) = I[hit B before A] L,

where

L =
τ∏

k=1

w(Yk−1)

v(Yk)
=

w(Y0)

v(Yτ )

τ−1∏
k=1

w(Yk)

v(Yk)
.

Can take v(y) = 1 for y ∈ B and v(y) = 0 for y ∈ A.

To establish robustness properties such as LE-k , BRM-k, and VRCM-k ,
we need an asymptotic bound on E[X k(ε)]/µk(y0, ε).
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Proposition: Bounds via Lyapunov inequalities.
Suppose there are positive constants κ1 and κ2 and a function
hk : Y → [0,∞) such that v(y) ≥ κ1 and hk(y) ≥ κ2 for each y ∈ B, and

E

[(
w(y)

v(y)

)k

hk(Y1) | Y0 = y

]
≤ hk(y)

for all y 6∈ ∆. Then, for all y 6∈ ∆,

E[X k | Y0 = y ] ≤ vk(y)hk(y)

κk1κ2
,

and therefore
E[X k ]

µk(y0)
≤ [v(y0)/µ(y0)]khk(y0)

κk1κ2
.
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Corollary.
Under the proposition’s conditions:

(i) If

lim
ε→0

ln v(y0, ε) + k−1 ln hk(y0, ε)

lnµ(y0, ε)
= 1,

then X (ε) is LE-k .

(ii) If
lim
ε→0

[v(y0, ε)/µ(y0, ε)]khk(y0, ε) <∞,

then X (ε) is BRM-k .

(iii) If

lim
ε→0

[v(y0, ε)/µ(y0, ε)]khk(y0, ε)

κk1κ2
= 1,

then X (ε) is VRCM-k .
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Example: a random walk on the real line
Let Yj = Y0 + D1 + · · ·+ Dj , the Dj ’s are i.i.d., E[Dj ] < 0, B = [0,∞),

µ(y) = P
[

sup
j≥0

Yj ≥ 0 | Y0 = y ≤ 0

]
,

and µ0 = µ(−1/ε). Several applications. May represent the ruin probability for
an insurance company with initial reserve −1/ε, or the probability that a
steady-state delay in a single-server queue exceeds −1/ε.

If Dj has a light-tailed distribution, θ∗ > 0, E[exp(θ∗Dj)] = 1 and
E[Dj exp(θ∗Dj)] <∞, then taking v(y) = exp(θ∗y) gives BRE.

If Dj has a regularly varying tail: for each b > 0,

lim
t→∞

P (Dj > bt)/P (Dj > t) = b−α

for some α > 1, then taking

v(y) = min

(
1,
−1

E[Dj ]

∫ ∞
a∗k−y

P[Dj > s]ds

)
.

gives BRM-k and even VRCM-k, for some a∗k > 0 that may depend on k.
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Static Network Reliability Problem

1

2
B1

3
B2

B3

4
B4

5

B8

6

B5

B6

B10

7
B7

8
B9

B12

9
B11

B13

Suppose the Bj ’s are independent and P[Bj = 1] = qj .
We generate B1,B2, . . . ,B13 in this order (could renumber before).
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Can be seen as a Markov chain with state Yj = (B1, . . . ,Bj) at step j .

µj(b1, . . . , bj−1) = E[φ(B) | B1 = b1, . . . ,Bj−1 = bj−1]

= qj µj+1(b1, . . . , bj−1, 1) + (1− qj) µj+1(b1, . . . , bj−1, 0).

Zero-variance scheme:

q̃j = qj
µj+1(b1, . . . , bj−1, 1)

µj(b1, . . . , bj−1)
.

The (unknown) µj can be replaced by easily-computable approximations.

Mincut-maxprob approx. (L., Rubino, Saggadi, Tuffin 2010).
Given b1, . . . , bj−1 fixed, take a set of disjoint minimal cuts made with the
other edges, that disconnect S and have maximal probability.
Approximate µj by the sum of their probabilities.
The probability of a cut is the product of its qj ’s.
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1

2

0

3

1

0

4
B4

5

B8

6

B5

B6

B10

7
B7

8
B9

B12

9
B11

B13

Two minimal cuts, in blue and orange.

Suppose qj = qj(ε) = ajε
bj + o(εbj ).

Theorem: The mincut-maxprob approximation always gives BRE.
Under mild additional conditions, it also gives VRE.
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A dodecahedron network

A

B
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Results for dodecahedron network, with all qj = ε, for n = 104.

ε estimate standard dev. relative error

10−1 2.8960× 10−3 3.49× 10−3 1.2
10−2 2.0678× 10−6 3.42× 10−7 0.17
10−3 2.0076× 10−9 1.14× 10−10 0.057
10−4 2.0007× 10−12 3.46× 10−14 0.017

Can combine the method with series-parallel reductions of the graph at
each step (WSC 2011 paper).

Similar (dual) method based on disjoint paths to estimate µj .
Can combine the two estimates (based on cuts and on paths).
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Three dodecahedrons in parallel. qj = ε and for n = 104.

A dodec. 1

dodec. 2

dodec. 3

B

ε estimate standard dev. relative error

0.10 2.3573× 10−8 5.49× 10−8 2.3
0.05 2.5732× 10−11 3.03× 10−11 1.2
0.01 8.7655× 10−18 2.60× 10−18 0.30
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Dynamic Highly Reliable Markovian System

Similar to static network, but each component has a failure rate and a
repair rate. Evolution is modeled by a continuous-time Markov chain.

State space partitioned into up states and down states.

Interesting reliability measures can be computed if we know the probability
µ0 that a chain starting in “all up” state reaches a down state before
returning to all up state.

Goal: estimate this (very small) µ0 by IS with zero-variance approx.

ZVA method based on paths (+ heuristic adjustments) proposed by
L’Ecuyer and Tuffin (2010) for this problem.
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Zero-Variance via control variates (CV)

Same DTMC model. Still want to estimate µ0 = µ(y0) = E[X ] where
X =

∑τ
j=1 c(Yj−1,Yj). We can write

µ(y0) = X −Mτ

where

Mτ =
τ∑

j=1

[c(Yj−1,Yj) + µ(Yj)− µ(Yj−1)]

=
τ∑

j=1

[c(Yj−1,Yj) + µ(Yj)− E[c(Yj−1,Yj) + µ(Yj) | Yj−1]] .

So if we could compute and subtract Mτ (as a CV) we would have
zero-variance. But of course, µ is unknown.
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Approximate zero variance via control variates

Replace µ in Mτ by an approximation v such that v(y) = 0 for y ∈ ∆:

Mτ =
τ∑

j=1

[c(Yj−1,Yj) + v(Yj)− E[c(Yj−1,Yj) + v(Yj) | Yj−1]] ,

and define the CV estimator Xcv = X −Mτ .

We have E[Mτ ] = 0, and thus E[Xcv] = E[X ] (unbiased) regardless of v .

Variance can be reduced significantly if v is a good approximation of µ.

However, this is not the right tool for rare-event simulation, because it
does not make the rare events more frequent.

Extensions to regenerative simulation (Kim & Henderson 07), and to
infinite-horizon models with discounting and stochastic differential
equations (Henderson & Glynn 02).
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Multilevel Splitting
Markov chain {Yj , j ≥ 0}. ∆ = A ∪ B ⊂ Y, where A ∩ B = ∅.

µ(y) = P[hit B before A | Y0 = y ], for y ∈ Y.
Want to estimate µ0 = µ(y0) for some fixed initial state y0.

Select an importance function h : X → R such that
A = {x ∈ X : h(x) ≤ 0} and B = {x ∈ X : h(x) ≥ `} for some ` > 0.

Partition [0, `) in m intervals with boundaries 0 = `0 < `1 < · · · < `m = `.

For stage k = 1, . . . ,m: Clone (split) the Rk−1 chains that have reached
`k−1 to get Nk−1 ≥ Rk−1 chains and simulate them independently until
their h(Xj) reaches `k or 0.

Estimate µ0 by
∏m

k=1 Rk/Nk−1. Unbiased.

Several variants: fixed splitting vs fixed effort, etc.

I Choice of h is the most important (and difficult) issue.

I Not really a “zero-variance approximation” scheme by itself.

I Does not provide BRE or VRE.
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Generalized splitting (GS) (Botev and Kroese 2010)

Random vector Y with known distribution, with density f . Suppose we
want to estimate µ = P[Y ∈ B] (special case).
Zero-variance IS: sample Y from P[Y ∈ · | Y ∈ B] (density fm).

At each level k , we construct a Markov chain {Yk,j , j ≥ 0} with transition
density κk−1(· | ·), and whose stationary density is the density fk−1 of Y
conditional on h(Y) > `k−1. GS algorithm:

Generate a Y from its unconditional density f .
if h(Y) > `1 then X1 ← {Y} else return Xτ = ∅ and M = 0.
for k = 2 to m do

Xk ← ∅ // list of states that have reached the level `k
for all Yk,0 ∈ Xk−1 do

for j = 1 to s do
sample Yk,j from the density κk−1(· | Yk,j−1)
if h(Yk,j) > `k then add Yk,j to Xk

return the list Xm and its cardinality M = |Xm|.
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Some properties of GS

There are sm−1 possible copies of the chain that can reach `m.
For each, if it reaches `m, the conditional density of its last state is fm.

Then, Xm contains a random number M of states having density fm.
But those states and their number M and not independent.
Picking one of them at random does not give a state with density fm.

However, if we run GS n times independently, and pick a state at random
from the union X ∗n of the n realizations of Xm, the distribution of this
state converges to that with density fm when n→∞.

Thus, the empirical distribution of the states X ∗n could be taken as an
approximation of the conditional distribution given B.

MCIS: use a one-step look-ahead density. For each state Y ∈ X ∗n , consider
the conditional density κm(· | Y), and take a mixture of those densities,
with equal weights, as an approximate zero-variance IS density.
Talk of Z. Botev later.
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However, if we run GS n times independently, and pick a state at random
from the union X ∗n of the n realizations of Xm, the distribution of this
state converges to that with density fm when n→∞.

Thus, the empirical distribution of the states X ∗n could be taken as an
approximation of the conditional distribution given B.

MCIS: use a one-step look-ahead density. For each state Y ∈ X ∗n , consider
the conditional density κm(· | Y), and take a mixture of those densities,
with equal weights, as an approximate zero-variance IS density.
Talk of Z. Botev later.
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Example: static network with auxiliary variables
Suppose each link j is initially failed and gets repaired at time
Yj ∼ Expon(λj) where λj = − ln(qj).
Then P[Yj ≤ 1] = qj . State: Y = (Y1, . . . ,Yd).
Importance function: h(Y) = network repair time.

Example: If Y3 < Y2 < Y10 < Y4 < Y7 < Y9 < Y13 < Y8 < · · · :

1

2

3
Y2

Y3

4
Y4

5

Y8

6

Y10

7
Y7

8
Y9

9

Y13
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We can define κk−1 for GS via Gibbs sampling:

Require: Y for which h(Y) > `k−1 and a permutation π of {1, . . . , d}
for j = 1 to d do

i ← π(k)
if S(Y1, . . . ,Yi−1, 0,Yi+1, . . . ,Yd) < `k−1 then

// adding link i would connect K
resample Yi from its density truncated to (`k−1,∞)

else
resample Yi from its original density

return Y as the resampled vector.

Appropriate levels `k can be estimated in a pilot phase.

Here we take s = 2.
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GS for the dodecahedron: n = 106, K = {1, 20}
qj = ε 10−1 10−2 10−3 10−4 10−5 10−6

m 9 19 29 39 49 59
W̄n 0.002877 2.054e-6 2.022e-9 2.01e-12 1.987e-15 1.969e-18
RE[W̄n] 0.0040 0.0062 0.0077 0.0089 0.0099 0.0112
T (sec) 93 167 224 278 334 376

GS for the three dodecahedrons in parallel: n = 106, K = {1, 20}
qj = ε 10−1 10−2 10−3 10−4 10−5 10−6

m 26 57 87 117 147 176
W̄n 2.377e-8 8.874e-18 8.182e-27 8.088e-36 8.237e-45 7.931e-54
RE[W̄n] 0.0071 0.0109 0.0137 0.0158 0.0185 0.0208
T (sec) 1202 2015 2362 2820 3041 3287

Lomonosov et al. conditional expectation method gives BRE.
GS does not, but works better in practice for large networks.
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A lattice graph

GS for a 50× 50 lattice graph, with 2500 nodes, 4900 edges, n = 104.

qj = ε 10−2 10−3 10−4 10−5 10−6

m 13 19 26 33 39
W̄n 2.148e-4 2.085e-6 2.179e-8 2.156e-10 1.932e-12
RE[W̄n] 0.0466 0.0604 0.0678 0.0785 0.0909
T (sec) 19818 19283 18413 17967 17851
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Dodecahedron: distribution of states at last level

The states Y ∈ Xm (at the last level) have density fm, which is the
zero-variance IS density for Y.

Even though their number is random and they are not independent, for
large n their empirical distribution is close to this conditional distribution.

For the dodecahedron network with qj = 10−6, under fm, we find that the
mean repair time Yj is near 0.57 for links 1, 2, 3, 28, 29, 30, and is near
0.0724 (unchanged) for other links.
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Out of the first 4000 runs, 2092 states reach the last level.
Scatter plot of R2 = min(Y28,Y29,Y30) vs R1 = min(Y1,Y2,Y3):
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For the dodecahedron network, for ε ranging from 10−1 to 10−12, MCIS
with n = 100 and r = 1000 replications gave a RE of less than 1%.
Smaller variance than GS by a factor of roughly 1000.

Dependent links.

The vector Y can have a multivariate normal or multivariate Student
distribution, for example.

In that setting, to resample Y at each step, we use hit-and-run instead of
Gibbs sampling.
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Conclusion

I Both IS and CV can achieve zero-variance in theory.

I Zero-variance can only be approximated, usually via a good
approximation of the value function µ. Can provide large
(unbounded) efficiency improvements in practice.

I Can approximate µ in a parametric class of functions
V = {v(·; θ) : Y → R, θ ∈ Θ}, where Θ ⊆ Rd , and θ = (θ1, . . . , θd)
is a vector of parameters that we try to optimize so that v = v(·; θ) is
close to µ in some sense. Can use a linear combination of a fixed set
of basis functions. Difficulty: choice of those basis functions.

I Important hurdle for IS: approximation must be constructed to allow
efficient random variate generation. Sampling under IS must remain
simple!

I Splitting methods are also quite useful for rare events, although the
required work increases and is unbounded when rarity parameter
ε→ 0.
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