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Why mixtures of hyperspheres in 4
dimensions?

Hard sphere interactions govern most fluid and
solid systems.

Mathematically, the number of lattices increases
as the dimensionality increases.

Networks where each node has more than three
connections are modeled by multidimensional
representations.

Networks that have different sized, non-
interacting objects in them can be modeled as
mixtures.



The Metropolis Monte Carlo Method applied to hard
hypersphere systems

Must sample the Boltzmann distribution function

exp[— > ¢(ri;) /kpT]
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f(R) =

R is the d-dimensional vector of coordinates of the centers of
mass of the M hyperspheres and r; = (z;1,Zi0, - ,Ziq), ¢ =
1,--- M

ky is Boltzmann's constant and T is the absolute temperature of
the system.

The pair potential, ¢(r;;) represents the interaction between two
hyperspheres.



The sampling algorithm generates random walks

Propose a move from the current position of a hypersphere,
X, to a new position, X’ chosen from a probability distribution
function, H(X’ | X).

The new position is accepted or rejected based on the probability
p(X' | X).

A recursive relationship develops between the distribution func-
tions, fn(R), represented by each step of the random walk.

As long as the system is ergodic and obeys detailed balance,
fm(R) — f(R) is guaranteed to be true as n, the number of
passes, becomes large.



The network where the Monte Carlo simulations are executed

e 48 8 core SGI X3481U host machines with Intel Core 7i -
Nehalem

e Each host has 2 Nvidia Fermi GPUSs.

e Hosts are connected by a 40 Gbit/sec QDR infiniband.



FERMI GPU Schematic
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Figure 5. NVIDIA's Fermi GPU architecture consists of multiple streaming
multiprocessors [(5Ms]), each consisting of 32 cores, each of which can execute one floating-
point or integer instruction per clock. The SMs are supported by a second-level cache, host
interface, GigaThread scheduler, and multiple DRAM interfaces. (Source: NVIDIA)
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Virtual Topology

3D VIRTUAL TOPOLOGY WITH PERIODIC BOUNDARIES




Amount of data that needs to be
transferred
in 4D vs 3D




AMOUNT OF TRANSFERRED DATA FOR 4D
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Data must be communicated to the GPUs as
well as the CPUS on the network
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Collision Test
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Prefix Sum (stream compaction)
implementation with CUDA

GPU block size limitation
Example requires array
fragmentation

Stream Compaction
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Copy ghost cells data from GPU to CPU

_ GHOST BOUNDARIES

MemCopy (on host)

[

MPI_ISend



MemCopy (on E

Copy ghost cells data form CPU to GPU
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4D space visualization (parallel mirrors)

Visualization of one side in 4D hypercube

4D cube w4

4D cube w3

4D cube w2

/
4D cube w1
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Initialization

| DATA INITIALIZATION

| 4D hypercube 4xdxdxd | /

/ I

On CPU initialization O{n*4)

forx -=n
fory -=n
forz =n
forw ->n
set_point{x, y, Z, w)

hlock {4
block {1x4)

initialized (w1)| [initialized{w2)

next to “?f .
initialize /|nitialized{w3)

not
initialize d{w4

In simple case On fermi max dimension of the block can not exccede 32x32. If this condition is satisfied 4D cube

cuold be initialized in N steps as opposed to N*4 on CPU.

On GPU initialization O{n)

flor blocks idx 0 -= n in parallel do
forw -=n

blockblock idx].set_points(x{0-=n}, y{0-=n}, z{blocks_z), w);




Distributing the Mersenne Twister
pseudorandom number generator over the
network.

Lead random number

nerator figuration
Step 1 aters from the file

Step 2

RNG config parameters
RNG config parameters
RNG config parameters

Step 3

Mersenne Twister generates an
9 = Global Memory
array of random numbers
Mersenne Twister generates an
9 = Global Memory
ay of random numbers

Global Memory

Mersenne Twister generates an

Global Memory
of random numbers

RNG config parameters -

RNG config parameters
RNG config parameters -

Mersenne Twister generates an Global Memory
array of random numbers

Mersenne Twister generates an
9 = Global Memory
array of random numbers




Results from running multiple
threads on a single CPU/GPU pair
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Simulation distributed over a network of 8
cpu/gpu pairs. Each subdomain is 2X2X2.



Conclusions

" Significant speedups in runtime were
achieved by converting the code to
run on the GPU

" Dividing configuration space into
subdomains allows much larger
systems, up to 104,976 hyperspheres,
to be studied
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Future Improvements

se streams to copy data between
ne CPU and GPU

= U
a

se an optimized stream compaction
lgorithm:

= http://gpgpu.org/developer/cudpp

® Using the warp vote functions would
Increase the rate of hypersphere

0,

verlap detection.
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