Parallelization and Optimization
of 4D Binary Mixture Monte Carlo

Simulations using Open MPI and
CUDA

Sergey Artemchuk and Paula A. Whitlock
Brooklyn College/CUNY

Many thanks to the High Performance
Computing Center, College of Staten
Island/CUNY for a generous grant of

computer time

and

Marvin Bishop, Manhattan College

Why mixtures of hyperspheres in 4
dimensions?

Hard sphere interactions govern most fluid and
solid systems.

Mathematically, the number of lattices increases
as the dimensionality increases.

Networks where each node has more than three
connections are modeled by multidimensional
representations.

Networks that have different sized, non-
interacting objects in them can be modeled as
mixtures.

The Metropolis Monte Carlo Method applied to hard
hypersphere systems

Must sample the Boltzmann distribution function

exp[— > ¢(ri;) /kpT]

[eapl—Y. 6(ray) /Ry T1dR (1)

f(R) =

R is the d-dimensional vector of coordinates of the centers of
mass of the M hyperspheres and r; = (z;1,Zi0, - ,Ziq), ¢ =
1,--- M

ky is Boltzmann's constant and T is the absolute temperature of
the system.

The pair potential, ¢(r;;) represents the interaction between two
hyperspheres.

The sampling algorithm generates random walks

Propose a move from the current position of a hypersphere,
X, to a new position, X’ chosen from a probability distribution
function, H(X’ | X).

The new position is accepted or rejected based on the probability
p(X' | X).

A recursive relationship develops between the distribution func-
tions, fn(R), represented by each step of the random walk.

As long as the system is ergodic and obeys detailed balance,
fm(R) — f(R) is guaranteed to be true as n, the number of
passes, becomes large.

The network where the Monte Carlo simulations are executed

e 48 8 core SGI X3481U host machines with Intel Core 7i -
Nehalem

e Each host has 2 Nvidia Fermi GPUSs.

e Hosts are connected by a 40 Gbit/sec QDR infiniband.

FERMI GPU Schematic

Host Interfack

~I\114

=Y\ N

(TR 1T
s
\JD

[

[

|

[

| B
ISIVIS SVIY - |

[

B

|

[

e |

Figure 5. NVIDIA's Fermi GPU architecture consists of multiple streaming
multiprocessors [(5Ms]), each consisting of 32 cores, each of which can execute one floating-
point or integer instruction per clock. The SMs are supported by a second-level cache, host
interface, GigaThread scheduler, and multiple DRAM interfaces. (Source: NVIDIA)

08/24/11 4

Virtual Topology

3D VIRTUAL TOPOLOGY WITH PERIODIC BOUNDARIES

Amount of data that needs to be
transferred
in 4D vs 3D

AMOUNT OF TRANSFERRED DATA FOR 4D

i

-

Data must be communicated to the GPUs as
well as the CPUS on the network

1) kernel moves ‘

GRID

block T{fblock 2{block 3

block
N
TR
[INNINNEN

PREPARE GHOST BOUNDARIES

DATA size = initial system dencity
DATA size + RESERVED SPACE size = max system dencity

TOP
| BOTTOM
BACK

FROT 0

0111122222222 3333 3 S— o, L

111122222222 3333 3
0111122222222 3333 3

334 ...

|W+Hir PV SRR b

END

MAX size * 6

T T TR il
U [1) M
I X I DATA RESERVED SPACE LEFT RIGHT TOP BOTTOM FROT BACK
I Y I DATA RESERVED SPACE LEFT RIGHT TOP BOTTOM FROT BACK
I z I DATA RESERVED SPACE LEFT RIGHT TOP BOTTOM FROT BACK I
I W I DATA RESERVED SPACE LEFT RIGHT TOP BOTTOM FROT BACK
e T a | . y
| | | 1[2) kernel prefixsum‘ £-
I a GRID il
: : : : Dlock i
! ! ! tblock 1ifblock 2{[block 3 s
I e w1 1 a1 k block
: ; : : block T{{block 2iblock 3
LEFT_|[1010101010010101010 101010 1001 | S + Ik bl | N
RIGHT ... 101010 1001 | |— GRID
TOP |[1010101010010101010. 101010 1001 | — 3) kernel reduction
BOTTOM |[101010101001010101. . 101010 1001 | —
FROT 1010101010010101010 . 101010 1|]|]1 1) Perform random moves in parallel and check if particle’s new
position is within a houndary. For spheres that are on the ghost
BACK 1010101010010101010.......... ... 101010 1001 boundary write 1 in corresponding buffer with correspongind
index
END
| LEFT "0 1111 2222222233333 33 4 5 I 2) Run prefix sum on data received from kernel 1
i |0 R e e . 8 I 3} Using results from prefix sum & kernel 1 evaluation Copy
01111 22222222 3333 3 331 3

paricles that are on the boundary into corresponding indexes of
LEFT,RIGHT,TOP.BOTTOM,FRONT,BACK buffers

4) Host will copy received data & send to corresponding CPUs

Collision Test

Ghost Cells Data
RAM LEFT RIGHT TOP _|'BOTTOM | FROT BACK CHETEATE
[Y | _LEFT RIGHT TOP BOTTOM [FROT BACK
1) kernel collision test 7 LEFT_ | RIGHT | TOP | BOTTOM | FROT | BACK If particle is within the local domain and
L - 5
SRID | W [LEFT RIGHT ToP BOTTOM ROT BACK free of callision Wrﬂe I:Iat? tul back buffer and
GPU 1 to corresponding location in Ocupancy
block array.
lock igilock Gflock 3 N If particle is withing local domain data
iiiiiiii: iiiiiiii: iiiiii“: iiiiiiii: block of the array and collided just write 1 to
: : : : corresponding location in Ocupancy array
| X | LOCAL DOMAIN DATA RESERVED SPACE (Restare previous location)
If particle is withing the local domain data
| Y | LOCAL DOMAIN DATA RESERVED SPACE CRUURENT T
| 7 | LOCAL DOMAIN DATA RESERVED SPACE I BUFFER corresponding location in Dcupancy array.
| W | LOCAL DOMAIN DATA RESERVED SPACE l
L I T O
| X | LOCAL DOMAIN DATA RESERVED SPACE
Y LOCAL DOMAIN DATA RESERVED SPACE BACK
BUFFER]
Fi LOCAL DOMAIN DATA RESERVED SPACE
| W | LOCAL DOMAIN DATA RESERVED SPACE l
| | | | -
; ; ; ; 2) kernel prefixsum ‘
NI | GRID
]]]]
i i i i I)Ic?';ck block 2 I)Ioack I)I?qck
nr*l il * .*I n* T TTITTTTTT JTITITITT [ENNNINNA
I Ocupancy ||101 0101111 1110 101 10 10 101 0101010101101 I'IO'IO'IO'I{!'IO'I 10101010 1 101011 01 10 1... 010101
]]]]
O Rt
I New Locations I |D 1222223334567 7777888 101 101 I 200 200 201 202 203 1000 1001 1001
3) kernel reduction ‘
Caopy elements from Back buffer into Current buffer GRID
if coresponding Ocupancy element is 1 using index block "
fram Mew Location array. (Stream reduction) block Tifblock 2ifblock 3 N
| X | LOCAL DOMAIN DATA RESERVED SFACE F|na||3.' appw randaom values to Change
positions to elements in current buffer
LOCAL DOMAIN DATA RESERVED SPACE CEHEEEET nd cave them in back buffer, Swap
LOCAL DOMAIN DATA RESERVED SPACE b”ﬁifs- Prepare ghost cell data for
exchange.
| W | LOCAL DOMAIN DATA I RESERVED SPACE I

Prefix Sum (stream compaction)
implementation with CUDA

GPU block size limitation
Example requires array
fragmentation

Stream Compaction

[alblcld]e[flglhfk[T|m|n]

wefix sum

[1]1]1]2]2]3f3f3[3[4]4]5]

[1f1J2[3Jof1]1[afafa]afafofofo 1]
[1]1]2[3]3]afafs5[ef6|7][7[7[7[7]8)]

Copy ghost cells data from GPU to CPU

_ GHOST BOUNDARIES

MemCopy (on host)

[

MPI_ISend

MemCopy (on E

Copy ghost cells data form CPU to GPU

_ GHOST BOUNDARIES

W | LEFT IRIEHT | ToP |BDTTDM|FRDNT| BACK

]

MPI_Receive

4D space visualization (parallel mirrors)

Visualization of one side in 4D hypercube

4D cube w4

4D cube w3

4D cube w2

/
4D cube w1
v

Initialization

| DATA INITIALIZATION

| 4D hypercube 4xdxdxd | /

/ I

On CPU initialization O{n*4)

forx -=n
fory -=n
forz =n
forw ->n
set_point{x, y, Z, w)

hlock {4
block {1x4)

initialized (w1)| [initialized{w2)

next to “?f .
initialize /|nitialized{w3)

not
initialize d{w4

In simple case On fermi max dimension of the block can not exccede 32x32. If this condition is satisfied 4D cube

cuold be initialized in N steps as opposed to N*4 on CPU.

On GPU initialization O{n)

flor blocks idx 0 -= n in parallel do
forw -=n

blockblock idx].set_points(x{0-=n}, y{0-=n}, z{blocks_z), w);

Distributing the Mersenne Twister
pseudorandom number generator over the
network.

Lead random number

nerator figuration
Step 1 aters from the file

Step 2

RNG config parameters
RNG config parameters
RNG config parameters

Step 3

Mersenne Twister generates an
9 = Global Memory
array of random numbers
Mersenne Twister generates an
9 = Global Memory
ay of random numbers

Global Memory

Mersenne Twister generates an

Global Memory
of random numbers

RNG config parameters -

RNG config parameters
RNG config parameters -

Mersenne Twister generates an Global Memory
array of random numbers

Mersenne Twister generates an
9 = Global Memory
array of random numbers

Results from running multiple
threads on a single CPU/GPU pair

Number ofhyperspheres 2% 52 lood
I I N R R
I N I R R

I R B - I T BT T
o1 1% 57 1874
o 1@ am na
e sp - 28 8ol

Simulation distributed over a network of 8
cpu/gpu pairs. Each subdomain is 2X2X2.

Conclusions

" Significant speedups in runtime were
achieved by converting the code to
run on the GPU

" Dividing configuration space into
subdomains allows much larger
systems, up to 104,976 hyperspheres,
to be studied

=L
L

Future Improvements

se streams to copy data between
ne CPU and GPU

= U
a

se an optimized stream compaction
lgorithm:

= http://gpgpu.org/developer/cudpp

® Using the warp vote functions would
Increase the rate of hypersphere

0,

verlap detection.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

