Introduction	Group Object Tracking Within the SMC Framework	Performance Evaluation	Summary	Future Work
000		000		
	00			

Group Object Tracking with Sequential Monte Carlo Methods Based on a Parameterised Likelihood Function

Nikolay Petrov¹

Lyudmila Mihaylova¹ Donka Angelova² Amadou Gning¹

¹Lancaster University, United Kingdom ²Bulgarian Academy of Science, Bulgaria

Eighth IMACS Seminar on Monte Carlo Methods, Borovets, Bulgaria, 2011

Introduction 000

Outline

Introduction

Motivation and Background Goals and Contributions

Group Object Tracking Within the SMC Framework

SMC Framework Likelihood Function Based on Surface Parametrisation Parameterisation of the Visible Surface

Performance Evaluation

Scenario Simulation Results

Summary

Future Work

Introduction

Group Object Tracking Within the SMC Framework

Performance Evaluation

Summary Fi

Future Work

Motivation

Background (1)

- W. Koch and M. Feldmann. Cluster tracking under kinematical constraints using random matrices. *Robotics* and Autonomous Systems, 57(3):296 – 309, 2009.
- M. Baum, M. Feldmann, D. Fränken, U. D. Hanebeck, and W. Koch. Extended Object and Group Tracking: A Comparison of Random Matrices and Random Hypersurface Models. *In LNCS, 2010.*
- K. Gilholm and D. Salmond. Spatial Distribution Model for Tracking Extended Objects. IEE Proc.-Radar, Sonar Navig., 152(5):364–371, 2005.

Background (2)

- M. Baum and U. D. Hanebeck. Extended Object Tracking based on Combined Set-Theoretic and Stochastic Fusion. In Proc. of the International Conf. on Information Fusion, 2009.
- D. Angelova and L. Mihaylova. Extended Object Tracking Using Monte Carlo Methods. IEEE Transactions on Signal Processing, 56(2):825-832, 2008.
- A. Gning, L. Mihaylova, S. Maskell, S.K. Pang, and S. Godsill. Group Object Structure and State Estimation With Evolving Networks and Monte Carlo Methods. IEEE Trans. on Signal Processing, 59(4):1383 –1396, 2011.
- PHD Filters Mahler, Vo, Ristic, Willett, Clark, Koch, Gustafsson, etc.

Future Wor

Goals and Contributions

Goals

Set a framework for group object tracking based on:

- nonlinear system dynamics model,
- nonlinear measurement,
- arbitrary noise distribution.

Contributions

Introducing a sampling step for regions of interest in the group regions using the Sequential Monte Carlo approach.

Derivation of the likelihood function.

Introduction 000 0 Group Object Tracking Within the SMC Framework

SMC Framework

$$m{X}_k^g = \left(m{x}_{1,k}',...,m{x}_{t,k}',...,m{x}_{n_T^g,k}',m{G}_k
ight)'$$
, where

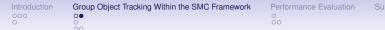
- $\boldsymbol{x}_{t,k}$ the state vector of the t^{th} target, $t = 1, ..., n_T^g$, at time k
- **G**_k is a vector characterising the group

The system dynamics is given by: $\boldsymbol{X}_{k}^{g} = f(\boldsymbol{X}_{k-1}^{g}, \eta_{k-1})$, where η_{k} is the system noise.

The sensors measurements are described as:

$$\boldsymbol{Z}_k = h(\boldsymbol{X}_k^g, \boldsymbol{w}_k),$$

where \boldsymbol{w}_k is the measurement noise and $\boldsymbol{Z}_k = \{\boldsymbol{z}_{m,k}\}_{m=1}^{M_k}$ is the set of measurements from the objects received at time step k. Estimate: $p(\boldsymbol{X}_k^g | \boldsymbol{Z}_{1:k})$



SMC Framework

The posterior state PDF is estimated given the data $Z_{1:k} = Z_1, ..., Z_k$, in two steps:

- prediction:

$$p(\mathbf{X}_{k}^{g}|\mathbf{Z}_{1:k-1}) = \int p(\mathbf{X}_{k}^{g}|\mathbf{X}_{k-1}^{g}) p(\mathbf{X}_{k-1}^{g}|\mathbf{Z}_{1:k-1}) d\mathbf{X}_{k-1}^{g},$$

- update: $p(\pmb{X}_k^g | \pmb{Z}_{1:k}) = rac{p(\pmb{Z}_k | \pmb{X}_k^g) p(\pmb{X}_k^g | \pmb{Z}_{1:k-1})}{p(\pmb{Z}_k | \pmb{Z}_{1:k-1})},$

where $p(\mathbf{Z}_k | \mathbf{Z}_{1:k-1})$ is the normalising constant. The number of measurements $M_{t,k} \sim Poisson(\lambda_t)$

$$p(\boldsymbol{Z}_k|\boldsymbol{x}_{t,k}) = \prod_{m=1}^{M_{t,k}} p(\boldsymbol{z}_{m,k}|\boldsymbol{x}_k).$$

They are independent!

roduction Group Object Tracking Within the SMC Framework Performance Evaluation Summary Future Wor

Likelihood Function Based on Surface Parametrisation

Using the Chapman-Kolmogorov equation we introduce the measurement sources $V_k \in \mathcal{V}_k(X_k^g, \mathbf{x}_{s,k})$,:

$$p(\boldsymbol{z}_{m,k}|\boldsymbol{X}_k^g) = \int\limits_{\mathbb{R}^{n_v}} p(\boldsymbol{z}_{m,k}|\boldsymbol{V}_k) p(\boldsymbol{V}_k|\boldsymbol{X}_k^g) d\boldsymbol{V}_k,$$

where

- *p*(*z*_{*m,k*}|*V*_{*k*}) is the probability of receiving the measurement *z*_{*m,k*} if the actual source of it is *V*_{*k*};
- *p*(*V_k*|*X^g_k*) is the probability of a point in the state space to be a source of measurement given the group object *X^g_k*.

Parameterisation of the Visible Surface

$$p(\boldsymbol{z}_{m,k}|\boldsymbol{X}_{k|k-1}^{g(i)}) = \int_{\mathbb{R}^{n_x}} p(\boldsymbol{z}_{m,k}|\boldsymbol{V}_k) p(\boldsymbol{V}_k|\boldsymbol{X}_{k|k-1}^{g(i)}) d\boldsymbol{V}_k$$
$$\approx \sum_{\ell=1}^{S} p(\boldsymbol{z}_{m,k}|\boldsymbol{V}_k^{(\ell)}) p(\boldsymbol{V}_k^{(\ell)}|\boldsymbol{X}_{k|k-1}^{g(i)}).$$

For example

$$p(\boldsymbol{z}_{m,k}|\boldsymbol{V}_{k}^{(\ell)}) = \frac{1}{\sqrt{2\pi ||\boldsymbol{R}||}} e^{-\frac{(\boldsymbol{z}_{m,k}-\boldsymbol{z}_{k}^{(\ell)})\boldsymbol{R}^{-1}(\boldsymbol{z}_{m,k}-\boldsymbol{z}_{k}^{(\ell)})^{T}}{2}};$$

$$p(\boldsymbol{V}_{k}^{(\ell)}|\boldsymbol{X}_{k|k-1}^{g(i)}) = \mathcal{U}_{\mathcal{C}(\boldsymbol{x}_{c,k}^{(i)},\boldsymbol{y}_{c,k}^{(i)},\boldsymbol{r}_{k|k-1}^{(i)})} \left(\sqrt{(\boldsymbol{x}_{k}^{(\ell)}-\boldsymbol{x}_{c,k}^{(i)})^{2} + (\boldsymbol{y}_{k}^{(\ell)}-\boldsymbol{y}_{c,k}^{(i)})^{2}}\right)$$

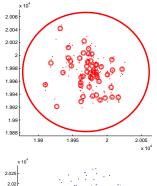
.

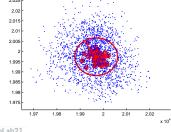
Introduction Group Object

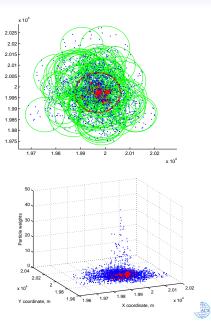
Group Object Tracking Within the SMC Framework

Performance Evaluation

Future Work







Scenario

- one group of objects
- nearly constant velocity motion model for the individual targets;
- circular shape surrounding the group;
- range and bearing measurements;
- multiple sensors observe the objects in the group
- the number of measurements is ~ Poisson(5);
- 200 time steps each repeated for 30 iterations;
- 100 group object particles;
- 20 samples per particle;

Introduction C	Group Object Tracking V	Nithin the SMC	Framework Perf
000	00		0
0	0		•0

Performance Evaluation

Summary Fu

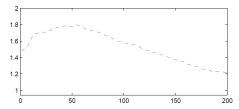
Future Work

Results (video)

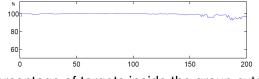
(Loading GroupExample.avi)

Results

Performance evaluation averaged over 30 runs:



Ratio between the estimated extent and the optimal extent



Percentage of targets inside the group extent

Summary

- In this paper we cope with the problem of having *multiple measurements* from a large number of objects with coordinated *group movement* by deriving an expression for the *likelihood function* based on *surface parametrisation*.
- The algorithm is presented in a general framework using *nonlinear measurements* and *nonlinear system model* as well as *noise with arbitrary distribution*.
- We show how the data *association problem* could be *facilitated* using the likelihood representation.

Future Work

- More complex target shapes (i.e. ellipse, freeform shapes)
- Better sampling in the group region
- Variable number of particle/samples, use of box particles
- Clutter scenarios
- Multiple groups and interactions between them
- Estimation of the number of targets

Introduction	Group Object Tracking Within the SMC Framework	Performance Evaluation	Summary	Future Work
000	00	0		
0	0	00		
	00			

Thank you for your attention!

