Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

A Randomized Algorithm to Approximate the Star Discrepancy Based on Threshold Accepting

Michael Gnewuch¹

Institut für Informatik Christian-Albrechts-Universität zu Kiel

August 29, 2011

Joint Work with Magnus Wahlström & Carola Winzen Max Planck Institute of Computer Science, Saarbrücken

 $^{^1 \}text{Supported}$ by the German Science Foundation (DFG) under grants GN-91/3 and GN-91/4

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Star Discrepancy: Definition

 $X \subset [0,1]^d$ n-point set, $[0,y) := [0,y_1) \times \cdots \times [0,y_d)$ "test box".

Local discrepancy: $\delta(y) = \delta(y, X) = \operatorname{vol}([0, y)) - \frac{1}{n} |X \cap [0, y)|$

Star discrepancy:

$$\operatorname{disc}^*(X) = \sup_{y \in [0,1]^d} |\delta(y,X)|$$

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Known Methods for Calculation

Elementary Method for Exact Calculation

Simple Observation: It suffices to consider $2(n+1)^d$ test boxes to calculate the discrepancy.

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Known Methods for Calculation

Elementary Method for Exact Calculation

For $X=\{x^1,\ldots,x^n\}\subset [0,1]^d$ put

$$\Gamma_j(X) := \{x_j^i \mid i = 1, \dots, n\} \cup \{1\}, \ j = 1, \dots, d,$$

$$\Gamma(X) := \Gamma_1(X) \times \dots \times \Gamma_d(X)$$

Then $\operatorname{disc}^*(X) =$

 $\max_{y\in \Gamma(X)} \max\left\{ \mathrm{vol}([0,y)) - \frac{1}{n} \big| [0,y) \cap X \big| \,, \, \frac{1}{n} \big| [0,y] \cap X \big| - \mathrm{vol}([0,y)) \right\}$

Thus $\operatorname{disc}^*(X)$ can be calculated by considering at most $2(n+1)^d$ test boxes.

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Further Methods for Calculation

Improvements of the Elementary Method:

Exact formula for the star discrepancy in dimension d = 1 by Niederreiter '72 (d = 1).

Faster methods than the elementary one by De Clerck '86 (d = 2) and Bundschuh and Zhu '93 ($d \ge 3$). Time to calculate the star discrepancy still $O(n^d)$.

Fastest algorithm to calculate the star discrepancy needs time ${\cal O}(n^{1+d/2})$ [Dobkin, Eppstein, Mitchell '96].

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Known Methods for Calculation

Observation: Exact calculation of star discrepancy is discrete optimization problem.

Bad news from Discrete Complexity Theory:

Theorem [G., Srivastav, Winzen '09]. The calculation of the star discrepancy is NP-hard.

Theorem [Giannopoulos, Knauer, Wahlström, Werner '11]. Calculation of star discrepancy is W[1]-hard with respect to parameter d.

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Methods for Approximation

Algorithms with error guarantee

Algorithms from [Thiémard '00, '01a] to approximate the star discrepancy up to some user-specified error δ.
Cost of the algorithms is ≥ Ω(dδ^{-d}) [G.'08].

Algorithms based on optimization heuristics

- Algorithm from [Thiémard'01b] formulates problem as integer linear program (ILP) and relies on cutting plane and branch-and-bound techniques.
- Algorithm of Winker & Fang '97 is a local search algorithm relying on the meta heuristic "Threshold Accepting".
- Genetic algorithm of Shah '10.

Definition Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Randomized Approach

Idea: Calculate lower bound for star discrepancy by choosing test boxes randomly within a (refined) local search algorithm

Algorithm of Winker & Fang ("Threshold Accepting")

Threshold values $T_1 > T_2 > \cdots > T_I \ge 0$

Local neighborhood structure for $y \in \Gamma(X)$

 $N_k(y) \simeq \text{subgrid of } \Gamma(X) \text{ of cardinality } (2k+1)^d \text{ with center } y,$

with Laplace measure as probability measure.

Definition Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Algorithm of Winker & Fang

For $y\in [0,1]^d$ put

$$\delta(y) := \operatorname{vol}([0,y)) - \frac{1}{n} \big| [0,y) \cap X \big|, \quad \overline{\delta}(y) := \frac{1}{n} \big| [0,y] \cap X \big| - \operatorname{vol}([0,y)),$$

and $\delta^*(y) := \max\{\delta(y), \overline{\delta}(y)\}.$

Concrete Algorithm

Choose x randomly from $\Gamma(X)$ and put $x^*:=x.$ For i=1 to I

For j = 1 to JChoose $x \in N_k(x^*)$ randomly If $\delta^*(x^*) - \delta^*(x) \le T_i$ then $x^* := x$ Return $\delta^*(x^*)$

Calculation Approximat

Improved Algorithm

Numerical Results

Improving on the W&F-Algorithm

Modified Neighborhoods:

 $C_k(x) := \operatorname{conv}(N_k(x))$, endowed with probability measure

$$u_d := \bigotimes_{j=1}^d dy_j^{d-1} \,\lambda(\mathrm{d} y_j)\,,$$

 λ the Lebesgue measure on $\mathbb R.$

After choosing $y \in C_k(x)$, round each y_j up (down) to the next number in $\Gamma_j(X)$ to get $y^+ \in \Gamma(X)$ ($y^- \in \Gamma(X)$).

We want to maximize

 $\hat{\delta}(y) := \max\{\delta(y^+), \overline{\delta}(y^-)\}$

Calculation Approximat

Threshold Accepting

Improved Algorithm

Numerical Results

Modified Measure is Superior in High Dimension GLP-sets: $0 < h_1 < h_2 < \dots < h_d < n$, $\exists j : \gcd(h_j, n) = 1$ $T := \{t^1, \dots, t^n\}, t^i_j := \left\{\frac{2ih_j - 1}{2n}\right\}, i = 1, \dots, n, j = 1, \dots, d$

Mean values of coordinates of optimal test boxes for randomly chosen GLP-sets:

d = 4: 0.799743d = 5: 0.840825d = 6: 0.873523

Expectation of coordinates of randomly chosen y with respect to μ_d is d/(d+1):

d = 4: 0.8 $d = 5: 0.8\overline{3}$ d = 6: 0.857143

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Further Improvement on the W&F-Algorithm

Procedures "snapping up" and "snapping down": Rounding y^+ and y^- up and down to critical test boxes $y^{+,sn}$ and $y^{-,sn}$.

Numerical Results

Some Numerical Results

			$disc^*(\cdot)$	TA improved		Winker & Fang	
Name	d	n	found	Hits	Best-of-10	Hits	Best-of-10
Faure	7	343	0.1298	100	0.1298	0	0.1143
Faure	8	121	0.1702	100	0.1702	0	0.1573
Faure	9	121	0.2121	100	0.2121	0	0.1959
Faure	10	121	0.2574	100	0.2574	0	0.2356
Faure	11	121	0.3010	100	0.3010	0	0.2632
Faure	12	169	0.2718	100	0.2718	0	0.1708
Sobol'	50	2000	0.1030^{*}	0	0.1024	0	0.0005
Sobol'	50	4000	0.0677^{*}	0	0.0665	0	0.00025
Faure	50	2000	0.3112^{*}	100	0.3112	0	0.0123
Faure	50	4000	0.1979^{*}	0	0.1978	0	0.0059
GLP	50	2000	0.1465^{*}	0	0.1450	0	0.0005
GLP	50	4000	0.1205^{*}	0	0.1201	0	0.0003

Table: New instance comparisons. Discrepancy values marked with a star are lower bounds only (i.e., largest discrepancy found over all executions of algorithm variants). All data is computed using 100 trials of 100,000 iterations; reported is the average value of best-of-10 calls, and number of times (out of 100) that the optimum (or a value matching the largest known value) was found.

Definition Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Further Numerical Results

				TA	improved	Shah	
Class	d	n	$\operatorname{disc}^*(\cdot)$	Hits	Best-of-10	Hits	Best Found
Halton	5	50	0.1886	100	0.1886	81	0.1886
Halton	7	50	0.2678	100	0.2678	22	0.2678
Halton	7	100	0.1714	100	0.1714	13	0.1714
Halton	7	1000	0.0430	81	0.0430	$8^{(1)}$	$0.0430^{(1)}$
Faure	10	50	0.4680	100	0.4680	97	0.4680
Faure	10	100	0.2483	100	0.2483	28	0.2483
Faure	10	500	0.0717^{*}	100	0.0717	$0^{(1)}$	$0.0689^{(1)}$

Table: Comparison against point sets used by Shah. Reporting average value of best-of-10 calls, and number of times (out of 100) that the optimum was found; for Shah, reporting highest value found, and number of times (out of 100) this value was produced. The discrepancy value marked with a star is lower bound only (i.e., largest value found by any algorithm). Values marked (1) are recomputed using the same settings as in [Sha'10].