Value Simulation of the Interacting Pair Number for Solution of the Monodisperse Coagulation Equation

Mariya Korotchenko

8th IMACS Seminar on Monte Carlo Methods 2011 August 29 – September 2, 2011 Borovets, Bulgaria

Outline

- Problem Statement and General Information
- Analytic Solution of the Test Problem with Linear Coefficients
- Explanation of the Model
- Value Simulation of the Interacting Pair Number for Monomers
- Value Simulation of the Interacting Pair Number for the Sum of Monomers and Dimers
- Results of Numerical Experiments
- References

• Let us consider an initial value problem for the Smoluchowski equation:

$$\frac{\partial n_l(t)}{\partial t} = \frac{1}{2} \sum_{i+j=l} k_{ij} n_i(t) n_j(t) - \sum_{i \ge j} k_{il} n_i(t) n_l(t), \quad n_l(0) = n_l^{(0)}$$

 $n_l(t)$ - average number of *l*-sized particles in the system at the time instant *t*;

k(i, j)- coagulation coefficients.

• Integral equation in transformed phase space $Z = (X, \pi), X = (N, l_1, \dots, l_N)$ [2]

$$F(Z,t) = \int_{0}^{t} \int_{\mathbb{Z}} F(Z',t') K(Z',t' \to Z,t) \, \mathrm{d}Z' \, \mathrm{d}t' + F_0(Z) \delta(t)$$

where $dZ = dX d\mu_0(\pi)$

• The kernel *K* of the latter integral equation has **multiplicative structure**

$$K(Z', t' \to Z, t) = k(t' \to t | X') \frac{a(\pi)}{A(X')} K_1(X' \to X | \pi)$$

where
$$k(t' \to t | X') = A(X') \exp\{-(t - t')A(X')\}$$

- $K_1(X' \to X|\pi)$ defines transformation of the system after collision of the pair $\pi = (i, j)'$.
- Collision of the particles i and j results in their replacement by a particle of the size $l_i + l_j$, and the number of particles reduces by one.

$$N = N' - 1; X = (N, l_1, \cdots, l_N), \quad N \leqslant N_0, \quad l_i \in \overline{1, N_0}$$

• We will estimate the **functionals** of the particle flux $\Phi(X, t)$:

$$J_H(t) = \int H(X)\Phi(X,t)dX = \int_0^t \int_Z \tilde{H}(X,t-t')F(Z,t')dZdt'$$

 $H(X)\in L_{\infty},\quad \widetilde{H}(X,t)=H(X)\exp\{-tA(X)\}$

• Let us denote a Markov chain (Z_n, t_n) , $n \in 0, 1, ... \nu$ with normalized density of the initial state

 $P_0(Z,t) = P_0(Z)\delta(t)$

and normalized transition density

 $P(Z', t' \to Z, t) = p(t' \to t | X') P_1(\pi | X') P_2(X' \to X | \pi)$

• **Random weights** are defined by the formulas:

 $Q_0 = F_0(Z)/P_0(Z), \qquad Q_n = Q_{n-1}Q(Z_{n-1}, t_{n-1}; Z_n, t_n)$

 $Q(Z_{n-1}, t_{n-1}; Z_n, t_n) = K(Z', t' \to Z, t) / P(Z', t' \to Z, t)$

• A weight collision estimator will be used to estimate the functionals:

$$\xi = \sum_{i=0}^{r} Q_n \tilde{H}(X_n, T - t_n) \quad \nu = \max\{n : t_n < T, \ n = 0, 1, \dots, N_0 - 1\}$$

• Further we will estimate two functionals:

 $J_{H}^{(1)}(T) \approx n_{1}(T)$ - monomer concentration in the system; $J_{H}^{(12)}(T) = J_{H}^{(1)}(T) + J_{H}^{(2)}(T)$ - monomer and dimer concentration in the system at the time instant T.

Analytic Solution of the Test Problem with Linear Coefficients

• Test problem for Smoluchowski equation

 $K_{ij} \equiv a + b(i+j)/2$ - coagulation coefficients

 $n_l(t=0) = \delta_{l,1}, \ l \ge 1$ - initial distribution

• For this problems parameters of simulation can be obtained analytically:

$$A(X) = \frac{(N-1)}{2} \left[a \frac{N}{N_0} + b \right]$$

$$a(\pi) \equiv a(N, l_i, l_j) = \frac{2a + b(l_i + l_j)}{2N_0}$$

Analytic Solution of the Test Problem with Linear Coefficients

• Analytical solution [6] for the problem considered:

 $n_1(\mu(t)) = \mu \cdot \left(\frac{a\mu + b}{a + b}\right)^{1 + b/a} - \text{monomer concentration;}$ $n_2(\mu(t)) = \mu \cdot (1 - \mu) \cdot \left(\frac{a\mu + b}{a + b}\right)^{1 + 2b/a} - \text{dimer concentration;}$

$$\mu(t) = \frac{b}{(a+b)\exp\{bt/2\} - a}$$

Explanation of the Model $A \quad R \quad B_{f-1}$

• The following type of molecules we consider as **monomers** (*in this figure is shown a model of monomer for f=3*)

- Units of A-type condense with units of B-type, but reactions between the same units are forbidden.
- We neglect reactions between units of **A**-type and **B**-type within a multimer (to avoid cyclization) and steric hindrance.

B

Explanation of the Model

- A multimer contains:
 - unreacted units of A-type 1;
 - unreacted units of B-type for a *k-meric* particle -(f-2)k+1
- As a result, the probability for the particles *i* and *j* to interact is proportional to (i + j)(f 2) + 2, and the **coagulation coefficient** has the following form:

$$K_{ij} = a + b(i+j)/2$$

• The value function $\varphi^*(X, t)$ is defined as a value of functional J_H calculated on a source function $\delta(X' - X)\delta(t' - t)$ which means that

$$\varphi^*(X,t) = \mathbf{E}\xi_{(X,t)}$$

where

$$\xi_{(X,t)} = \tilde{H}(X,T-t) + \sum_{n=1}^{\nu} Q_n \tilde{H}(X_n,T-t_n)$$

• Let us denote:

- N' total number of particles in the ensemble;
- N'_1 number of monomers in the ensemble.
- Each of all possible interacting pairs falls into one of the following non-overlapping subsets $\pi_1 \cup \pi_2 \cup \pi_0$:

 π_1 – contains 'minus-1-pairs' of the form {*monomer, multimer*} π_2 – contains 'minus-2-pairs' of the form {*monomer, monomer*} π_0 – contains 'minus-0-pairs' of the form {*multimer, multimer*}

$$\mathcal{N}_1 = N_1'(N' - N_1'); \ \mathcal{N}_2 = \frac{N_1'(N_1' - 1)}{2}; \ \mathcal{N}_0 = \frac{(N' - N_1')(N' - N_1' - 1)}{2}.$$

• Let us rewrite physical density distribution

$$\mathcal{P}_{0}(i,j) = \frac{2a + b(l_{i} + l_{j})}{aN(N-1) + bN_{0}(N-1)}$$

of the interacting pair number in the following randomized form:

$$1 \equiv \sum_{\pi} \frac{2}{N'(N'-1)} = p_1 \sum_{\pi_1} f_1(i,j) + p_2 \sum_{\pi_2} f_2(i,j) + p_0 \sum_{\pi_0} f_0(i,j)$$

 $p_{\mathfrak{m}}$ – probability to choose the subset $\pi_{\mathfrak{m}}$;

 $f_{\mathfrak{m}}(i,j)$ – probability to choose pair (i,j) from the subset $\pi_{\mathfrak{m}}$.

• The probabilities to choose a certain subset have the following form:

$$p_{2} = \frac{N_{1}'(N_{1}'-1)}{N'-1} \cdot \frac{a+b}{aN'+bN_{0}},$$

$$p_{1} = \frac{N_{1}'}{N'-1} \cdot \frac{2a(N'-N_{1}')+b(N_{0}+N'-2N_{1}')}{aN'+bN_{0}}$$

$$p_{0} = \frac{(N'-N_{1}'-1)}{N'-1} \cdot \frac{a(N'-N_{1}')+b(N_{0}-N_{1}')}{aN'+bN_{0}}$$

- <u>Simulation of particles within certain subsets</u>:
- **monomers** are uniformly chosen within π_1 and π_2 ;
- **multimers** are chosen within π_1 and π_0 according to physical probabilities, which have the following form:
 - monomer-multimer:

$$\mathcal{P}_j = \frac{2a + b(1+l_j)}{2a(N' - N_1') + b(N_0 + N' - 2N_1')}.$$

• multimer-multimer:

$$\mathcal{P}_j = \frac{2a(N' - N_1' - 1) + b(N_0 - N_1') + bl_j(N' - N_1' - 2)}{2(N' - N_1' - 1)[a(N' - N_1') + b(N_0 - N_1')]}$$

• In order to "preserve" the monomers in the system, we will simulate the interacting pair number using probabilities q_{m} , which are proportional to the number of monomers left in the system, instead of p_{m} :

$$q_1 = \frac{p_1(N'_1 - 1)}{C}, \quad q_2 = \frac{p_2(N'_1 - 2)}{C}, \quad q_3 = \frac{p_3N'_1}{C}$$
$$C = \mathbf{E}(N_1) = N'_1 \cdot \frac{N' - 2}{N' - 1} \left(1 - \frac{a + b}{aN' + bN_0}\right).$$

• This modification is taken into consideration when the random weight is calculated:

$$Q = Q' \frac{p_{\mathfrak{m}}}{q_{\mathfrak{m}}}$$

- Denote also N'_2 number of dimers in the ensemble.
- Non-overlapping subsets splitting the set of all possible interacting pairs:
 - π_{11} contains 'minus-1-pairs' of the form {monomer, monomer}
 - π_{1k} contains 'minus-1-pairs' of the form {monomer, multimer}
- π_{2k} contains 'minus-1-pairs' of the form {*dimer, multimer*}
- π_{22} contains 'minus-2-pairs' of the form {*dimer, dimer*}
- π_{12} contains 'minus-2-pairs' of the form {monomer, dimer}
- π_{kk} contains 'minus-0-pairs' of the form {*multimer, multimer*}

• Let us represent the "physical" distribution density of the interacting pair number in the form, similar to the case of monomers:

$$1 \equiv \sum_{\pi} \mathcal{P}_{0}(i,j) = p_{11} \sum_{\pi_{11}} f_{11}^{(i,j)} + p_{1k} \sum_{\pi_{1k}} f_{1k}^{(i,j)} + p_{2k} \sum_{\pi_{2k}} f_{2k}^{(i,j)} + p_{12} \sum_{\pi_{12}} f_{12}^{(i,j)} + p_{22} \sum_{\pi_{22}} f_{22}^{(i,j)} + p_{kk} \sum_{\pi_{kk}} f_{kk}^{(i,j)},$$

 p_{mn} – probability to choose the subset π_{mn} ; $f_{mn}^{(i,j)}$ – probability to choose the pair (i, j) from the subset π_{mn} .

• The probabilities to choose a certain subset have the following form :

$$\begin{split} p_{11} &= \frac{N_1'(N_1'-1)}{N'-1} \cdot \frac{a+b}{aN'+bN_0}, \\ p_{12} &= \frac{N_1'N_2'}{N'-1} \cdot \frac{2a+3b}{aN'+bN_0}, \\ p_{22} &= \frac{N_2'(N_2'-1)}{N'-1} \cdot \frac{a+2b}{aN'+bN_0}, \\ p_{1k} &= \frac{N_1'}{N'-1} \cdot \frac{2a(N'-N_1'-N_2')+b(N_0+N'-2N_1'-3N_2')}{aN'+bN_0}, \\ p_{2k} &= \frac{N_2'}{N'-1} \cdot \frac{2a(N'-N_1'-N_2')+b(N_0+2N'-3N_1'-4N_2')}{aN'+bN_0}, \\ p_{kk} &= \frac{N'-N_1'-N_2'-1}{N'-1} \cdot \frac{a(N'-N_1'-N_2')+b(N_0-N_1'-2N_2')}{aN'+bN_0}, \end{split}$$

- <u>Simulation of particles within certain subsets</u>:
- **monomers** are uniformly chosen within corresponding groups;
- multimers are chosen within π_{1k} , π_{2k} and π_{kk} according to physical probabilities \mathcal{P}_j , $j = N'_1 + N'_2 + 1, \dots, N'$, which have the following form:
 - monomer-multimer: $\mathcal{P}_j = \frac{2a + b(1+l_j)}{2a(N' N_1' N_2') + b(N_0 + N' 2N_1' 3N_2')}.$
 - dimer-multimer:

$$\mathcal{P}_j = \frac{2a + b(2+l_j)}{2a(N' - N_1' - N_2') + b(N_0 + 2N' - 3N_1' - 4N_2')}$$

• multimer-multimer:

$$\mathcal{P}_{j} = \frac{2a(N' - N_{1}' - N_{2}' - 1) + b[(N_{0} - N_{1}' - 2N_{2}') + l_{j}(N' - N_{1}' - N_{2}' - 2)]}{2(N' - N_{1}' - N_{2}' - 1)[a(N' - N_{1}' - N_{2}') + b(N_{0} - N_{1}' - 2N_{2}')]}$$

• In order to "preserve" the monomers and dimers in the system, we will simulate the interacting pair number using probabilities q_{mn} , which are proportional to the sum of monomers and dimers left in the system, instead of p_{mn} :

$$\begin{aligned} q_{11} &= (N_1' + N_2' - 1)\frac{p_{11}}{C}; \ q_{1k} = (N_1' + N_2' - 1)\frac{p_{1k}}{C}; \ q_{2k} = (N_1' + N_2' - 1)\frac{p_{2k}}{C}; \\ q_{12} &= (N_1' + N_2' - 2)\frac{p_{12}}{C}; \ q_{22} = (N_1' + N_2' - 2)\frac{p_{22}}{C}; \ q_{kk} = (N_1' + N_2' - 0)\frac{p_{kk}}{C}; \\ C &= (N_1' + N_2') \cdot \frac{N' - 2}{N' - 1} \left(1 - \frac{a + 2b}{aN' + bN_0}\right) + N_1' \frac{a(N_1' - 1) + b(N' + N_1' - 3)}{(N' - 1)(aN' + bN_0)} \right) \end{aligned}$$

• This modification is taken into consideration when the random weight is calculated: $Q = Q' \frac{p_{mn}}{q_{mn}}$

Results of Numerical Experiments

Table 1. Estimation of $J_{H_1}(T)$ for $a = 1$, $b = 2$ $(T = 0.1; 1; 4; 10)$.						
Simulation	n \tilde{J}	$_{H_1}(T)$	$\bar{\sigma}$	RE (%)	t_c	$\mathrm{S}_d/\mathrm{S}_v$
	$n_1(0.1) = 7.$	$5131 \cdot 10^{-1}$	(T = 0.1; M	$= 10^4; N_0$	$= 10^3)$	
direct value	7. 7.	$5053 \cdot 10^{-1}$ $5155 \cdot 10^{-1}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left \begin{array}{c} 0.10\\ 0.03\end{array}\right $	$4.8 \\ 5.5$	1.79
$n_1(1) = 1.2263 \cdot 10^{-1} \ (T = 1; \ M = 10^4; \ N_0 = 10^3)$						
direct value	$\begin{vmatrix} 1.\\ 1. \end{vmatrix}$	$2266 \cdot 10^{-1} \\ 2271 \cdot 10^{-1}$	$\begin{array}{c c} 1.1 \cdot 10^{-4} \\ 4.7 \cdot 10^{-5} \end{array}$	$\begin{array}{c c} 0.02\\ 0.07 \end{array}$	$\begin{array}{c} 37.7\\ 34.9\end{array}$	6.09
$n_1(4) = 3.7076 \cdot 10^{-3} \ (T = 4; \ M = 10^4; \ N_0 = 10^2)$						
direct value	3. 3.	$ \begin{array}{r} 6648 \cdot 10^{-3} \\ 6925 \cdot 10^{-3} \end{array} $	$\begin{array}{c c} 3.0 \cdot 10^{-5} \\ 1.2 \cdot 10^{-5} \end{array}$	$\begin{vmatrix} 1.16 \\ 0.41 \end{vmatrix}$	$\begin{array}{c} 15.2\\ 15.9\end{array}$	6.27
$n_1(10) = 8.9684 \cdot 10^{-6} \ (T = 10; \ M = 10^5; \ N_0 = 2 \cdot 10^2)$						
direct value	9. 8.	$4500 \cdot 10^{-6}$ $6176 \cdot 10^{-6}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ 5.37 \\ 3.91 $	68.9 74.9	${152}$

Results of Numerical Experiments

Table 2. Estimation of $J_{H_{12}}(T)$ for $\mathbf{a} = 1$, $\mathbf{b} = 2$ $(T = 0.1; 1; 4; 10)$.						
Simulation	$\tilde{J}_{H_{12}}(T)$	$\bar{\sigma}$	RE (%)	t_c	$\mathrm{S}_d/\mathrm{S}_v$	
$n_1(0.1) + n_2(0.1) = 8.4460 \cdot 10^{-1} \ (T = 0.1; \ M = 10^4; \ N_0 = 10^3)$						
direct value	$\begin{vmatrix} 8.4363 \cdot 10^{-1} \\ 8.4516 \cdot 10^{-1} \end{vmatrix}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$0.12 \\ 0.07$	$\begin{array}{c} 4.6 \\ 5.3 \end{array}$	3.85	
$n_1(1) + n_2(1) = 1.7364 \cdot 10^{-1} \ (T = 1; M = 10^4; N_0 = 10^3)$						
direct value	$\left \begin{array}{c} 1.7379 \cdot 10^{-1} \\ 1.7388 \cdot 10^{-1} \end{array}\right $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 0.08 \\ 0.13 \end{array}$	$25.9 \\ 28.9$	3.58	
$n_1(4) + n_2(4) = 5.3553 \cdot 10^{-3} \ (T = 4; M = 10^4; N_0 = 10^2)$						
direct value	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.21 0.02	$13.5 \\ 15.1$	5.37	
$n_1(10) + n_2(10) = 1.2954 \cdot 10^{-5} \ (T = 10; \ M = 10^5; \ N_0 = 2 \cdot 10^2)$						
direct value	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5.37 2.78	64.1 72.5	117	

Results of Numerical Experiments

Table 3. Estimation of $J_{H_1}(T)$ and $J_{H_{12}}(T)$ for $\mathbf{a} = 2$, $\mathbf{b} = 10$.

Simulation	$\tilde{J}_H(T)$	$\bar{\sigma}$	RE (%)
	$n_1(10) = 5.3828 \cdot 10^{-23}$	(T = 10; M)	$I = 10^6; N_0 = 10^3)$
value direct	$5.3047 \cdot 10^{-23} \\ \textbf{0.0}$	$1.9 \cdot 10^{-}$	⁻²⁵ 1.45 100
$n_1(10) +$	$n_2(10) = 7.5460 \cdot 10^{-23}$	(T = 10; N)	$I = 10^6; N_0 = 10^3)$
value direct	$\begin{array}{c} 7.4278 \cdot 10^{-23} \\ \textbf{0.0} \end{array}$	$2.1 \cdot 10^{-1}$	⁻²⁵ 1.57 100

References

- [1] Flory P. J. Principles of polymer chemistry. Ithaca, New York: Cornell University Press, 1953.
- [2] Mikhailov, G.A., Rogasinsky, S.V.: Weighted Monte Carlo methods for approximate solution of the nonlinear Boltzmann equation. Sib. Math. J. 43 (3), 496–503 (2002)
- [3] Korotchenko, M.A., Mikhailov, G.A., Rogasinsky, S.V.: Modifications of weighted Monte Carlo algorithms for nonlinear kinetic equations. Comp. Math. Math. Phys. 47 (12), 2023–2033 (2007)
- [4] Korotchenko, M.A.: Value modifications of statistical algorithms for solution of the Smoluchowski equation. Vych. Tekhnol. 13 (sp.iss. 4), 68–74 (2008) (in Russian)
- [5] Mikhailov, G.A., Rogasinsky, S.V., Ureva, N.M.: Weighted Monte Carlo methods for an approximate solution of the nonlinear coagulation equation. Comp. Math. Math. Phys. 46 (4), 680–690 (2006)
- [6] Spouge J.L. Solutions and critical times for the monodisperse coagulation equation when a(i, j) = A + B(i + j) + Cij // J. Phys. A: Math. Gen., 1983. V. 16, pp. 767–773.

THANK YOU!