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Problem Statement and General Information

o Let us consider an initial value problem for the
Smoluchowski equation:

Ony (t )
df D) Z keijni (T Z kimi (t)ng (t), n(0) =mn,
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n,(t)-average number of |-sized particles in the system at the
time instant?;
k(i, 7)- coagulation coefficients.



Problem Statement and General Information

o Integral equation In transformed phase space
Z = (X?ﬂ_)’ X = [E\T? ll: U _'.'g':'\"—) [2]
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Problem Statement and General Information

o The kernel K of the latter integral equation has
multiplicative structure
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where k(t' — t|X') = A(X ) exp{—(t — ) A(X")}

O Ki(X' — X]|r) defines transformation of the system after
collision of the pair = = (i, 5)".

o Collision of the particles ¢ and 7 results in their replacement

by a particle of the size /; 4 /;, and the number of particles
reduces by one.

N=N—1.X=(N,l;,---,ly), NN, Le1,N,




Problem Statement and General Information

o We will estimate the functionals of the particle flux (X, ¢):
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Problem Statement and General Information

o Let us denote a Markov chain (Z,,.7,,) , nc0.1,...» With
normalized density of the initial state

Py(Z.t) = Py(Z)d(t)
and normalized transition density
P(Z;‘?‘.F%Z_?‘.): ( f‘}\)Pl P‘( .-Dn}\ %‘(‘

o Random weights are defined by the formulas:

(JI] — E}(ZJEP{J(Z) (T.:}H — (n)n—l(x?(\Zn.—l* 1fL'ﬂ.—l: Zn.* f'n)
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Problem Statement and General Information

o A weight collision estimator will be used to estimate the
functionals:

L

£ = Z Q.H(X,.T —t,) v= max{n : t, <1, n=0,1....,Ng—1}
i=0

o Further we will estimate two functionals:
Jgjm ~ny (1) - Monomer concentration in the system;

J(12)

() PR -
y (1) = J,/(T)+ J;'(T) - monomer and dimer

concentration in the system at the time instant 7".



Analytic Solution of the Test Problem with
Linear Coefficients

o Test problem for Smoluchowski equation

K;j =a+b(i+7)/2 - coagulation coefficients

n(t =0) = ¢4, [ > 1 -initial distribution

o For this problems parameters of simulation can be
obtained analytically:
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a(m) =a(N,l;,l;) = ON,




Analytic Solution of the Test Problem with
Linear Coefficients

O Analytical solution [6] for the problem considered:
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) - monomer concentration;
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) - dimer concentration;
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Explanation of the Model A R Bj;_,

o The following type of molecules we consider as
monomers (In this figure is shown a model of

monomer for f=3) B
A<
B

o Units of A-type condense with units of B-type, but
reactions between the same units are forbidden.

o We neglect reactions between units of A-type and B-
type within a multimer (to avoid cyclization) and steric
hindrance.



Explanation of the Model
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Explanation of the Model
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Explanation of the Model

o A multimer contains:
unreacted units of A-type — 1;
unreacted units of B-type for a k-meric particle — (f — 2)k + 1

o As a result, the probability for the particles 1 and j to interact is
proportional to (; + j)(f —2) + 2, and the coagulation
coefficient has the following form:

Ky =a+bli+7)/2



Value Simulation of the Interacting Pair
Number for Monomers

o The value function ™ (X t) is defined as a value of
functional .J;; calculated on a source functions( X’ — X)5(¢/ — ¢)

which means that
P (X, 1) = E§ x4




Value Simulation of the Interacting Pair
Number for Monomers

o Let us denote:
N’ — total number of particles in the ensemble;
N1 —number of monomers in the ensemble.

o Each of all possible interacting pairs falls into one of the
following non-overlapping subsets 7 U m U g -

7 — contains ‘minus-1-pairs’ of the form {monomer, multimer}
Ty, — contains ‘minus-2-pairs’ of the form {monomer, monomer}
o — contains ‘minus-0-pairs’ of the form {multimer, multimer}
F gt ' ! A ! !
) P U - - *
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Value Simulation of the Interacting Pair
Number for Monomers

o Let us rewrite physical density distribution

2a + b{l; + 1)
aN(N — 1) + bNy(N — 1)

of the interacting pair number in the following randomized form:

2 \
L= Z N/(N'—1) = P1 Zl Jili. j) +po ,_ZQ fa(i.j) + po Zu foli, 7)

Pm — probability to choose the subset 7y, ;
fm(z.7)— probability to choose palir (, ) from the subset 7., .



Value Simulation of the Interacting Pair
Number for Monomers

o The probabilities to choose a certain subset have the
following form:

N/(N/ =1)  a+b
P2="N T AN 1N,
N/ 2a(N' — N!) 4+ b(Ng + N — 2N!)
N —1 aN' + bN,
(N'=N{ —1) a(N' = N{) + b(No — V)
N —1 aN' + bN,

P1 =

Po =



Value Simulation of the Interacting Pair
Number for Monomers

o Simulation of particles within certain subsets:
monomers are uniformly chosen within m; and 72 ;

multimers are chosen within 71 and 70 according to physical
probabilities, which have the following form:

monomer-multimer:
D 2a 4+ b(1+ ;)
I 2(1(;\” — ‘\T;) —|— b(;\r‘rﬂ —I— i\” — 2+\?{) ‘

multimer-multimer:

P 2a(N" — N{ — 1) + b(Ny — Ny) + bl;(N"'— N| —2)
D, —

2(N'— N{ — 1)[a(N" — N{) + b(Ny — N7)]



Value Simulation of the Interacting Pair
Number for Monomers

In order to “preserve” the monomers in the system, we will

simulate the interacting pair number using probabilities ¢, ,
which are proportional to the number of monomers left in the

system, instead of pm:

~ (N =) (N —2)  psNy
q]. C-:, 3 q2 C? . q 3 C':f

] N  N'—2 a—+b
(' = E(Al) — *N{ | N’ — 1 (1 N alN' 4+ bf\"—o) '

o This modification is taken into consideration when the
random weight is calculated:

('—2 — (;g-f,zm




Value Simulation of the Interacting Pair
Number for the Sum of Monomers and Dimers

o Denote also Né — number of dimers in the ensemble.

o Non-overlapping subsets splitting the set of all possible
Interacting pairs:

m11 — contains ‘minus-1-pairs” of the form {monomer, monomer}
T — contains ‘minus-1-pairs’ of the form {monomer, multimer}
mar — contains ‘minus-1-pairs’ of the form {dimer, multimer}

Ta2 — contains ‘minus-2-pairs’ of the form {dimer, dimer}
Ts — contains ‘minus-2-pairs’ of the form {monomer, dimer |

Tre — contains ‘minus-O-pairs’ of the form {multimer, multimer}



Value Simulation of the Interacting Pair
Number for the Sum of Monomers and Dimers

o Let us represent the “physical” distribution density of the
Interacting pair number in the form, similar to the case of
monomers:

1—ZP03 7) —1011Zf11”+?1 Zfl{k )+ oy Z {”

m11 Tk T2k

+ P12 Z flz"j} + P22 Z fz{zj} + Pkk Z fé};j)a

mi2 ma2 Tk

pmn — probability to choose the subset Ty ;
"3) _ probability to choose the pair (i. j) from the subset T .

'lTl'l'l



Value Simulation of the Interacting Pair
Number for the Sum of Monomers and Dimers

o The probabilities to choose a certain subset have the
following form :

NI(N/—1)  a+b

PU="N 1 AN BNy
NiN,  2a+3b
p 12 = 7 T ) AT AT T
N’ —1 aN'+bN,
N)(N,—1)  a+2b
P22 = - S e
N —1 alN' -+ bi\'g
. Ni  2a(N' = Nj = N}) + b(No + N' = 2N] — 3N})
N aN' 4 bN,
b N 2a(N' = N} = Ng) + b(No + 2N = 3N} — 4N)
TN aN' + bN,
o N NP Ny 1 a(N' = N = N3 o b(No = N — 2V;)

N —1 aN' + bN,



Value Simulation of the Interacting Pair
Number for the Sum of Monomers and Dimers

o Simulation of particles within certain subsets:
monomers are uniformly chosen within corresponding

groups;

multimers are chosen within 7wy, 7o, and mz according to
physical probabilities P;, j = N] + N, +1,...,] ", which
have the following form:

o monomer-multimer: Do 20 +b(1 4+ 1;)

7 2a(N' — N — N4) + b(No + N' — 2N| — 3N})’

dimer-multimer:
0 24+ b(2 +1,)

P = (N = NT = N3) T b(Ny + 2N — 3N — 4N))

o multimer-multimer:;

2a(N' — N| — N} — 1)+ b[(Nog — N| = 2N}) + [;(N' = N} — N}, — 2)]

1

2(N" — N — N, — 1)[a(N" — N| — N1) + b(Nog — N/ — 2N3)]

P, =



Value Simulation of the Interacting Pair
Number for the Sum of Monomers and Dimers

o In order to “preserve” the monomers and dimers in the
system, we will simulate the interacting pair number using
probabilities ¢mn, which are proportional to the sum of
monomers and dimers left in the system, instead of pun :

’ . r AT AT Pik ‘AT AT D2
au = (M + Ny = 1) qlkz(ﬂ-’+.=\f—1)%; qor = (N] + N} — )22 )

o = (N +\’_z)“2, — (N + N, — .)%; gor = (N + N, _n)f’(’*

v_z a+ 2b ,a{N] — 1)+ b(N' + N| —3)
N{ + N; I — M
( —|_ ) '\ . 1 ( a"\a’+b\ ) —|_ 1 (1\, 1)((1-_-'?\"_"+f)f\r0J

o This modification is taken Into consideration when the
random weight Is calculated: ) _ Q" Pmn

]'I.'I. n



Results of Numerical Experiments

Table 1. Estimation of Jg,(T) fora=1,b=2 (T =0.1;1;4;10).

Simulation ‘ Ju, (1) ‘ o ‘ RE (%) ‘ te Sa/Su
(01 =758121.10° (T =01 M — 104 N. — 103)
H.]_'L\I.J.J._J' [ L B A l\_.l'. U.J..j AVL IR . _.\'U A )
direct 7505310711 29107 | 0.10 48 | ——
value 7.5155-1071 | 2.0- 10~ 0.03 5.5 ‘ 1.79
ny(1) = 1.2263 - 101 (T =1; M = 1(:)4; Ng = 103)
direct 1.2266-1071 | 1.1-1074 0.02 37.7 ——
value 1.2271-10° | 4.7-10° 0.07 34.9 6.09
ni(4) = 3.7076 - 1073 (T = 4; M = 10% N, = 10?)
direct 3.6648-102 | 3.0-10°° 1.16 15.2 ——
value 3.6025-102 | 1.2-107° 0.41 15.9 6.27
n1(10) = 8.9684 - 1075 (T" = 10; M = 10°; Ny = 2 - 10?)
direct 9.4500-107% | 6.9-10°7 5.37 68.9 | ——
value 8.6176-107° | 54-10°° 3.91 74.9 152




Results of Numerical Experiments

Table 2. Estimation of Ju,,(1') fora=1,b=2 (T =0.1;1;4;10).

Simulation ‘ jle (1)

5 'RE (%)

t.

ny (H 1\ +n (:ﬂ 1} = &.4460 -

10~ 1(T_(H U_m4 Ny :10)

direct | 8.4363-107% | 3.4.107* | 0.12 | 4.6 | ——

value 8.4516-1071 | 1.6- 10 ‘ 0.07 5.3 ‘ 3.85
ny(1) +no(1) = 1.7364 - 1071 (T' = 1; M = 10* Np = 107)

direct 1.7379-1071 | 1.4-107* | 0.08 259 | ——

value 1.7388-1071 | 6.8-10~> | 0.13 28.9 | 3.58
ni(4) +ny(4) = 5.3553 - 1073 (T = 4; M = 10% Ny = 10?)

direct 5.3443-107% | 3.6-10™ | 0.21 135 | ——

value 5.3564-103 51077 0.02 15.1 | 5.37

n1(10) +n2(10) = 1.2954 - 107° (T = 10; M = 10°; Ng = 2 - 10?)
direct | 1.3600-107° | 8.3-10°7 | 5.37 | 64.1 | ——
value | 1.2594-107° | 7.2-107% | 2.78 | 72.5 | 117




Results of Numerical Experiments

Table 3. Estimation of Jg, (T') and Jg,,(T") for a =2, b = 10.

Simulation ‘ Ju (T) ‘5 ‘RE (%)

n1(10) = 5.3828 - 107* (T = 10; M = 10°; Ny = 10?)

1.45
100

value
direct

5.3047 - 10723 1.9.1072%°
0.0

n1(10) + no(10) = 7.5460 - 10=23 (T = 10; M = 10°; No = 10?)

7.4278 . 1023
0.0

value
direct

2.1-107%° ‘1.5?’
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