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Problem Statement

MCMC processes in general are governed by non convex
objective functions that are difficult to optimize.

Standard regularization of MCMC processes (e.g with
quadratic penalties) in general improve optimization
performance accuracy but slow the optimization process
significantly.

There are various efficient methods in general to optimize
convex functions. It is natural in optimization of non-convex
functions to use convex lower bound functions in intermediate
steps.

How can we incorporate into MCMC methods from convex
optimization theory?
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Summary

The goal of the paper is to introduce a general convexization
process for arbitrary functions to assist Markov Chain Monte
Carlo (MCMC) optimization.

We describe how concave low bound (auxiliary) functions are
used as intermediate steps in optimization of general functions

In the paper a recently introduced technique how to build
auxiliary functions is described

We give examples of concave auxiliary functions for convex
functions

We apply a theory of auxiliary functions to stochastic
optimization

We integrate in a Metropolis-Hastings method auxiliary
functions

We illustrate our variant of Metropolis-Hastings method with
numerical experiments by solving sparse optimization
problems.
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Definition of auxiliary functions

Let f (x) : U ⊂ R
n → R be a real valued differentiable function in

an open subset U. Let Qf = Qf (x , y) : R
n × R

n → R be twice
differentiable in x ∈ U for each y ∈ U. We define Qf as an
auxiliary function for f in U if the following properties hold.

1 Qf (x , y) is a strictly concave function of x for any y ∈ U with
its (unique) maximum point belonging to U (recall that twice
differentiable function is strictly concave or convex over some
domain if its Hessian function is positive or negative definite
in the domain, respectively).

2 Hyperplanes tangent to manifolds defined by
z = gy (x) = Qf (x , y) and z = f (x) at any x = y ∈ U are
parallel to each other, i.e.

∇xQf (x , y)|x=y = ∇x f (x) (1)

3 For any x ∈ U f (x) = Qf (x , x)

4 For any x , y ∈ U f (x) > Qf (x , y)
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Optimization process for auxiliary functions

In an optimization process via an Q-function it is usually assumed
that finding an optimum of an Q-function is ”easier” than finding
a (local) optimum of the original function f . Naturally, a desired
outcome is for the equation ∇xQf (x , y) = 0 to have a closed form
solution.
The optimization recursion via an auxiliary function can be
described as follows (where we use EM style).

E-step Given x t construct Qf (x , x t)

M-step Find
x t+1 = arg max

x∈U
Qf (x , x t) (2)

For updates (2) we have
f (x t+1) = Qf (x

t+1, x t+1) > Qf (x
t , x t+1) > Qf (x

t , x t) = f (x t).
This means that iterative update rules have a ”growth” property
(i.e. the value of the original function increases for the new
parameters values).
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Geometric illustration

Auxiliary function:

In this figure the upper curve denotes the plot of the objective
function f : x → R and the curve in red, i.e. the concave lower
curve, represents the A-function Qf (., x0) : x → R. As it be can
seen from this figure, for some x1 that maximizes Qf (x , x0) we
have f (x1) > f (x0).
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Convergent statement

Let call a point x ∈ U critical if ∇x f (x) = 0.

In the paper we prove the following convergence statement
Proposition

Let Qf be an auxiliary function for f in U and let
S = {x t , t = 1, 2, ...}. Then all limit points of S that lie in U

are critical points. Assume in addition that f has a local
maximum at some limit point of the sequence S in U and that
f is strictly concave in some open neighborhood of this point.
Then there exists only one critical point of S in U

This means that iterative application of update rules via an
auxiliary function converges to a critical point.
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A general way to build auxiliary functions

Assume that f (x) is strictly concave in U. Then for any point
x ∈ U we can construct a family of auxiliary functions as
follows.

Let us consider the following family of functions.

Qf (y , x ;λ) = −λf

(

−
y

λ
+ x

(

1 +
1

λ

))

+ f (x) + λf (x) (3)

These family functions (3) obey properties 1-3 for any λ > 0
in the definition of auxiliary function.

In general, for an arbitrary function f (x) one can construct
auxiliary functions Qf (y , x ;λ) locally (with different λ in
neighborhoods for different points x).
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Three transformations to build auxiliary functions

The family of functions (3) are obtained via subsequent
applications of the following three transformations.

Reflection along x-axis

Hf (y , x) = −f (y) + 2f (x) (4)

Reflection along y-axis

Gf (y , x) = Hf (−y + 2x , x) + 2Hf (x , x) (5)

Scaling

Qf (y , x ;λ) = λGf

(

y

λ
+ x

(

1 −
1

λ

)

, x

)

+(1−λ)Gf (x , x)

(6)
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Objective function that is sum of convex and concave

functions

Assume that
f (x) = g(x) + h(x) (7)

where h(x) is strictly convex in U.

Then we can define an auxiliary function for f (x) as following

Qf (y , x) = Qg (y , x) + Qh(y , x ,λ) (8)

where Qg (y , x) is some auxiliary function associated with g

(for example it coincides with g(x) if g(x) is strictly concave).

In practical applications some function Qh(y , x ,λ) may be
concave but not strictly concave. In this case one can add a
small regularized penalty to it to make it strictly concave.
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Exponential families

The important example of convex functions is an exponential
family.

We define an exponential family as any family of densities on
R

D , parameterized by θ, that can be written as

ξ(x ,θ) =
exp{θTφ(x)}

Z(θ)
where x is a D-dimensional base

observation.

The function φ : R
D → R

d characterizes the exponential
family. Z (θ) =

∫
Ξ

exp{θT φ(x)}dx is the partition function,
that provides the normalization necessary for ξ(x ,θ). The
function log ξ(x ,θ) is convex and it is strictly convex if
Var [φ(x)] 6= 0

Some objective functions of exponential densities (e.g. in
energy-based models) can be optimized via a recursion
procedure that at each recursion require optimization of
weighed sum of exponential densities, i.e., a sum of convex
and concave functions.

Dimitri Kanevsky1 , Avishy Carmi2 Convexization



Online gradient descent for stochastic functions

Find some parameter vector x ∈ U such that sum of functions
f i → R takes on the smallest value possible:

f ∗(x) =
1

T

T∑

t=1

f t(x) (9)

and
x∗ = arg min

x∈U
f ∗(x) (10)

In the elementary online gradient descent algorithm instead of
averaging the gradient of the function f ∗ over the complete
training set each operation of the online gradient descent
consists of choosing a function f t at random (as
corresponding to a random training example) and and
updating the parameter x t according to the formula

x t+1 = x t − γt∇x f
t(x tt) (11)
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Auxiliary stochastic functions

Assume now that functions f i(x) are non-concave and we
need to solve the maximization problem

max
∑

f i(x) (12)

Assume also that Qi (y , x) are auxiliary functions for f i (y) at
x . In this case one can consider the following optimization
process.
Let

Q∗(y , x) =
∑

Qi (y , x) (13)

Then Q∗(y , x) is an auxiliary function for f ∗(y) =
∑

f i(y).
For t = 1, 2, ... we can optimize Q∗(x t , y) using stochastic
descent methods and find x t+1. This induces the optimization
process for f ∗(x) via the auxiliary function Q∗(y , x).
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Metropolis-Hastings algorithm

How to combine convexization process with some MCMC
technique like Metropolis-Hastings

We want to draw samples from a probability distribution P(x)

that is proportional to some complex (not convex) expression
f (x)

Assume that we have an ergodic and balanced Markov chain
x t that at sufficiently long times generates states that obey
the P(x) distribution.

Let Q(x ′; x t) be proposal densities which depends on the
current state x t to generate a new proposed state x ′.

The new sample x ′ is ”accepted” as the next value x t+1 = x ′

if α is drawn from U(0, 1) , the uniform distribution satisfies

α <
f (x ′)

f (x t)

Q(x ′; x t)

Q(x t ; x ′)
(14)
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Metropolis-Hastings auxiliary algorithm

We define proposals as auxiliary functions in the
Metropolis-Hastings algorithm

Let Qf (x , y) be an auxiliary function for f (x). Then we have:

Given the most recent sampled value x t draw a new proposal
state x ′ with the probability Qf (x

′; x t)

Calculate

a =
f (x ′)

f (x t)

Qf (x
′; x t ; )

Qf (x t ; x ′)
(15)

The new state x t+1 is chosen according to the following rules:
If a > 1 then x t+1 = x ′

else x t+1 = x ′ with probability a and x t+1 = x t with
probability 1 − a
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Example of optimization problem: compressive sensing

A Bayesian representation of a compressive sensing problem:

max
x

exp

(

−0.5||y − Hx ||2

R

)

∗ exp

(

−0.5||x ||21
σ2

)

(16)

In this formula y is an m dimensional vector (measurement),
H is an m × n sensing matrix with m < n, x is an n

dimensional parameter vector, and the function

exp
(

−0.5||x ||21
σ2

)

is a ”Semi-Gaussian” penalty to enforce the

sparsity (here ||x ||21 := (
∑

i |xi |)
2 for all entries xi in x).
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Auxiliary function for Bayesian representation

Auxiliary function for (16) for sufficiently small λ:

Q(x , x0) = λ exp

(

−0.5(sign(x0) ∗
(

x
λ

+ (1 − 1
λ
)x0

)2

σ2

)

(17)
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Numerical experiments - parameters

We run simulation comparative experiments using the
standard Metropolis-Hastings method (14) and the
Metropolis-Hastings method (15) with the convex auxiliary
function for the problem (16).

In our simulation experiments parameters where chosen as the
following:

n = 10, m = 5. Entries in the sensing matrix H were obtained
by sampling according to N(0, 1/5).
the signal support vector x ∈ R

10 is assumed to be a sparse
parametric vector with signal support consisting of two
elements.

We had 100 runs to produce the cumulative distribution of
errors. In each run we produced 10000 samples and had 5000
burn-in samples.
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Numerical experiments - results

Cumulative Distribution of errors:
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The ordinate axis is the probability and the absica is the normed
estimation error.
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Conclusions

In this paper we introduced a novel convexization approach for
MCMC that is based on general convexization techniques that
allow to build auxilary functions for a wide class of problems.

We illustrated this convexization method on a compressive
sensing problem that was represented in a Bayesian form with
a semi-gaussian penalty.

Simulation experiments showed that Metroplis-Hastings
method with axillary functions outperforms a standard
Metroplis-Hastings method.

We plan to test convexization methods on a broad class of
MCMC based methods and develop a detailed methodology
for a dynamic adjustment of scaling parameters for auxiliary
functions in iterative MCMC processes.
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