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Introduction - Atomic Force Microscopy (AFM)

e A very high-resolution type of scanning probe microscopy
using an AFM cantilever.
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Introduction - Atomic Force Microscopy (AFM)

e A very high-resolution type of scanning probe microscopy
using an AFM cantilever.

e Developed as a method to detect depressions and protuberances
on a nanometer sized surface in 1986.

e Shown to be a viable method for local anodic oxidation
of silicon surfaces for low volume manufacturing (LVM).

e Patterning tool for the deposition, removal, and modification
of material surfaces with nanoscale precision.
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Atomic Force Microscope

Laser Diode
FPasition-sensitive

Photodetector

Cantilever Spring

http://www3.physik.uni-greifswald.de/method /afm /eafm.htm
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AFM Nanodot Oxidation Model

e AFM developed in 1986 by G. Binning, C.F. Quate, and C. Gerber

e Model for NC-AFM from Calleja “ is implemented in the simulator.

e Equation governing oxide growth: h (¢,V) = ho (V) + hy (V) In (¢)
ho (V) = —2.1+ 0.5V — 0.006V*
hi (V) = 0.1+ 0.03V — 0.0005V2.

e Equation governing oxide width: w (t,V) = wq (V') + w1 (V) In (¢)
wo (V) =11.6 49V and wy (V) =2.74+ 0.9V,

“M. Calleja and R. Garcia, “Nano-Oxidation of Silicon Surfaces by Noncon-

tact Atomic-Force Microscopy: Size dependence on Voltage and Pulse Duration,”
Applied Physics Letters, vol.76, no.23, pp.3427-3429, 2000.
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AFM Nanodot

e Equation for nanodot height and width, including pulse time, voltage,
and humidity:

H(t,V,h)= [(—2.1+0.5V —0.006V?) + (0.1 + 0.03V — 0.0005V?) In (¢)]
x [0.00037h? — 0.019 + 0.928]

W(t,V,h) = [(11.6 4+ 9V) + (2.7 + 0.9V) In(t)] x [0.019h — 0.051]
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Introduction - AFM Oxidation Kinetics
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Modeling AFM Oxidation

e Generate particle at position pg(xo,Y0,20).
Xg and yg are Lorentzian-distributed random variables,
zo=d is the effective vertical position of the static dot charge.
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Modeling AFM Oxidation

e Generate particle at position pg(xo,Y0,20).
Xg and yg are Lorentzian-distributed random variables,
zo=d is the effective vertical position of the static dot charge.

e Accelerate the particle towards the silicon surface using ray
tracing, until it collides with the top surface.

e At impact location, advance the ambient-oxide interface towards
the ambient and the oxide-silicon interface into the silicon.

e |f the number of particles is 0 the simulation is complete.
Otherwise the variable used to keep track of the

remaining particles must be reduced by 1 and the
procedure must be repeated from Step 1.
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AFM Oxidation Simulator
e

m=Method (char array, "Dot" or "Wire")
v=Voltage (double)

t=Pulse Time (double)

h=Humidity (double)
n=No. of particles (int)

s=Start Position (double array)

e=End Position (double array - "Wire")

Particle
hit
surface?

Advance particle to
next grid square

1. At contact location, generate bump
- Bump height H (m, v, t, h)
2.n=n-1

1. Generate particle
2. Particle position p (double array)
- Depends on distribution
- Depends on FWHM (m, v, t, h, s)
- If "Wire", p also depends on e
18

Accelerate particle towards
Oxide surface
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Gaussian and Lorentzian Distributions
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Comparison of Gaussian and Lorentzian distributions

with the induced surface charge density model.
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Algorithm for the Gaussian Model

e Quantile function of the Gaussian distribution:
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Algorithm for the Gaussian Model

e Quantile function of the Gaussian distribution:

s = VI (29— 1), pe (0,1).
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Algorithm for the Gaussian Model

e Quantile function of the Gaussian distribution:

s = VB (20— 1), pe(0,1).

e Must generate evenly distributed circle with unity radius

r2 — x% + yg with coordinates (xg,yo).
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Algorithm for the Gaussian Model

e Quantile function of the Gaussian distribution:
5 = V25 (20— 1), pe(0.1).

e Must generate evenly distributed circle with unity radius

r2 — x% + yg with coordinates (xg,yo).

erf

e Gaussian distributed coordinates (Marsaglia polar method) are then:

—2In (r?) —2In (r?)
r r

-0.2 \ /
-0.4
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e (nm)

Oxide thick

(d) Gaussian nanodot and its (d) dlagonal Cross section
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Lorentzian Distribution

e Probability density function of the Lorentzian distribution:

PDF(z) =

w7[14—(§)2]

12 fL
Institute for Microelectronics %




Lorentzian Distribution

e Probability density function of the Lorentzian distribution:

1
2
Ty [1 + (%) ]
e Quantile function of the Lorentzian distribution:

rxzﬁzy-mn [w(p—%)],

27 is the interquartile range

PDF(z) =

p is an evenly distributed random number between 0 and 1
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Two-Dimensional Lorentzian Distribution - Attempt 1

e Distribute particle evenly around needle tip:

do {
vO=1*RandomNumber () ;
vi1=1xRandomNumber () ;
r_sq=vO0*xvO+vlx*vl;
} while (r_sg>=1);
r=sqrt(r_sq);
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Two-Dimensional Lorentzian Distribution - Attempt 1

e Distribute particle evenly around needle tip:

do {
vO=1*RandomNumber () ;
vi1=1xRandomNumber () ;
r_sq=vO0*xvO+vlx*vl;
} while (r_sg>=1);
r=sqrt(r_sq);

e Generate evenly distributed angle 6 between 0 and 27.

e Final particle position is given by (xg,yg) = (rpcosf,r,sind).
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Two-Dimensional Lorentzian Distribution - Attempt 2

e Form an area integral for polar coordinates:

fo fo (x,y) dedy = 0 fo (r,0) rdrdo.
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Two-Dimensional Lorentzian Distribution - Attempt 2

e Form an area integral for polar coordinates:

fo fo (x,y) dedy = 0 fo (r,0) rdrdo.

e The One-dimensional probability distribution must then be integrated:

1
& =0 5 e

&r is an evenly distributed value and ry is a value distributed with the Lorentzian distribution.

- dr
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Two-Dimensional Lorentzian Distribution - Attempt 2

e Form an area integral for polar coordinates:
fo fo (x,y) dedy = 0 fo (r,0) rdrdo.

e The One-dimensional probability distribution must then be integrated:

1
& =0 5 e

&r is an evenly distributed value and ry is a value distributed with the Lorentzian distribution.

- dr

e Solving r, gives the quantile function for a two-dimensional Lorentzian
distribution:

— Je2mér 1.
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Two-Dimensional Lorentzian Distribution - Attempt 2

e Form an area integral for polar coordinates:
fo fo (x,y) dedy = 0 fo (r,0) rdrdo.

e The One dimensional probability distribution must then be integrated:

1
&=y 5 e dr

&r is an evenly distributed value and ry is a value distributed with the Lorentzian distribution.

e Solving r, gives the quantile function for a two-dimensional Lorentzian
distribution:

— Je2mér 1.

e Angle 6/ between 0 and 27 is generated and final particle position is given
by (X0,Y0) = (rzcost,r,sinf).
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Gaussian Model Example

Lorentzian distribution Lorentzian distribution
- = = = Attempt 1 at particle distribution - = = = Attempt 2 at particle distribution

Lorentzian nanodot example:
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Conclusion

e AFM is used as a lithographic technique capable of
manufacturing nanometer-sized devices.

e [wo-dimensional Lorentzian distribution is developed
for an AFM simulator.

e Monte Carlo method is implemented to generate particles
around the needle tip.

e Particles are accelerated and collide with
the Level Set surface.

e Generated nanodot follows a Lorentzian
probability distribution.
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