Normally distributed quasi-random samples combining Box–Muller and lattice rules (work in progress)

Koen Poppe* Dirk Nuyens Ronald Cools

Department of Computer Science K.U.Leuven, Belgium

MCM 2011 August 29 – September 2, 2011 Borovets, Bulgaria

Motivation

$$\int_{[0,1]^s} f(\mathbf{x}) \, d\mathbf{x}$$

$$\int_{\mathbb{R}^s} f(\mathbf{x}) \, \rho(\mathbf{x}) \, \, \mathrm{d}\mathbf{x}$$

Approximated by an equal weight rule

$$Q(f; \{\mathbf{x}_k\}_{k=0}^{N-1}) := \frac{1}{N} \sum_{k=0}^{N-1} f(\mathbf{x}_k)$$

$$\{x_k\}_{k=0}^{N-1}$$

uniformly distributed

distributed acc. to $\rho(x)$

Monte Carlo → quasi-Monte Carlo

good lattice rules, ...

???

Setting the scene

- Two dimensions (s = 2)
- Rank-1 lattice rules
- Box-Muller transform (cf. experiments Pillards & Cools)
- i.i.d. standard normal variates

Work in progress Thank you Rayna!

Outline

- Introduction
- Point sets
- Quality criteria
- 4 Conclusion

Rank-1 lattice rules

A good rank-1 lattice rule has uniformly distributed points

$$\mathbf{y}_k = \frac{k\mathbf{z} \bmod N}{N}$$

$$\quad \text{for} \quad k=0,\dots,N-1,$$

with $z \in \mathbb{Z}^d$ the (well chosen) *generating vector*.

Note: the origin is always included.

The Box–Muller transform

Box & Muller (1958):

Given two uniform variates u_1 , $u_2 \sim [0, 1)$ set

$$r = \sqrt{-2\ln(1-u_1)},$$

$$\theta = 2\pi u_2.$$

Then

$$x_1 = r \cos \theta,$$

 $x_2 = r \sin \theta$

are i.i.d. standard normal variates.

Note the $1 - u_1$.

Box–Muller transformed rank-1 lattice rules

For
$$k = 0, ..., N-1$$
:

$$\begin{cases} r_k = \sqrt{-2\ln(1 - (kz_1/N \mod 1))}, & \begin{cases} x_{k,1} = r_k \cos \theta_k, \\ \theta_k = 2\pi kz_2/N, \end{cases}$$

$$\begin{cases} x_{k,2} = r_k \sin \theta_k. \end{cases}$$

⇒ Find a "good" generating vector z!

Quality criteria

- Visual
- Geometry
- Discrepancy
- Testfunctions
- Reproducing kernel

Visual quality

"Monkey-test"

- \rightarrow Is our intuition right?
- \rightarrow How to translate to objective criteria?

Geometry based quality criteria

Uniform lattice rule:

- Properties of unit cell (cf. shortest vectors)
- Less skewed is better (area vs perimeter)

Normal lattice rule unit cell?

Why discrepancy?

Koksma–Hlawka inequality for point set $P_N = \{x_k\}_{\nu=0}^{N-1}$

$$|I[f] - Q_N[f]| \leqslant V(f) D_N(P_N)$$

where, using some norm | · |

$$D_N(P_N) = |d(\{B_i\}_i, P_N)|$$

Local discrepancy: fraction of points vs. expected fraction

$$d\left(B,\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{N-1}\right) = \frac{\#\left\{k,\boldsymbol{x}_{k} \in B\right\}}{N} - \int_{B} \rho(\boldsymbol{x}) \, d\boldsymbol{x}$$

→ How to choose B?

r discrepancy

Unanchored:

Anchored:

$$D_{\rho}^{\langle r \rangle}(P_N)^{\rho} := \int_0^{\infty} \left| \frac{\#\{P_N \cap [0,r) \times [0,2\pi)\}}{N} - \left(1 - e^{-\frac{r^2}{2}}\right) \right|^{\rho} dr$$

But: if z is relative prime w.r.t. N

ightarrow discrepancy independent of generating vector

θ discrepancy

Unanchored:

Anchored:

$$D_p^{\langle\theta\rangle}(P_N)^p := \int_0^{2\pi} \left| \frac{\#\{P_N \cap [0,\infty) \times [0,\theta)\}}{N} - \frac{\theta}{2\pi} \right|^p \frac{\mathrm{d}\theta}{2\pi}$$

But: if z is relative prime w.r.t. N

ightarrow discrepancy independent of generating vector

The polar star discrepancy

Unanchored:

Anchored:

$$D_{p}^{\langle r,\theta\rangle}(P_{N})^{p} := \int_{0}^{2\pi} \int_{0}^{\infty} \left| \frac{\#\{P_{N} \cap [0,r) \times [0,\theta)\}}{N} - \frac{\theta(1 - e^{-\frac{r^{2}}{2}})}{2\pi} \right|^{p} \frac{dr d\theta}{2\pi}$$

For $p = \infty$, this corresponds to D_{∞}^* in the uniform case

Integral is undefined in the last part

ightarrow exclude interval $[r_{\max}, \infty]$ from the integration domain

The polar star discrepancy: A formula for p = 2

For $\mathbf{z} \in \mathbb{Z}_N^2$, with z_1 relatively prime to N, $R = r_{\max}(P_N(\mathbf{z})) = \sqrt{2 \ln N}$ and c = N/(N-1), we have

$$\begin{split} (D_2^{\langle r,\theta\rangle}(P_N))^2 &= \frac{1}{3} \left(\frac{\sqrt{\pi}}{2} \operatorname{erf}(R) - \sqrt{2\pi} \operatorname{erf}(\frac{R}{\sqrt{2}}) + R \right) c \\ &- \frac{2}{N} \sum_{k=0}^{N-1} \frac{1 - y_{k,2}^2}{2} \left(R - r_k + \sqrt{\frac{\pi}{2}} \left(\operatorname{erf}(\frac{r_k}{\sqrt{2}}) - \operatorname{erf}(\frac{R}{\sqrt{2}}) \right) \right) c \\ &+ \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{\ell=0}^{N-1} \left(1 - \max(y_{k,2}, y_{\ell,2}) \right) (R - \max(r_k, r_\ell)) c. \end{split}$$

Similar to Warnock's formula for T^*

The polar star discrepancy: results

→ Complies with the "monkey-test" for this example

Quality based on testfunctions

Similar to TESTPACK (Genz 1987):

- 11 function families for \mathbb{R}^s (Hill-Robinson 2003)
- Analytical solutions known
- Typical difficulties (peak, oscillating, decaying, ...)
- Random translation parameters determine only location of difficulty
 - → average case error
- \rightarrow Results allow to discriminate z's
- → Does not always corresponds to the "monkey-test"

Reproducing kernel approach

First attempt: kernel from Kuo-Woźniakowski 2010

$$K_{\gamma}(\boldsymbol{x}, \boldsymbol{y}) = \exp\left(-\gamma^2 ||\boldsymbol{x} - \boldsymbol{y}||_2^2\right)$$

This leads to a worst case error

$$e_{\gamma}^{2}(P_{N}) := \frac{1}{4\gamma^{2} + 1} + \frac{1}{(2\gamma^{2} + 1)N} \sum_{k=0}^{N-1} \exp\left(-\frac{\gamma^{2}}{2\gamma^{2} + 1} ||\boldsymbol{x}_{k}||_{2}^{2}\right) + \frac{1}{N^{2}} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \exp\left(-\gamma^{2} ||\boldsymbol{x}_{k} - \boldsymbol{x}_{l}||_{2}^{2}\right)$$

Reproducing kernel approach results

- → Results very close to each other, but
- → Complies with the "monkey-test" for this example

Closing remarks

Conclusions:

- Good generating vectors are not always transferable
- Different quality criteria can be defined

Current work

- Explore other discrepancy measures
- Experiment with different kernels
- Generalise
 - Correlated normal variates
 - Higher dimensions (s > 2)