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Introduction
Motivation

I[f] f[o,ﬂs f(x) dx Jrs F(X) p(x) dx

Approximated by an equal weight rule

QU N0y = L S M0 F(xk)

X =g uniformly distributed distributed acc. to p(x)

Monte Carlo — quasi-Monte Carlo

good lattice rules, ... ?2??




Introduction
Setting the scene

@ Two dimensions (s = 2)
@ Rank-1 lattice rules

@ Box—Muller transform
(cf. experiments Pillards & Cools)

@ i.i.d. standard normal variates

@ Work in progress ...
... Thank you Rayna!
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Rank-1 lattice rules

A good rank-1 lattice rule has uniformly distributed points
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for

k=0,....,.N—1,

with z € Z9 the (well chosen) generating vector.
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Note: the origin is always included.
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The Box—Muller transform

Box & Muller (1958):
Given two uniform variates uy, u» ~ [0, 1) set

r=+/-2In(1—u),

0 = 2muwo.
Then
X1 = rcos o,
Xo =rsind

are i.i.d. standard normal variates.

Note the 1 — uy.
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Box—Muller transformed rank-1 lattice rules

Fork=0,..., N—1:
{rk = V/=2In(1— (kzi/N mod 1)), {m = 1 c0s B,

Gk :27'[/(22/N, Xk 2 :rksinGK.
3 3
2 2t °
L[]
. ° ° ° o .' o
0....1 :. ..o R .. .1 ..o
. .00 0% .° o 0% e°°
o
-3 .—2.'71..0 ...l.. ® 3 -3 —2. ;l. o.o.o.! 2 3
. o . .
-2 ° -2
L]
-3 -3
z=[1,7,N=48 z=1[1,13],N =148

= Find a “good” generating vector z!
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Quality criteria

Visual

Geometry

Discrepancy

Testfunctions

Reproducing kernel
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Visual quality
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“Monkey-test”

— Is our intuition right?
— How to translate to objective criteria?
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Geometry based quality criteria

Uniform lattice rule:
@ Properties of unit cell (cf. shortest vectors)
@ Less skewed is better (area vs perimeter)
Normal lattice rule unit cell?

N=48, z=[1,13]
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Why discrepancy?

Koksma—Hlawka inequality for point set Py = {xk},’y:_(;
1] — QA < V(f) Dn (Pn)
where, using some norm | - |
Dn(Pn) = [d({Bi}i, Pn)|
Local discrepancy: fraction of points vs. expected fraction

(B (xglg) = TSR | ol ax

— How to choose B?
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r discrepancy

Unanchored:

Anchored:

(r) L ©
Dy’ (Pn)P «—J N

0

#{Pvn10,r) x [0,210)} <1 _e,z)

But: if z is relative prime w.r.t. N
— discrepancy independent of generating vector
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0 discrepancy

Unanchored:

Anchored:

27T

#{PyN[0,00) x [0,0)} 0 |° do
N - on| 2m

DY (P)P = L

But: if z is relative prime w.r.t. N
— discrepancy independent of generating vector
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The polar star discrepancy

Unanchored:

Anchored:

(r,0) 27T roo
Dy (Pn)P = J J
0

0

4PyN0.r)x[0.0) 0(1—e%)| drde

N 27 27

For p = oo, this corresponds to D in the uniform case

Integral is undefined in the last part
— exclude interval [rmax, oo] from the integration domain
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The polar star discrepancy: A formula for p = 2

For z € Z3,, with z; relatively prime to N,
R = rmax(Pn(2)) = v2InNand c = N/(N — 1), we have

(DS (Py))? = % (*f erf(R) — \/Ererf(jé) + R> c
21— y2, = e R
_Nk:o 5 <R—rk+\/;<erf(\/§)—erf(\@)>> c
§ NN
+ 5 (1 —max(yk 2, ye2)) (R —max(rg, re)) c.
k=0 £=0

Similar to Warnock’s formula for T*
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The polar star discrepancy: results
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— Complies with the “monkey-test” for this example
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Quality based on testfunctions

Similar to TESTPACK (Genz 1987):
@ 11 function families for R® (Hill-Robinson 2003)
@ Analytical solutions known
@ Typical difficulties (peak, oscillating, decaying, ...)

@ Random translation parameters
determine only location of difficulty
— average case error

— Results allow to discriminate z’s
— Does not always corresponds to the “monkey-test”
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Reproducing kernel approach

First attempt: kernel from Kuo-Wozniakowski 2010

Ky (x,y) = exp (—Y?|Ix — ylI3)

This leads to a worst case error

]
2

E(Py) = —s—
v(Pw) 4y2+1
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+ N2 D > e (—y2lxk—xil3)

k=0 =0
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Reproducing kernel approach results
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— Results very close to each other, but
— Complies with the “monkey-test” for this example
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Closing remarks

Conclusions:

@ Good generating vectors are not always transferable
@ Different quality criteria can be defined

Current work
@ Explore other discrepancy measures
@ Experiment with different kernels

@ Generalise

o Correlated normal variates
e Higher dimensions (s > 2)
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