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Consider the following problem of integration:

S(f ) := I =

∫
Es

f (x)dx , where

Es ≡ [0,1]s, x ≡ (x1, . . . , xs) ∈ Es ⊂ IRs, f ∈ C(Es).

Assume for a given r.v. θ one can prove that Eθ = I.

Monte Carlo approximation to the solution: θ̄n = 1
n

∑n
i=1 θ

(i) ≈ I.

Definition.
If I is the exact solution of the problem, then the probability error is
the least possible real number Rn, for which P = Pr

{
|θn − I| ≤ Rn

}
,

where 0 < P < 1.
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The computational problem is to approximate S(f ):

S(f ) : f → IR, where

S(f ) =

∫
Es

f (x)dx and f ∈ F0 ⊂ C(Es).

Quadrature formula A =
∑n

i=1 ci f (x (i)).

Randomized quadrature formula AR =
∑n

i=1 σi f (ξ(i)).

Definition.

Consider the set A of algorithms A: A = {A : Pr(Rn ≤ ε) ≥ c}
that solve a given problem with a probability error Rn such that the
probability that Rn is less than a priori given constant ε is bigger than
a constant c < 1.
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Uniformly distributed sequences
(t,m, s)-nets and (t, s)-sequences in base b
ΛΠτ sequences
Randomized Quasi-Monte Carlo (RQMC)

Definition ( H. Weyl, 1916 ).

The sequence x1, x2, . . . is called an uniformly distributed sequence
(u.d.s.) if, for an arbitrary region Ω ⊂ Es,

lim
n→∞

[Sn(Ω)/n] = V (Ω),

where Sn(Ω) is the number of points with 1 ≤ i ≤ n that lie inside Ω
and V (Ω) is the s-dimensional volume of Ω.

Theorem ( H. Weyl, 1916; Sobol’, 1990 ).

The relation lim
n→∞

1
n

n∑
i=1

f (ξj ) =

∫
Es

f (x)dx

holds for all Riemann integrable functions f if and only if the sequence
x1, x2, . . . is u.d.s.
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Definition ( H. Weyl, 1916 ).

The sequence x1, x2, . . . is called an uniformly distributed sequence
(u.d.s.) if, for an arbitrary region Ω ⊂ Es,

lim
n→∞

[Sn(Ω)/n] = V (Ω),

where Sn(Ω) is the number of points with 1 ≤ i ≤ n that lie inside Ω
and V (Ω) is the s-dimensional volume of Ω.

A u.d.s. should satisfy three additional requirements:
(i) the best asymptote as n→∞;
(ii) well distributed points for small n;
(iii) a computationally inexpensive algorithm.
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Randomized Quasi-Monte Carlo (RQMC)

An elementary s-interval in base b is a subset of Es of the form

s∏
j=0

[
aj

bdj
,

aj + 1
bdj

]
,

where aj , dj are integers and aj < dj for all j ∈ {1, ..., s}.

Definition ( H. Niederreiter, 1988 ).

Given a non-negative integer t , a (t , s)-sequence in base b is an infi-
nite sequence of points xn such that for all integers k ≥ 0,m ≥ t , the
sequence {xkbm

, . . . , x (k+1)bm−1} is a (t ,m, s)-net in base b.
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Uniformly distributed sequences
(t,m, s)-nets and (t, s)-sequences in base b
ΛΠτ sequences
Randomized Quasi-Monte Carlo (RQMC)

Definition ( H. Niederreiter, 1988 ).

Given two integers 0 ≤ t ≤ m, a (t ,m, s)-net in base b is a sequence
xn of bm points of Es such that Card P ∩ {x1, . . . , xbm} = bt for any
elementary interval P in base b of hypervolume λ(P) = bt−m.

Definition ( H. Niederreiter, 1988 ).

Given a non-negative integer t , a (t , s)-sequence in base b is an infi-
nite sequence of points xn such that for all integers k ≥ 0,m ≥ t , the
sequence {xkbm

, . . . , x (k+1)bm−1} is a (t ,m, s)-net in base b.
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Uniformly distributed sequences
(t,m, s)-nets and (t, s)-sequences in base b
ΛΠτ sequences
Randomized Quasi-Monte Carlo (RQMC)

Choose a primitive polynomial of degree sj over the Galois field

Pj = xsj + a1,jxsj−1 + a2,jxsj−2 + . . .+ asj−1,jx + 1,

where the coefficients a1,j , . . . ,asj−1,j ∈ {0,1}.
A sequence of positive integers {m1,j ,m2,j , . . .} is defined by

mk,j = 2a1,jmk−1,j ⊕ 22a2,jmk−2,j ⊕ · · · ⊕ 2sj mk−sj ,j ⊕mk−sj ,j ,

where the initial values mk,j ,1 ≤ k ≤ sj are odd and less than 2k .

The direction numbers {v1,j , v2,j , . . . }: vk,j =
mk,j

2k .

The j-th component of the i-th point in a Sobol’ sequence

xi,j = i1v1,j ⊕ i2v2,j ⊕ . . . ,

where ik is the k -th binary digit of i = (. . . i3i2i1)2.

I. Sobol’ (1979), P. Bradley, B. Fox (1988)
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Uniformly distributed sequences
(t,m, s)-nets and (t, s)-sequences in base b
ΛΠτ sequences
Randomized Quasi-Monte Carlo (RQMC)

Randomized Quasi-Monte Carlo turns QMC into a variance
reduction method by carefully randomizing well distributed points
xi ≡ (xi,1, xi,2 . . . xi,s).

Examples of RQMC point sets include
randomly shifted lattice rules,

scrambled digital nets,

digital nets with a random digital shift,

a Latin hypercube sample or a stratified sample followed by a
random permutation of the points.

Array-RQMC.
P. L’Ecuer, C. Lecot, B. Tuffin (2008)
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Description of the algorithm
Properties of the algorithm

If

xi = (xi,1, xi,2 . . . xi,s) ∈ Es

- the i-th ΛΠτ point,

then

the i-th random point ξi (ρ)
with a p.d.f. p(x):

ξi (ρ) = xi + ρωi ,

where ωi is a unique
uniformly distributed
vector in Es and ρ is the
"shaking radius".

Example:

ωi = {cosφi , sinφi} ∈ E2

xi
ρ

ξi

Figure: Generation of a random
point ξi ∈ E2.
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Description of the algorithm
Properties of the algorithm

Theorem.

The mathematical expectation of the random variable θ = f (ξ) is equal
to the value of the integral, that is

E{θ} = S(f ) =

∫
Es

f (x)dx .

Sketch of proof.

Assume ξ(ρ) = x + ρω ∈ Es, where ρ is relatively small ρ <<
[

aj

2dj
,

aj +1

2dj

]
.

ξi (ρ) is still in the same elementary s-interval Es
i =

∏s
j=0

[
aj

2dj
,

aj +1

2dj

]
, where the

pattern ΛΠτ point xi is. Since
∫

Es p(x)dx = 1; p(x) = 1 for x ∈ Es. That’s why
for the mathematical expectation of θ = f (ξ) we have

E{θ} =

∫
Es

f (x)p(x)dx =

∫
Es

f (x)dx .
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Example of a non-smooth integrand
Example of a smooth integrand

Example of
a non-smooth integrand:

f1(x1, x2, x3, x4) =
4∑

i=1

|(xi−0.5)−1/3|,

S(f1) ≈ 7.55953. 0
0.2

0.4
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Figure: The integrand function in
two-dimensional case.
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Example of a non-smooth integrand
Example of a smooth integrand

Table: Radius ρ of spheres of the random points (radius coefficient κ = ρ/δ).

n Min. dist., δ κ ρ κ ρ κ ρ

10 0.43301 0.001 0.00043 0.09 0.03897 0.4 0.17321

102 0.13166 0.001 0.00013 0.09 0.01185 0.4 0.05266

103 0.06392 0.001 0.00006 0.09 0.00575 0.4 0.02557

104 0.02812 0.001 0.00003 0.09 0.00253 0.4 0.01125

50.103 0.01400 0.001 0.00001 0.09 0.00126 0.4 0.00560
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Example of a non-smooth integrand
Example of a smooth integrand

Table: Relative error and computational time for numerical integration.
n SFMT Sobol’ MCA

Rel. err. Time Rel. err. Time δ κ ρ Rel. err. Time

(s) (s) ×103 (s)

10 0.0001 < 0.01 0.2813 < 0.01 0.433 0.03 13 0.0438 < 0.01

0.45 195 0.0509 < 0.01

102 0.0114 0.01 0.0565 < 0.01 0.132 0.03 3.9 0.0038 0.01

0.45 59 0.0050 0.01

103 0.0023 0.06 0.0114 0.01 0.064 0.03 1.9 0.0016 0.10

0.45 29 0.0004 0.11

104 0.0006 0.53 0.0023 0.06 0.028 0.03 0.8 4e-05 3.56

0.45 12.7 0.0002 3.58

30.103 0.0002 1.63 0.0011 0.19 0.019 0.03 0.6 0.0002 28.5

0.45 8.3 0.0003 28.8

50.103 0.0009 2.67 0.0008 0.29 0.014 0.03 0.4 0.0002 74.8

0.45 6.3 2e-05 75.7

Calculations have been carried out on a PC with Intel(R) Pentium(R) 4 Processor.
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Example of a non-smooth integrand
Example of a smooth integrand
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Figure: Relative error according to the "shaking radius".
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Example of a non-smooth integrand
Example of a smooth integrand

Table: Difference of relative errors for Sobol’ algorithm and the proposed
Monte Carlo algorithm.

@
@@n
κ 0.009 0.03 0.2 0.45

10 0.07709 0.23746 0.20639 0.23037

102 0.03594 0.05277 0.05214 0.05155

103 0.01014 0.00976 0.00940 0.01099

104 0.00197 0.00225 0.00228 0.00212

30.103 0.00102 0.00094 0.00084 0.00079

50.103 0.00077 0.00062 0.00077 0.00078
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Example of a non-smooth integrand
Example of a smooth integrand

Example of
a smooth integrand:

f2(x1, x2, x3, x4) = ex1+2x2 cos(x3)

1 + x2 + x3 + x4
,

S(f2) ≈ 1.83690.
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Figure: The integrand function in
two-dimensional case.
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Example of a non-smooth integrand
Example of a smooth integrand

Table: Relative error and computational time for numerical integration.

n SFMT Sobol’ MCA

Rel. err. Time Rel. err. Time δ κ ρ Rel. err. Time

(s) (s) ×103 (s)

102 0.0350 < 0.01 0.0155 < 0.01 0.132 0.03 3.9 0.0160 0.01

0.45 59 0.0264 0.01

103 0.0045 0.01 0.0023 < 0.01 0.064 0.03 1.9 0.0025 0.06

0.45 29 0.0058 0.06

104 0.0016 0.10 0.0002 0.02 0.028 0.03 0.8 0.0003 3.29

0.45 12.7 0.0016 3.28

30.103 0.0006 0.28 0.0001 0.04 0.019 0.03 0.6 0.0002 28.5

0.45 8.3 0.0011 28.4

50.103 0.0004 0.46 6e-05 0.07 0.014 0.03 0.4 0.0001 76.0

0.45 6.3 0.0008 76.1

Calculations have been carried out on a PC with Intel(R) Pentium(R) 4 Processor.
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The proposed algorithm improves the error estimates for non-smooth integrands
when the radius ρ is smaller than the minimal distance between ΛΠτ points δ.
Strongly speaking the proposed approach is applicable if ρ is much smaller than
δ. The implementation of the algorithm shows that this requirement is not very
strong. Even for relatively large radiuses ρ the results are good. The reason is
that centers of spheres are very well uniformly distributed by definition. So that,
even for large values of radiuses of shaking the generated random points
continue to be well distributed.

For relatively low number of points (< 1000) the proposed algorithm gives results
with a high accuracy. The relative error is approximately equal to 0.0038 for
n = 100. For the same sample size the Sobol’ algorithm gives more than 10
times higher error. For n = 1000 our algorithm gives relative error
0.0004 − 0.0016 depending on the parameter κ while the Sobol’ algorithm gives
0.0114. This is an important fact because one has a possibility to estimate the
value of the integral with a relatively high accuracy using a small number of
random points.
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The proposed algorithm improves the error estimates for non-smooth integrands
when the radius ρ is smaller than the minimal distance between ΛΠτ points δ.
Strongly speaking the proposed approach is applicable if ρ is much smaller than
δ. The implementation of the algorithm shows that this requirement is not very
strong. Even for relatively large radiuses ρ the results are good. The reason is
that centers of spheres are very well uniformly distributed by definition. So that,
even for large values of radiuses of shaking the generated random points
continue to be well distributed.

For relatively low number of points (< 1000) the proposed algorithm gives results
with a high accuracy. The relative error is approximately equal to 0.0038 for
n = 100. For the same sample size the Sobol’ algorithm gives more than 10
times higher error. For n = 1000 our algorithm gives relative error
0.0004 − 0.0016 depending on the parameter κ while the Sobol’ algorithm gives
0.0114. This is an important fact because one has a possibility to estimate the
value of the integral with a relatively high accuracy using a small number of
random points.
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The proposed algorithm combines properties of two of the best
available approaches - Sobol’s quasi-Monte Carlo integration
and a high quality pseudorandom number SIMD-oriented Fast
Mersenne Twister (SFMT) generator.

The Monte Carlo algorithm has advantages against quasi-Monte
Carlo and SFMT for non-smooth integrands. For relatively small
number of points the proposed approach gives much better
results than Sobol’s quasi-Monte Carlo integration.

In case of smooth functions the proposed algorithm has
significant advantage against plain Monte Carlo that uses SFMT
generator with respect to the relative error.
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The proposed algorithm combines properties of two of the best
available approaches - Sobol’s quasi-Monte Carlo integration
and a high quality pseudorandom number SIMD-oriented Fast
Mersenne Twister (SFMT) generator.

The Monte Carlo algorithm has advantages against quasi-Monte
Carlo and SFMT for non-smooth integrands. For relatively small
number of points the proposed approach gives much better
results than Sobol’s quasi-Monte Carlo integration.

In case of smooth functions the proposed algorithm has
significant advantage against plain Monte Carlo that uses SFMT
generator with respect to the relative error.
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The proposed algorithm combines properties of two of the best
available approaches - Sobol’s quasi-Monte Carlo integration
and a high quality pseudorandom number SIMD-oriented Fast
Mersenne Twister (SFMT) generator.

The Monte Carlo algorithm has advantages against quasi-Monte
Carlo and SFMT for non-smooth integrands. For relatively small
number of points the proposed approach gives much better
results than Sobol’s quasi-Monte Carlo integration.

In case of smooth functions the proposed algorithm has
significant advantage against plain Monte Carlo that uses SFMT
generator with respect to the relative error.
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Figure: Poor projections of ΛΠτ sequences for high dimensions
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More information about SFMT generator:
http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/SFMT/index.html

Ivan Dimov, BAS - IMACS Monte Carlo A Monte Carlo Method Based on ΛΠτ Sequences


	Outline
	Introduction
	Problem setting
	Mathematical background
	Uniformly distributed sequences
	(t,m,s)-nets and (t,s)-sequences in base b
	 sequences
	Randomized Quasi-Monte Carlo (RQMC)

	The Monte Carlo algorithm
	Description of the algorithm
	Properties of the algorithm

	Numerical results
	Example of a non-smooth integrand
	Example of a smooth integrand

	Discussion of applicability
	Concluding remarks
	Bibliography

