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ϕ∗(x) =

∫
X

k(x, x′)ϕ∗(x′) dx′ + h(x) or ϕ∗ = K∗ϕ∗ + h, (1)

∫
k(x′, x) dx = q(x′) ≤ 1− δ, δ > 0, X is bounded domain in Rn.

ϕ∗, h ≥ 0, ϕ∗, h ∈ L∞(X), K∗ ∈ [L∞(X) → L∞(X)],

Weighted “collision estimator”

x1, . . . , xN

p(x, x′)− simulated transition distribution density x→ x′

Q0(x0) = 1, Qn = Qn−1
k(xn−1, xn)

p(xn−1, xn)
, ξx = h(x) +

N∑
n=1

Qnh(xn) (2)

ϕ∗(x) = Eξx = h(x) + E

N∑
n=1

Qnh(xn), x0 ≡ x, (3)
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The method of recurrent probabilistic averaging [1]

ϕ∗ =

∞∑
n=0

K∗nh, ξx0 = h(x0) +

N∑
n=1

Qnh(xn) =

∞∑
n=0

∆nQnh(xn),

where Q0 ≡ 1, Qn = Qn−1q(xn−1, xn);

q(xn−1, xn) =
k(xn−1, xn)

p(xn−1, xn)

∆n – indicator of “non-break” till xn. Under presented assumptions: Eξx0 = ϕ∗(x0)
[3, 4].

ξx0 = h(x0) + ∆1q(x0, x1)ξx1. (4)

Recurrence ξx = h(x) + δxq(x, x
′)ξx′ defines weight estimator uniquely. Here δx –

indicator of “non-break” in the transition x → x′, and δx0 = ∆1. If q(x, x′) ≤ 1 then
variance Dξx0 is knowingly finite [3, 4]. In other case Dξx0 can be infinite.
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Let us consider the number of the branches ν(x, x′) and probability α(x, x′) so

P (ν(x, x′) = r(x, x′)) = 1− α(x, x′),

P (ν(x, x′) = r(x, x′) + 1) = α(x, x′).

Let ζx is defined by the recurrence:

ζx = h(x) + δx
q(x, x′)

Eν(x, x′)

ν(x,x′)∑
i=1

ζ
(i)
x′ , (5)

where {ζ(i)
x′ } – independent realizations of ζx′.

Lemma 1 Under defined assumptions: Eζx0 = ϕ∗(x0).
Proof Using the Wald identity we have:

E

ν(x0,x1)∑
i=1

ζ(i)
x1

= Eν(x, x′)Eζx1.

Eζx =

∫
X

k(x, x′)Eζx′dx
′ + h(x).
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THEOREM 1 The function Eζ2
x is defined [1] by Neumann series for equation

Eζ2
x =

∫
X

k(x, x′)
q(x, x′)

Eν(x, x′)
Eζ2

x′dx
′ +H(x), (6)

H(x) = h(x)[2ϕ∗(x)− h(x)] +

∫
X

k(x, x′)ψ(x, x′)ϕ∗2(x′)dx′,

ψ(x, x′) =
q(x, x′)E{ν(x, x′)(ν(x, x′)− 1)}

(Eν(x, x′))2
.

Direct simulation(q(x, x′) ≡ 1) without branching ξx = h(x) + δxξx′. Then [2]

Eξ2
x =

∫
X

k(x, x′)Eξ2
x′dx

′ + h(x)[2ϕ∗(x)− h(x)]

If Eν(x, x′) = q(x, x′) then Eζ2
x ≥ Eξ2

x or Dζ2
x ≥ Dξ2

x.
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Computational efficiency (computation cost)
Let us define computation cost as

S = TDξ

the product of the average time T needed for one realization (trajectory) of the ξ and
the variance estimator Dξ.

Let us suppose that the average simulation time tp ( p(x, x′)) approximately equals
to average simulation time tk (k(x, x′)) for the one transition x → x′ and T(·) =
t(·)EN(·) where EN(·) is the expectation of the number of the state at which the
trajectory terminates (under use of the simulation density (·) ).

n(x) =

∫
X

k(x, x′)n(x′) dx′ + I{x∈X},

ζ̃x = I{x∈X}+δx

ν(x,x′)∑
i=1

ζ̃
(i)
x′ , ξ̃x = I{x∈X}+δxξ̃x′, Eζ̃x = EN(p)(x) = n(x) = EN(k)(x) = Eξ̃x.

Sb(x) = DζxtbEN(p)(x) ≥ Sd(x) = DξxtdEN(k)(x)
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Particle fission coefficient The problem of particle fission coefficient computation
in convex domain D with absorber outside. x0, ..., xN - the chain of particle collisions
with the elements ofD. After each collision with given probabilities we have scattering,
absorption or fission with average ν particles.

Let r0 ∈ D be initial particle position with initial direction ω0. The original
problem is closely connected with computation of the average number ϕ∗(r0, ω0) of
the take-off particles where

ϕ∗ = K∗ϕ∗ + h and h(r, ω) = 1 for r /∈ D and h(r, ω) = 0 otherwise.
It is well-known that there exists such ν∗ so if ν > ν∗ then the process is above-

critical ( ϕ∗(x0) = +∞). If ν < ν∗ then the environment is subcritical ( ϕ∗(x0) <
+∞). The simple weight algorithm for estimating ϕ∗(x0) is to simulate the next fission
as scattering and multiply the particle weight by ν. In this case Eξ2

x = g <∞ where

g = K∗
pg + h[2ϕ∗ − h], K∗

p → k2(x, x′)/p(x, x′) if ν2 < ν∗. (7)

It is more natural to use the branching algorithm with [ν] и [ν]+1 particles fussed
at the collision point. Due to the Theorem 1 we have Eζ2

x < +∞ при ν < ν∗.
The result

ϕ∗(x) < C < +∞ ∀x, then Dζx <∞
Condition ρ(K∗) < 1 is not required.
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Splitting
Following [3], let us introduce the notation: ζ = g(λ, η) with j.d.f. f (x, y) and

Eζ =

∫
X

f (x, y)g(x, y)dxdy =

∫
X

f1(x)E[ζ|x]dx,

E[ζ|x] =

∫
X

f2(y|x)g(x, y)dy, f1(x) =

∫
Y

f (x, y)dy

where f1(x) is the density of the absolute distribution of λ; f2(y|x) is the density of
the conditional distribution of η when λ = x. DE[ζ|λ] ≤ Dζ = DE[ζ|λ] + ED[ζ|λ]

Let λ ∼ f1(x) and let n ≥ 1 be an integer. G.A. Mikhailov [3] used the following
estimate:

ζn =
1

n

n∑
i=1

g(λ, ηi), Eζn = I, Dζn = DE[ζ|λ] +
ED[ζ|λ]

n
= A1 +

A2

n

and demonstrates that

n∗ =

√
A2t1
A1t2

minimizes Sn = (t1 + nt2)(A1 +
A2

n
) ≤ S0 = (t1 + t2)(A1 + A2)

where t1 average computation time for λ and t2 av. comp. time for η (λ = x).
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Splitting
Let us define the direct simulation of the collision estimator with splitting the

trajectory only at second transition x1 → x2

ζx = h(x) + δxζx′, ζx′ = h(x′) + δx′
1

ν

ν∑
i=1

ξ
(i)
x′′ .

Eζ2
x = (Ah) + (Aν) =

(
h(x)[2ϕ∗(x)− h(x)] +

∫
X

k(x, x′)h(x′)[2ϕ∗(x′)− h(x′)]dx′
)

+

(∫
X

k(x, x′)

∫
X

k(x′, x′′)
ν − 1

ν
ϕ∗2(x′′)dx′′dx′ +

∫
X

k(x, x′)

∫
X

1

ν
k(x′, x′′)Eξ2

x′′dx
′′dx′

)

Eξ2
x = (Ah) + (Ad) = (Ah) +

∫
X

k(x, x′)

∫
X

k(x′, x′′)Eξ2
x′′dx

′′dx′

Let us compare the computation cost

Sν(x) = (t1 + νt2)(Ah + Aν) with S1(x) = (t1 + t2)(Ah + Ad)

where t1 average computation time for x0 → x2 and t2 av. comp. time for x2 → xN .



IMACS 2011, I.N. Medvedev, Splitting and Branching in Monte Carlo Method 10

It is easy to check that

(Sν(x)− S1(x))
′
ν =

t1
ν2

(
[K∗ϕ∗2](x)− Ad

)
+ t2

(
Ah + [K∗ϕ∗2](x)− ϕ∗2(x)

)
and

(Sν(x)− S1(x))
′
ν = 0 if ν∗ =

√
t1(Ad − [K∗ϕ∗2](x))

t2(Ah + [K∗ϕ∗2](x)− ϕ∗2(x)
).

Since

(Sν(x)− S1(x))
′′
νν(ν

∗) > 0 then ν∗ provides minimum to Sν(x)− S1(x)

and
Sν∗(x)− S1(x) ≥ 0 ∀x ∈ X

Let us note that in general Ah and Ad can be estimated by the result from special
a priori calculations.
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Splitting Let us consider the direct simulation with splitting the trajectory only
at first transition x0 → x1. In this case

ζx = h(x) + δx
1

ν

ν∑
i=1

ξ
(i)
x′ , .

Eζ2
x =

∫
X

1

ν
k(x, x′)Eξ2

x′dx
′ + h(x)[2ϕ(x)∗− h(x)] +

∫
X

k(x, x′)
ν − 1

ν
ϕ∗2(x′)dx′. (8)

Computation cost Sν(x)− Sd(x) = νtkDζx − tkDξx =

tk

(
νDζx −

∫
X

k(x, x′)Eξ2
x′dx

′ − h(x)[2ϕ∗(x)− h(x)] + ϕ∗2(x)
)

=

νtk(ν − 1)
(
h(x)[2ϕ∗(x)− h(x)] +

∫
X

k(x, x′)ϕ∗2(x′)dx′ − ϕ∗2(x)
)

=

νtk(ν − 1)
(
ϕ∗2(x)− [K∗ϕ∗]2(x) + [K∗ϕ∗2](x)− ϕ∗2(x)

)
=

νtk(ν − 1)
(
[K∗ϕ∗2](x)− [K∗ϕ∗]2(x)

)
≥ 0.)

( (Cauchy-Bunyakovsky) Schwarz inequality)
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