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0 (x) = /k(az, Vo (2') dx' + h(z) or ¢ = K*p* + h, (1)

/k(x’,x) de=q(2') <1-96, § >0, X is bounded domain in R".

Weighted “collision estimator”
Lly... TN

p(x,2") — simulated transition distribution density z — 2/

k(@a-1, 20) -
Qolan) =1, Qn = Quor o, o= hia) + 3 Qehla) (2

o*(x) = E& = h(z) + Y Quh(x,), o= 1, (3)
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The method of recurrent probabilistic averaging [1]

00 N 00
=Y K*"h, & =h(zo)+ Y Quhlzy) = AQuh(zy),
n=0 n=1 n=0

where Qp =1, Q,, = Qn_1q(ﬂfn—1, CI?n);

k<xn—17 xn)

p<ajn—17 xn)

Q<xn—17 ajn) —

A, — indicator of “non-break” till x,. Under presented assumptions: E&,, = ¢©*(xy)
13, 4.

Exy = (o) + A1q(x0, 21)Es, - (4)
Recurrence &, = h(x) + d.q(x, 2')&, defines weight estimator uniquely. Here 6, —

indicator of “non-break” in the transition x — ', and d,, = Ay. If g(x,2") < 1 then
variance D&, is knowingly finite |3, 4|. In other case D¢, can be infinite.
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Let us consider the number of the branches v(x,x") and probability o(x, ") so

where {Cif)} — independent realizations of (.
Lemma 1 Under defined assumptions: EC,, = ¢*(x0).
Proof Using the Wald identity we have:

v(xg,71)

E Z Cxl Ev(z, 2" )EC,,.

E¢, = /k(x,x’)ECx/da:’ + h(x).

X
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THEOREM 1 The function EC* is defined [1] by Neumann series for equation

G2 = [ ko) AT B + Hia) )

q(z, 2)Ev(z, ) (v(z, o) — 1)}

Pz, 2) = (Ev(z, x'))?

Direct simulation(q(x, ") = 1) without branching &, = h(z) + ,&,+. Then [2]

B¢ = [ b2 €’ + h(a) 2 (o) — hla)

If BEv(x,2) =q(x,2") then BECZ > EE or D¢ > DE2
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Computational efficiency (computation cost)
Let us define computation cost as

S = TD¢

the product of the average time T needed for one realization (trajectory) of the & and
the variance estimator DE.

Let us suppose that the average simulation time ¢, ( p(x, 2’)) approximately equals
to average simulation time ?; (k(x,2)) for the one transition x — 2’ and T, =
t( EN(y where EN(, is the expectation of the number of the state at which the
trajectory terminates (under use of the simulation density (-) ).

n(zr) = /k(az,x')n(m’) dx’ + Irzexy,
X

v(z,a')

é:ib‘ — ]{xeX}+5x Z CN_(S), éa: — ]{xeX}—stéx’a Eéx — EN@)(ZE) — n@j) — EN(k)(:C) — EE

1=1

Sb<£C> = DCxthN(p)<37) > Sd<33) = DgxtdEN(k)<ZC>
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Particle fission coefficient The problem of particle fission coefficient computation
in convex domain D with absorber outside. x, ..., v - the chain of particle collisions
with the elements of D. After each collision with given probabilities we have scattering,
absorption or fission with average v particles.

Let ro € D be initial particle position with initial direction wy. The original
problem is closely connected with computation of the average number *(rg,wg) of
the take-off particles where

0" = K*p*+ h and h(r,w) =1 for r ¢ D and h(r,w) = 0 otherwise.

It is well-known that there exists such v* so if v > v* then the process is above-
critical ( ¢*(zg) = +00). If v < v* then the environment is subcritical ( *(xg) <
+00). The simple weight algorithm for estimating ¢*(x¢) is to simulate the next fission
as scattering and multiply the particle weight by v. In this case E£2 = g < oo where

g=K,g+h]2¢0"—h], K, — K (z, 2" /p(x, 2)) if v < V" (7)

[t is more natural to use the branching algorithm with [v] n [v]+ 1 particles fussed
at the collision point. Due to the Theorem 1 we have EC? < +oo npn v < v*,
The result
e'(r) < C < 400 Va, then D( < o0

Condition p(K*) < 1 is not required.



IMACS 2011, I.N. Medvedev, Splitting and Branching in Monte Carlo Method 8

Splitting
Following [3|, let us introduce the notation: ¢ = g(A,n) with j.d.f. f(x,y) and

B¢ = /fxy xydxdy—/ﬁ B[¢|z|dx

Bl¢|2] = /fzy\x (e 9)dy, iz /f:vy

where fi(x) is the den81ty of the absolute distribution of A; fo(y|z) is the density of
the conditional distribution of n when A = x.  DE[(|A] < D{ = DE[(|A] + EDI[C|A]

Let A ~ fi(z) and let n > 1 be an integer. G.A. Mikhailov [3] used the following
estimate:

1 — EDI[¢|A A
= 1S gum). EBG =1, DG, = DECA] + 2DEA g A
n < n n
and demonstrates that
A A,
nt =T minimizes S, = (t; + ntg)(A; + ” ) < Sp = (t1 +t2)(A; + Ay)
162

where t1 average computation time for A and t5 av. comp. time for n (A = x).
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Splitting
Let us define the direct simulation of the collision estimator with splitting the
trajectory only at second transition 1 — x9

/ I < U
Cx — h(ﬂ?) + 51‘C56’7 Cx’ — h(l’ ) + 513'; Zgi”)
1=1

k(z,z")h(z)[20%(2") — h(x’)]dx') +

ey
@
|
I
=
+
I
S
I
N\
=
=
NS}
AS)
=
=
|
=
=
+

— 1 1
(/ k(x,a:’)/k(a:’,x”)y gp*Q(x")dx"da:’Jr/k(az,x’)/—k(az’,az”)Efi//daz”dx’)
v ”
X X X X
Efg = (Ah> + (Ad> = <Ah) -+ / k([lﬁ, ZE'/> / k(ZC’, x//)EfzudiC”dI,

X X
Let us compare the computation cost

S,,(ZIZ) = (tl -+ Vtg)(Ah + AV) with Sl<$> = <t1 + tz)(Ah + Ad)

where t; average computation time for zy — x9 and ty av. comp. time for x9 — zy.



IMACS 2011, I.N. Medvedev, Splitting and Branching in Monte Carlo Method 10

[t is easy to check that

(5.(2) — Su(2)), = S(K*9)(w) — Ad) + bo( A + (K07 (x) — 7(2)
and
et o e [ 0 Ko@)
(Sul) = Sila)), = 0 if \/M y it s
Since

2

(Sy(x) — S1(x)),,(v") >0 then v* provides minimum to S,(x)— Si(x)

and

Syx(x) — S1(x) >0 Ve e X

Let us note that in general A; and A, can be estimated by the result from special
a priori calculations.
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Splitting Let us consider the direct simulation with splitting the trajectory only
at first transition xg — x1. In this case

_ LS )
G = h(x) +5xyzzlj£x,,

v—1

o2(a)da. (8)

B2 = /% k(z, 2" \EEdx' + h(z)[2p0(z)* — h(z)] + / k(x,x')

X X
Computation cost Sy(x) — Sq(x) = vty D¢, — t;DE, =

tr (VDC;U - /k(az, B dx' — h(z)[2¢0"(x) — h(z)] + 90*2(;1;)) —

X

vialy = 1) ()2 (@) — bl + [ Ko )@’ - 7(a) =

vtp(v — 1) (9" (@) — [K'¢J(z) + [K™)(2) — ¢™(2)) =
vtp(v — 1) ([K'¢™)(2) — [K*¢"T(x)) > 0.)
( (Cauchy-Bunyakovsky) Schwarz inequality)

vV
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