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Formulation of the path integral formalism [1/3]

Many-body model in non-relativistic quantum theory

Ĥ =

M∑
i=1

p̂2
i

2mi
+ V̂ (q̂1, . . . , q̂M )

Solution is usually expressed in terms of eigenvalues and
eigenfunctions

Complete analytic solution can be also expressed in terms
of general transition amplitudes

A(a,b;T ) = 〈b|e−iTĤ/~|a〉

|a〉 - initial state, |b〉 - final state, T - time of propagation

For technical reasons, we switch to imaginary (Euclidean)
time in numerical calculations
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Formulation of the path integral formalism [2/3]

The standard derivation starts from the identity (we use
1D system, for simplicity)

A(a, b;T ) =

∫
dq1 · · · dqN−1A(a, q1; ε)A(q1, q2; ε) · · ·A(qN−1, b; ε)

dividing the evolution into N steps of the length ε = T/N .

Approximation: calculation of short-time amplitudes up to
the first order in ε (~ = 1)

AN (a, b;T ) =
1

(2πε)N/2

∫
dq1 · · · dqN−1e

−SN

Continual amplitude A(a, b;T ) is obtained in the limit
N →∞ of the discretized amplitude AN (a, b;T )

A(a, b;T ) = lim
N→∞

AN (a, b;T )
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Formulation of the path integral formalism [3/3]

Discretized amplitude AN (a, b;T ) is expressed as a multiple
integral of the function e−SN , where SN is called
discretized action

For a theory defined by the Lagrangian L = 1
2 q̇

2 + V (q),
the usual naive discretized action is given by

SN =

N−1∑
n=0

(δ2n
2ε

+ εV (q̄n)
)

where δn = qn+1 − qn, q̄n = qn+1+qn
2
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Numerical calculation of path integral [1/2]

Path integral formalism is ideally suited for numerical
approach, with physical quantities defined as expectation
values with respect to the exponential of the action,
discretized in the form of a multiple-integral expression,
with the normalization (partition function):∫

dq1 · · · dqN−1e
−SN

Monte Carlo (MC) is the method of choice for calculation
of such integrals

However, although multiple integrals can be calculated
very accurately and efficiently by MC, there still remains
the difficult N →∞ limit

This is what makes the outlined constructive definition of
path integrals difficult to use in practical applications
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Numerical calculation of path integral [2/2]

Discretization used in the definition of path integrals is not
unique; in fact, the choice of the discretization is of
essential importance

Naive discretized action (in the mid-point prescription)
gives discretized amplitudes converging to the continuum
limit as slow as 1/N

Using special techniques and properties we can get better
convergence (e.g. left prescription gives 1/N2 convergence
when partition function is calculated)

However, this cannot be done in a systematic way, nor it
can be used in all cases (e.g. left prescription cannot be
used for systems with ordering ambiguities)
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Discretized effective actions [1/2]

Discretized actions can be classified according to the speed
of convergence of discretized path integrals to continuum
values

It is possible to introduce different discretized actions
which contain some additional terms compared to the naive
discretized action

They must vanish in the N →∞ limit, and should not
change continuum values of amplitudes

Fortunately, such additional terms in discretized actions
can be chosen in a smart way so as to speed up the
convergence of path integrals

IMACS Seminar on Monte Carlo Methods 2011, Borovets, Bulgaria 1 September 2011D. Vudragović: Extension of the SPEEDUP Path Integral Monte Carlo Code
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Discretized effective actions [2/2]

Improved discretized actions have been earlier constructed
through several approaches, including:

Generalizations of the Trotter-Suzuki formula
Improvements in the short-time propagation
Expansion of the propagator by the number of derivatives

This improved the convergence of general path integrals for
partition functions from 1/N to 1/N4
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Recursive approach [1/3]

Recursive method for deriving the discretized effective
actions is based on solving the underlying Schrödinger
equation for the amplitude

This approach is by far the most efficient, both for
one-body and many-body systems in arbitrary number of
dimensions

Recursive approach gives transition amplitudes in terms of
the ideal discretized action

A(a, b;T ) =
1√
2πT

e−S∗(a,b;T )

This expression is correct not only for short times of
propagation, but also for arbitrary large T
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Recursive approach [2/3]

Ideal effective potential is introduced by

S∗(a, b;T ) = T

[
1

2

(
b− a
T

)2

+W

]

where W is the (ideal) effective potential
The effective potential allows systematic and hierarchic
double expansion in the form

W (x, x̄; ε) =

∞∑
m=0

m∑
k=0

cm,k(x) εm−kx̄2k

If we restrict the above sum over m to p− 1, the effective
potential Wp(x, x̄; ε) gives expansion of the effective action
S∗
p to order εp, and hence the level designation p for both

the effective action and the corresponding potential Wp
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Recursive approach [3/3]

In Path Integral Monte Carlo simulations for calculation of
long time amplitudes, the use of level p effective action
leads to significantly improved convergence of discretized
amplitudes

Discretized amplitudes calculated with the level p effective
action converge as fast as εp to the continuum values, i.e.
as 1/Np, where N is the number of time steps used in the
discretization.
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Overview

Discretization of the propagation time with level p effective
action leads to discretized amplitudes in the form

A
(p)
N (a, b;T ) =

∫
dq1 · · · dqN−1

(2πε)N/2
e−S

(p)
N

where S
(p)
N stands for the discretized level p effective action

S
(p)
N =

N−1∑
k=0

[
2x̄2k
ε

+ εWp(xk, x̄k; ε)

]
abbreviations:

q0 = a, qN = b, xk = (qk+1 + qk)/2, x̄k = (qk+1 − qk)/2
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Bisection method [1/2]

Discretized trajectory q(t) = {q0, q1, . . . qN} is constructed
using the bisection method

Procedure starts from bisection level n = 0 - initial and
final position of the particle
At bisection level n = 1 the propagation is divided into two
time-steps - coordinate q of the particle at the moment T/2
The coordinate q is generated from the Gaussian
probability density function centered at (a+ b)/2 and with
the width σ1 =

√
T/2

The procedure continues iteratively
At each bisection level n, new coordinates are generated in
the middle of each time step from Gaussians centered at
mid-point of coordinates generated at level n− 1, with the
width σn =

√
T/2n
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Bisection method [2/2]

Numbers η from the Gaussian centered at zero are
generated by Box-Müller method

η =
√
−2σ2

n ln ξ1 cos 2πξ2

ξ1 and ξ2 are generated from the uniform distribution on
the interval U = [0, 1] (SPRNG library)

If the target bisection level is s, then at bisection level
n ≤ s

q
[
(1 + 2i) · 2s−n

]
= ηi +

1

2

(
q
[
i · 2s−n+1

]
+ q
[
(i+ 1) · 2s−n+1

])

where i runs from 0 to 2n−1 − 1
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Introduction
SPEEDUP algorithm

Low-dimensional quasi-MC
Quasi-MC SPEEDUP algorithm

Conclusions

Monte Carlo approach
Quasi-MC approach

Monte Carlo approach [1/2]

Monte Carlo method uses pseudo-random numbers for
calculation of the integrals

For d-dimensional integral on a unit cube Ud, with ξi
sequence of pseudo-random d-dimensional points in Ud,
MC estimate of the integral of the function f(x) is given by
the average of the function f evaluated at the MC sample
of points ξi

According to the central limit theorem, such estimate
converges to the exact value of the integral when the
number of MC samples NMC goes to infinity
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Monte Carlo approach [2/2]

Furthermore, central limit theorem states that the
statistical distribution of numerical results obtained using
large number of independent MC samples is a Gaussian,
centered at the exact value of the integral, with the
variance σ2(f)/NMC , where σ2(f) is given by the analytic
formula

σ2(f) =

∫
Ud

f2(x)dx−

(∫
Ud

f(x)dx

)2

and can be estimated as well from a single MC run
This gives clear statistical interpretation of errors when
MC method is used: the distribution of deviations is a
Gaussian with the expected standard deviation:√

σ2(f)/NMC

Convergence rate is proportional to N
−1/2
MC
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Quasi-MC approach [1/3]

There are many known quasi-random sequences: Halton,
Sobol, Faure

Sobol’s sequence is used for implementation of the
SPEEDUP quasi-MC algorithm

In order to verify the quasi-MC algorithm, we have
considered calculation of the Gaussian-type integrals

I =

∫
Ud

exp
(
−

d∑
i=1

x2i

)
dx

We have performed numerical calculations using large
numbers of independent quasi-MC samples for different
values of dimensionality d
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Quasi-MC approach [2/3]

Obtained distribution of numerical estimates for the value
of the integral was always found to be a Gaussian, whose
parameters can be found by fitting

Obtained distributions were centered on the exact values of
integrals within the errors estimated by the fitted widths of
Gaussians

Deviations were proportional to N−1
qMC , which is a

significant improvement over the standard MC convergence
speed
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Quasi-MC approach [3/3]
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SPEEDUP code modification

Quasi-random numbers instead of pseudo-random ones

Implementation of Sobol’s sequence that allows generation
of quasi-random numbers in a large number of dimensions

Box-Müller method to obtain the trajectories according to
the bisection algorithm
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Distribution [1/3]

Statistical distribution of the obtained results on a large
ensemble of samples

Quasi-MC SPEEDUP algorithm is tested for the example
of calculation of the transition amplitudes A(0, 1; 1) for the
anharmonic potential

V (x) =
1

2
mω2x2 +

1

24
g x4

for the values of parameters m = 1, g = 1, with the level
p = 4 effective action, and using the target bisection level
s = 8 (255-dimensional integrals)

Distribution the ensemble of 103 independently calculated
transition amplitudes, each obtained from the sample of
NqMC = 108 trajectories
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Distribution [2/3]
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Distribution [3/3]

In order to assess if the obtained estimate for the
amplitude (mean value of the fitted Gaussian) is correct,
we have used comparison with the MC SPEEDUP code
with exceedingly large number of samples (NMC = 1012)

With such a sample we achieved the comparable precision
for the amplitude

Ap=4
exact = 0.18702926(3)

which is used as our estimate for the exact value in further
calculations of deviations of numerical results obtained
from the quasi-Monte Carlo SPEEDUP code.
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Introduction
SPEEDUP algorithm

Low-dimensional quasi-MC
Quasi-MC SPEEDUP algorithm

Conclusions

SPEEDUP code modification
Distribution
Deviation
Speedup

Deviation [1/2]

Standard deviation of quasi-MC results cannot be
estimated using the MC approach

One approach would be to always study the distribution
and estimate the standard deviation from an ensemble of
samples

This takes a considerable amount of time, which is not
justified if there are other means to reliably estimate the
deviation

We have studied dependence of the deviation from the
exact value of the amplitude as a function of the size of the
sample NqMC
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Deviation [2/2]
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Exact value of the amplitude is obtained by the MC
algorithm
We found approximate scaling of deviations to be N−1

qMC

for all values of the target bisection level
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Speedup [1/2]

N−1
qMC scaling leads to the improved performance of

quasi-MC algorithm compared to the standard MC method

Generation of pseudo-random and quasi-random numbers
is of similar complexity

Therefore, the fact that one needs much smaller size of
quasi-MC sample in order to obtain the same accuracy as
with the MC algorithm leads to a significant speedup
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Speedup [2/2]
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Even for a moderate value of the required precision ∆, one
obtains improvement of many orders of magnitude,
approximately proportional to 1/∆
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Conclusions

We have implemented quasi-MC extension of the
SPEEDUP code for calculation of quantum mechanical
transition amplitudes using the effective action approach

Quasi-MC SPEEDUP algorithm uses Sobol’s set of
quasi-random numbers

Distribution of numerical results obtained using the
quasi-MC algorithm is Gaussian

1/NqMC scaling of deviations leads to a significant speedup
of the quasi-MC algorithm compared to the standard MC
approach for the same accuracy of results
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