

Advanced Statistical Strategy for Generation of Non-Normally distributed PSP Compact Model Parameters and Statistical Circuit Simulation

<u>Asen Asenov</u>*,**, Urban Kovac*, Craig Alexander**, Daryoosh Dideban**, Binjie Cheng**, Negin Moezi**, and Gareth Roy*

> * University of Glasgow ** Gold Standard Simulations (GSS) Ltd.

- Background
- Physical simulation
- Compact model extraction
- Principle Component Analysis
- Nonlinear Power Method
- Conclusions

Background

- Physical simulation
- Compact model extraction
- Principle Component Analysis
- Nonlinear Power Method
- Conclusions

CMOS variability classification

After K. Takeuchi (NEC)

Sources of statistical variability

Sources of statistical variability

GSS

- Background
- Physical simulation
- Compact model extraction
- Principle Component Analysis
- Nonlinear Power Method
- Conclusions

GSS 'atomistic' simulation tools

3D DD simulator

Random discrete dopants Random interface roughness Line edge roughness DG quantum corrections

□ 3D MC simulator

Si/S-Si/SiGe/III-V New interface scattering models Degeneracy High-*k* dielectrics *Ab-initio* impurity scattering *Ab-initio* interface roughness

3D NEGF simulator

Full 3D NEGF Coupled mode space 3D NEGF Includes scattering

The basic semiconductor equations

The basic equations that describe the operation of most semiconductor devices are:

$$\frac{d^2\psi}{dx^2} = -\frac{q}{\varepsilon_{Si}} \left[p(x) - n(x) + N_D^+(x) - N_A^-(x) \right] \quad \text{Poisson's equation}$$

$$\frac{dn}{dt} = \frac{1}{q} \frac{\partial J_n}{\partial x} - R_n + G_n \quad \text{The continuity equations for electrons and}$$

$$\frac{dp}{dt} = -\frac{1}{q} \frac{\partial J_p}{\partial x} - R_p + G_p \quad \text{The continuity equations for electrons of mobile}$$

$$\frac{dp}{dt} = -\frac{1}{q} \frac{\partial J_p}{\partial x} - R_p + G_p$$

Where

 ϕ_n , ϕ_p quasi-Fermi potentials

$$J_{n} = -qn\mu_{n} \left(\frac{d\psi}{dx} - \frac{k_{B}T}{qn} \frac{dn}{dx} \right) = -qn\mu_{n} \frac{d\phi_{n}}{dx}$$
$$J_{p} = -qp\mu_{p} \left(\frac{d\psi}{dx} + \frac{k_{B}T}{qp} \frac{dp}{dx} \right) = -qp\mu_{p} \frac{d\phi_{p}}{dx}$$

$$\phi_n = \psi - \frac{k_B T}{q} \ln\left(\frac{n}{n_i}\right)$$
$$\phi_p = \psi + \frac{k_B T}{q} \ln\left(\frac{p}{n_i}\right)$$

Grid/cluster based simulation technology

- Background
- Physical simulation
- Compact model extraction
- Principle Component Analysis
- Nonlinear Power Method
- Conclusions

Compact models

- Compact models (CM) used in circuit simulators like SPICE are the interface between technology and design.
- CM are usually closed form analytical expressions returning terminal currents as a function of applied bias.
- CM have a large number of parameters determined by fitting to measured or simulated transistor characteristics.
- The industrial standard compact models are BSIM and PSP.

$$I_D = \left(V_S, V_D, V_G, p1, p2, \dots pn\right)$$

Two stage parameter extraction

Large set of microscopically different transistors

Sensitivity strength 3 - U0 0.0 0.2 0.4 Sensitivity Strength -U0

University of Glasgow

Comprehensive sensitivity analysis

GSS

Statistical accuracy

Statistical accuracy

Statistical compact model parameter correlations BSIM

- Background
- Physical simulation
- Compact model extraction
- Principle Component Analysis
- Nonlinear Power Method
- Conclusions

PCA

PCA converts a set of observations of correlated variables into a set of values of uncorrelated variables called Principle components.

Naïve approach vs. PCA

- Background
- Physical simulation
- Compact model extraction
- Principle Component Analysis
- Nonlinear Power Method
- Conclusions

The Nonlinear Power Method (NPM)

- The NPM preserves the correlations and reproduces the higher moments of the SCM parameter distributions
- The NPM generates multivariate non-normal distributions with an arbitrary covariance matrix from a set of analytical equations

The Nonlinear Power Method (NPM)

$$Y_i = \mathbf{c}_i^T \mathbf{Z}_i$$

 $E[Y_i] = \mathbf{c}_i^T E[\mathbf{Z}_i]$ Average

 $VAR[Y_{i}] = E\left[\left(\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right)^{2}\right] - \left(E\left[\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right]\right)^{2} \text{ Variance}$ $\gamma_{1i} = \frac{E\left[\left(\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right)^{3}\right] - 3E\left[\left(\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right)^{2}\right]\left(E\left[\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right]\right) + 2\left(E\left[\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right]\right)^{3}}{\left(VAR[Y_{i}]\right)^{3/2}} \text{ Skew}$ $\gamma_{2i} = \frac{E\left[\left(\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right)^{4}\right] - 4E\left[\left(\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right)^{3}\right]\left(E\left[\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right]\right) - 3\left(E\left[\left(\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right)^{2}\right]\right)^{2} + 12E\left[\left(\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right)^{2}\right]\left(E\left[\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right]\right)^{4} + 6\left(E\left[\mathbf{c}_{i}^{T} \mathbf{Z}_{i}\right]\right)^{4}}{\left(VAR[Y_{i}]\right)^{2}} \text{ Kurtosis}$

NPM can cope also with the correlations

NPM

NPM reproducers the distribution of important figures of merit

GSS

Energy distribution of an invertor

Timing distribution in an invertor

- Background
- Physical simulation
- Compact model extraction
- Principle Component Analysis
- Nonlinear Power Method
- Conclusions

Conclusions

- The statistical compact model parameters are correlated.
- The distribution of the individual parameters deviate from normal.
- PCA fails to reproduce the proper distribution and correlation of the statistical compact model parameters.
- NPM not only accurately reproduces the accurately the parameters distribution and correlations but transistor figures of merit and circuit simulation results.

