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Abstract. In this paper we deal with performance analysis of Monte
Carlo algorithm for large linear algebra problems. We consider applica-
bility and efficiency of the Markov chain Monte Carlo for large problems,
i.e., problems involving matrices with a number of non-zero elements
ranging between one million and one billion. We are concentrating on
analysis of the almost Optimal Monte Carlo (MAO) algorithm for evalu-
ating bilinear forms of matrix powers since they form the so-called Krylov
subspaces.

Results are presented comparing the performance of the Robust and
Non-robust Monte Carlo algorithms. The algorithms are tested on large
dense matrices as well as on large unstructured sparse matrices.

Keywords: Monte Carlo algorithms, large-scale problems, matrix com-
putations, performance analysis, iterative process.

1 Introduction

Under large we consider problems involving dense or general sparse matrices with
a number of non-zero elements ranging between one million and one billion.

It is known that Monte Carlo methods give statistical estimates for bilinear
forms of the solution of systems of linear algebraic equations (SLAE) by per-
forming random sampling of a certain random variable, whose mathematical
expectation is the desired solution [8]. The problem of variance estimation, in
the optimal case, has been considered for extremal eigenvalues [7,9]. In [5,6] we
analyse the errors of iterative Monte Carlo for computing bilinear forms of ma-
trix powers. If one is interested to apply Markov chain Monte Carlo for large
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problems, then the applicability and robustness of the algorithm should be stud-
ied. The run of large-scale linear algebra problems on parallel computational
systems introduce many additional difficulties connected with data paralleliza-
tion, distribution of parallel subtasks and parallel random number generators.
But at the same time one may expect that the influence of unbalancing of matri-
ces is a lot bigger for smaller matrices (of size 100, or so) (see [5]) and with the
increasing the matrix size robustness is also increasing. It is reasonable to con-
sider large matrices, and particularly large unstructured sparse matrices since
such matrices appear in many important real-live computational problems.

We are interested in the bilinear form of matrix powers since it is a basic
subtask for many linear algebra problems:

(v, Akh). (1)

If x is the solution of a SLAE Bx = b, then

(v, x) =

(
v,

k∑
i=0

Aih

)
,

where the Jacobi Over-relaxation Iterative Method has been used to transform
the SLAE into the problem x = Ax + h.

For an arbitrary large natural number k the Rayleigh quotient can be used to
obtain an approximation for λ1, the dominant eigenvalue, of a matrix A:

λ1 ≈ (v, Akh)
(v, Ak−1h)

.

In the latter case we should restrict our consideration to real symmetric matrices
in order to deal with real eigenvalues. Thus it is clear that having an efficient
way of calculating (1) is important. This is especially important in cases where
we are dealing with large matrices.

2 Markov Chain Monte Carlo

The algorithm we use in our runs is the so-called Almost Optimal Monte Carlo
(MAO) algorithm studied in [1,3,4]. We consider a Markov chain T = α0 →
α1 → α2 → . . . → αk → . . . with n states. The random trajectory (chain) Tk of
length k starting in the state α0 is defined as follows: Tk = α0 → α1 → . . . →
αj → . . . → αk, where αj means the number of the state chosen, for j = 1, . . . , k.
Assume that P (α0 = α) = pα, P (αj = β|αj−1 = α) = pαβ , where pα is the
probability that the chain starts in state α and pαβ is the transition probability
to state β after being in state α. Probabilities pαβ define a transition matrix P .

In all algorithms used in this study we will consider a special choice of density
distributions pi and pij defined as follows:

pi =
|vi|

‖ v ‖ , ‖ v ‖ =
n∑

i=1

|vi| and pij =
|aij |
‖ ai ‖ , ‖ ai ‖=

n∑
j=1

|aij |. (2)



Monte Carlo Numerical Treatment of Large Linear Algebra Problems 749

The specially defined Markov chain induces the following product of ma-
trix/vector entrances and norms:

Ak
v = vα0

k∏
s=1

aαs−1αs ; ‖ Ak
v ‖=‖ v ‖ ×

k∏
s=1

‖ aαs−1 ‖ .

We have shown in [5] that the value

θ̄(k) =
1
N

N∑
i=1

θ
(k)
i = sign{Ak

v} ‖ Ak
v ‖ 1

N

N∑
i=1

{hαk
}i (3)

can be considered as a MC approximation of the form (v, Akh). For the proba-
bility error of this approximation one can have:

R
(k)
N =

∣∣∣(v, Akh) − θ̄(k)
∣∣∣ = cpσ{θ(k)}N− 1

2 ,

where cp is a constant.
In fact, (3) together with the sampling rules using probabilities (2) defines

the MC algorithm used in our runs. Naturally, the quality of the MC algorithm
depends on the behaviour of the standard deviation σ{θ(k)}. So, there is a reason
to consider a special class of robust MC algorithms. Following [5] under robust
MC algorithms we assume algorithms for which the standard deviation does
not increase with the increasing of the matrix power k. So, robustness in our
consideration is not only a characteristic of the quality of the algorithm. It also
depends on the input data, i.e., on the matrix under consideration. As better
balanced is the iterative matrix, and as smaller norm it has, as bigger a chances
to get a robust MC algorithm.

3 Numerical Experiments

In this section we present results on experimental study of quality of the Markov
chain Monte Carlo for large matrices. We run algorithms for evaluating mainly
bilinear forms of matrix powers as a basic Monte Carlo iterative algorithms as
well as the algorithm for evaluating the dominant eigenvalue. In our experiments
we use dense and unstructured sparse matrices of sizes

– n = 1000, n = 5000, n = 10000, n = 15000, n = 20000, n = 40000.

We can control some properties of random matrices. Some of the matrices are
well balanced (in some sense matrices are close to stochastic matrices), some
of them are not balanced, and some are completely unbalanced. Some of the
iterative matrices are with small norms which makes the Markov chain algorithm
robust (as we showed in Section 2), and some of the matrices have large norms.
Since the balancing is responsible for the variance of the random variable dealing
with unbalanced matrices we may expect higher values for the stochastic error.
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In such a way we can study how the stochastic error propagates with the number
of Monte Carlo iterations for different matrices. Dealing with matrices of small
norms we may expect high robustness of the Markov chain Monte Carlo and a
high rate of convergence. To be able to compare the accuracy of various runs of
the algorithm for computing bilinear forms of matrix powers we also compute
them by a direct deterministic method using double precision. These runs are
more time consuming since the computational complexity is higher than the
complexity for Markov chain Monte Carlo, but we accept the results as ”exact
results” and use them to analyse the accuracy of the results produced by our
Monte Carlo code.

For sparse matrices we use the Yale sparse matrix format [2]. We exploit the
sparsity in sense that the used almost optimal Monte Carlo algorithm only deals
with non-zero matrix entrances. The Yale sparse matrix format is very suitable
since is allows to present large unstructured sparse matrices in a compact form
in the processor’s memory [2]. The latter fact allows to perform jumps of the
Markov chain from one to another non-zero elements of a given matrix very fast.

We also study the scalability of the algorithms under consideration. We run
our algorithms on different computer systems. The used systems are given below:

– IBM p690+ Regatta system cluster of IBM SMP nodes, containing a total
of 1536 IBM POWER5 processors;

– Sun Fire 15K server with 52x0,9GHz UltraSPARC III processors;
– SGI Prism equipped with 8 x 1.5 GHz Itanium II processors and 16 GByte

of main memory.

On Figure 1 we present results for the Monte Carlo solution of bilinear form
of a dense matrix of size n = 15000 from the matrix power k (the matrix power
corresponds to the number of moves in every Markov chain used in computa-
tions). The Monte Carlo algorithm used in calculations is robust. For comparison
we present exact results obtained by deterministic algorithm with double pre-
cision. One can not see any differences on this graph. As one can expect the
error of the robust Monte Carlo is very small and it decreases with increasing
the matrix power k. In fact the stochastic error exists but it increases rapidly
with increasing of k. This fact is shown more precisely on Figure 2.

The Monte Carlo probability error R
(k)
N and the Relative Monte Carlo prob-

ability error Rel
(k)
N was computed in the following way:

R
(k)
N =

∣∣∣∣∣ 1
N

N∑
i=1

θ
(k)
i − (v, Akh)

(v, h)

∣∣∣∣∣ , Rel
(k)
N =

(v, h)
(v, Akh)

R
(k)
N .

In the robust case the relative MC error decreases to values smaller than
10−22 when the number of MC iterations is 20, while for in the non-robust case
the corresponding values slightly increase with increasing of matrix power (for
k = 20 the values are between 10−3 and 10−2 (see Figure 2).

If we apply both the robust and the non-robust Markov chain Monte Carlo to
compute the dominant eigenvalue of the same dense matrices of size n = 15000
then we get the result presented on Figure 3.
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Fig. 1. Comparison of Robust Monte Carlo algorithm results with the exact solution
for the bilinear form of a dense matrix of size n = 15000
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Fig. 2. Comparison of the Relative MC error for the robust and non-robust algorithms.
Matrices of size n = 15000 are used.

We should stress on the fact that the random matrices are very similar. Only
the difference is that in the robust case the matrix is well balanced. From Figure 3
one can see that the oscillations of the solution are much smaller when the matrix
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Fig. 3. The relative MC error for the robust and non-robust algorithms. The matrix
size is n = 15000.

is well balanced. The reason for that is that the variance for the well balanced
matrix is much smaller than for non-balanced matrix.

Very similar results are obtained for matrices of size 1000, 5000, 10000, 20000,
and 40000. Some results for sparse matrices are plotted on Figures 4, and 5.

Results of Monte Carlo computation of the bilinear form of an unstructured
sparse matrix of size 10000 are plotted on Figure 4. The MC results are compared
with the exact results. On this graph one can not find any differences between
MC results and the exact solution. One can see that if the robust algorithm is
applied for solving systems of linear algebraic equations or for computing the
dominant eigenvalue of real symmetric matrices (in order to get real eigenvalues),
then just 5 or 6 Monte Carlo iterations are enough to get fairly accurate solution
(with 4 right digits). If we present the same results for the same sparse matrix
in a logarithmic scale, then one can see that after 20 iterations the relative MC
error is smaller than 10−20 since the algorithm is robust and with increasing the
number of iterations the stochastic error decreases dramatically. Similar results
for a random sparse matrix of size 40000 are shown on Figure 5.

Since the algorithm is robust and the matrix is well balanced the results of MC
computations are very closed to the results of deterministic algorithm performed
with a double precision.

Our observation from the numerical experiments performed are that the error
increases linearly if k is increasing. The larger the matrix is, the smaller the influ-
ence of non-balancing is. This is also an expected result since the stochastic error
is proportional to the standard deviation of the random variable computed as a
weight of the Markov chain. When a random matrix is very large it is becoming
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Fig. 4. Comparison of the MC results for bilinear form of matrix powers for a sparse
matrix of size n = 10000 with the exact solution. 5 or 6 Monte Carlo iterations are
enough for solving the system of linear algebraic equations or for computing the dom-
inant eigenvalue for the robust Monte Carlo.
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Fig. 5. Comparison of the MC results for bilinear form of matrix powers for a sparse
matrix of size n = 40000 with the exact solution
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more close (in some sense) to the stochastic matrix and the standard deviation
of the random variable statistically decreases which statistically increases the
accuracy.

4 Conclusion

In this paper we have analysed the performance of the proposed MC algorithm
for linear algebra problems. We are focused on the computing bilinear form
of matrix powers (v, Akh) as a basic subtask of MC algorithms for solving a
class of Linear Algebra problems. We study the applicability and robustness of
Markov chain Monte Carlo. The robustness of the Monte Carlo algorithm with
large dense and unstructured sparse matrices has been demonstrated. It’s an
important observation that the balancing of the input matrix is very important
for MC computations since it decreases the stochastic error and improved the
robustness.
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