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Abstract. We consider a physical model of ultrafast evolution of an initial elec-
tron distribution in a quantum wire. The electron evolution is described by a
quantum-kinetic equation accounting for the interaction with phonons. A Monte
Carlo approach has been developed for solving the equation. The corresponding
Monte Carlo algorithm is NP -hard problem concerning the evolution time. To
obtain solutions for long evolution times with small stochastic error we combine
both variance reduction techniques and distributed computations. Grid technolo-
gies are implemented due to the large computational efforts imposed by the quan-
tum character of the model.

1 Introduction

The Monte Carlo (MC) methods provide approximate solutions by performing statisti-
cal sampling experiments. These methods are based on simulation of random variables
whose mathematical expectations are equal to a functional of the problem solution.

Many problems in the transport theory and related areas can be described mathemat-
ically by a second kind Fredholm integral equation.

f = IK(f) + φ. (1)

In general the physical quantities of interest are determined by functionals of the type:

J(f) ≡ (g, f) =
∫

G

g(x)f(x)dx, (2)

where the domain G ⊂ IRd and a point x ∈ G is a point in the Euclidean space IRd.
The functions f(x) and g(x) belong to a Banach space X and to the adjoint space X∗,
respectively, and f(x) is the solution of (1).

The mathematical concept of the MC approach is based on the iterative expansion of
the solution of (1): fs = IK(fs−1)+φ, s = 1, 2, . . . , where s is the number of iterations.

� Supported by the Bulgarian Ministry of Education and Science, under grant I-1405/2004.

Y. Shi et al. (Eds.): ICCS 2007, Part I, LNCS 4487, pp. 739–746, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



740 T. Gurov et al.

Thus we define a Neumann series fs = φ+ IK(φ)+ . . . + IKs−1(φ)+ IKs(f0), s > 1,
where IKs means the s-th iteration of IK . In the case when the corresponding infinite
series converges then the sum is an element f from the space X which satisfies the
equation (1). The Neumann series, replaced in (2), gives rise to a sum of consecutive
terms which are evaluated by the MC method with the help of random estimators. A
random variable ξ is said to be a MC estimator for the functional (2) if the mathematical
expectation of ξ is equal to J(f): Eξ = J(f). Therefore we can define a MC method

ξ = 1
N

∑N
i=1 ξ(i) P−→ J(f), where ξ(1), . . . , ξ(N) are independent values of ξ and

P−→ means stochastic convergence as N −→ ∞. The rate of convergence is evaluated

by the law of the three sigmas: convergence (see [1]): P
(
|ξ − J(f)| < 3

√
V arξ√

N

)
≈

0.997, where V ar(ξ) = Eξ2 − E2ξ is the variance. It is seen that, when using a
random estimator, the result is obtained with a statistical error [1,2]. As N increases,
the statistical error decreases as N−1/2.

Thus, there are two types of errors - systematic (a truncation error) and stochastic (a
probability error) [2]. The systematic error depends on the number of iterations of the
used iterative method, while the stochastic error is related to the the probabilistic nature
of the MC method. The MC method still does not determine the computation algorithm:
we must specify the modeling function (sampling rule) Θ = F (β1, β2, . . . , ), where
β1, β2, . . . , are uniformly distributed random numbers in the interval (0, 1). Now both
relations the MC method and the sampling rule define a MC algorithm for estimating
J(f). The case when g = δ(x − x0) is of special interest, because we are interested in
calculating the value of f at x0, where x0 ∈ G is a fixed point.

Every iterative algorithm uses a finite number of iterations s. In practice we define
a MC estimator ξs for computing the functional J(fs) with a statistical error. On the
other hand ξs is a biased estimator for the functional J(f) with statistical and trun-
cation errors. The number of iterations can be a random variable when an ε-criterion
is used to truncate the Neumann series or the corresponding Markov chain in the MC
algorithm. The stochastic convergence rate is approximated by O(N−1/2). In order
to accelerate the convergence rate of the MC methods several techniques have been
developed. Variance reductions techniques, like antithetic varieties, stratification and
importance sampling [1], reduce the variance which is a quantity to measure the prob-
abilistic uncertainly. Parallelism is an another way to accelerate the convergence of a
MC computation. If n processors execute n independence of the MC computation using
nonoverlaping random sequences, the accumulated result has a variance n times smaller
than that of a single copy.

2 Physical Model

The early time dynamics of highly non-equilibrium semiconductor electrons is rich
of quantum phenomena which are basic components of the physics of the modern
micro- and nano-electronics [4]. Confined systems are characterized by small spatial
scales where another classical assumption - this for electron-phonon scattering occur-
ing at a well defined position - loses its validity. These scales become relevant for the
process of evolution of an initial electron distribution, locally excited or injected into a
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semiconductor nanowire. Beyond-Boltzmann transport models for wire electrons have
been recently derived [3] in terms of the Wigner function. They appear as inhomoge-
neous conterparts of Levinson’s and the Barker-Ferry’s equations. The later is a physi-
cally more refined model, which accounts for the finite lifetime of the electrons due to
the interaction with the phonons.

The corresponding physical process can be summarized as follows. An initial non-
equilibrium electron distribution is created locally in a nanowire by e.g. an optical ex-
citation. The electrons begin to propagate along the wire, where they are characterized
by two variables: the position z and the component of the wave vector is kz . We note
that these are Wigner coordinates so that a classical interpretation as ”position and mo-
mentum of the electron” is not relevant. A general, time-dependent electric field E(t)
can be applied along the nanowire. The field changes the wave vector with the time:
kz(t′) = kz −

∫ t

t′ eE(τ)/�dτ where kz is the wave vector value at the initialization
time t. Another source of modifications of the wave vector are dissipative processes of
electron-phonon interaction, responsible for the energy relaxation of the electrons.

The following considerations simplify the problem thus allowing to focus on the
numerical aspects: (i) We regard the Levinson type of equation which bears the basic
numerical properties of the physical model:

(
∂

∂t
+

�kz

m
∇z

)
fw(z, kz, t) =

∫
dk′

∫ t

0
dt′ (3)

{
S(kz , k

′
z,q

′
⊥, t, t′)fw(z(t′), kz

′(t′), t′) −S(k′
z, kz ,q′

⊥, t, t′)fw(z(t′), kz(t′), t′)} ,

where
∫

G d3k′ =
∫

dq′
⊥

∫ Q2

−Q2
dk′

z and the domain G is specified in the next section.
The spatial part z(t′) of the trajectory is initialized by the value z at time t: z(t′) =
z − �

m

∫ t

t′

(
kz(τ) − q′

z

2

)
dτ ; q′z = kz − k′

z . The scattering function S is

S(kz, k
′
z ,q

′
⊥, t, t′) =

2V

(2π)3
|Γ (q′

⊥)F(q′
⊥, kz − k′

z)|2

×

⎡
⎣
(

n(q′) +
1
2

± 1
2

)
cos

⎛
⎝

t∫

t′

(ε(kz(τ)) − ε(k′
z(τ)) ± �ωq′) dτ

�

⎞
⎠

⎤
⎦ .

The electron-phonon coupling F is chosen for the case of Fröhlich polar optical inter-
action:

F(q′
⊥, kz − k′

z)

= −
[
2πe2ωq′

�V

(
1
ε∞

− 1
ε s

)
1

(q′)2

] 1
2

; Γ (q′
⊥) =

∫
dr⊥|Ψ(r⊥)|2eiq′

⊥·r⊥ ,

where (ε∞) and (εs) are the optical and static dielectric constants. Γ (q′
⊥) is the Fourier

transform of the square of the ground state wave function. Thus we come to the second
simplifying assumption: (ii) Very low temperatures are assumed, so that the electrons
reside in the ground state Ψ(r⊥) in the plane normal to the wire. The phonon distribu-

tion is described by the Bose function, n(q′) = (e
�ωq′
KT − 1)−1 with K the Boltzmann
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constant and T is the temperature of the crystal. �ωq′ is the phonon energy which gen-
erally depends on q′ = (q′

⊥, q′z), and ε(kz) = (�2k2
z)/2m is the electron energy. (iii)

Finally we consider the case of no electric field applied along the wire. Next we need
to transform the transport equation into the corresponding integral form (1):

fw(z, kz, t) = fw0(z − �kz

m
t, kz) (4)

+
∫ t

0
dt′′

∫ t

t′′
dt′

∫
G

d3k′{K1(kz, k
′
z ,q

′
⊥, t′, t′′)fw (z + z0(kz , q

′
z, t, t

′, t′′), k′
z , t

′′)}

+
∫ t

0
dt′′

∫ t

t′′
dt′

∫
G

d3k′{K2(kz, k
′
z ,q

′
⊥, t′, t′′)fw (z + z0(kz , q

′
z, t, t

′, t′′), kz , t
′′)},

where z0(kz , q
′
z, t, t

′, t′′) = −�kz

m (t − t′′) + �q′
z

2m (t′ − t′′),

K1(kz, k
′
z ,q

′
⊥, t′, t′′) = S(k′

z , kz,q′
⊥, t′, t′′) = −K2(k′

z .kz ,q′
⊥, t′, t′′).

We note that the evolution problem becomes inhomogeneous due to the spatial depen-
dence of the initial condition fw0. The shape of the wire modifies the electron-phonon
coupling via the ground state in the normal plane. If the wire cross section is cho-
sen to be a square with side a, the corresponding factor Γ becomes: |Γ (q′x)Γ (q′y)|2 =

|Γ (q′
⊥)|2 =

(
4π2

q′
xa((q′

xa)2−4π2)

)2
4sin2(aq′x/2)

(
4π2

q′
ya((q′

ya)2−4π2)

)2

4sin2(aq′y/2).

We note that the Neumann series of such type integral equations as (4) converges [5]
and it can be evaluated by a MC estimator [2].

3 The Monte Carlo Method

The values of the physical quantities are expressed by the following general functional
of the solution of (4):

Jg(f) ≡ (g, f) =
∫ T

0

∫
D

g(z, kz, t)fw(z, kz, t)dzdkzdt, (5)

by a MC method. Here we specify that the phase space point (z, kz) belongs to a rectan-
gular domain D = (−Q1, Q1) × (−Q2, Q2), and t ∈ (0, T ). The function g(z, kz, t)
depends on the quantity of interest. In particular the Wigner function, the wave vector
and density distributions, and the energy density are given by:

(i) gW (z, kz, t) = δ(z − z0)δ(kz − kz,0)δ(t − t0),
(ii) gn(z, kz, t) = δ(kz − kz,0)δ(t − t0),
(iii) gk(z, kz, t) = δ(z − z0)δ(t − t0),
(iv) g(z, kz, t) = ε(kz)δ(z − z0)δ(t − t0)/gn(z, kz, t),

We construct a biased MC estimator for evaluating the functional (5) using backward
time evolution of the numerical trajectories in the following way:
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ξs[Jg(f)] =
g(z, kz, t)

pin(z, kz, t)
W0fw,0(., kz, 0) +

g(z, kz, t)
pin(z, kz, t)

s∑
j=1

Wα
j fw,0

(
., kα

z,j , tj
)
,

where

fw,0
(
., kα

z,j , tj
)

=
{

fw,0
(
z + z0(kz,j−1, kz,j−1 − kz,j , tj−1, t

′
j , tj), kz,j , tj

)
, if α = 1,

fw,0
(
z + z0(kz,j−1, kz,j − kz,j−1, tj−1, t

′
j , tj), kz,j−1, tj

)
, if α = 2,

Wα
j = Wα

j−1
Kα(kzj−1,kj , t

′
j, tj)

pαptr(kj−1,kj , t′j, tj)
, Wα

0 = W0 = 1, α = 1, 2, j = 1, . . . , s .

The probabilities pα, (α = 1, 2) are chosen to be proportional to the absolute value of
the kernels in (4). pin(z, kz, t) and ptr(k,k′, t′, t′′), which are an initial density and
a transition density, are chosen to be tolerant1 to the function g(z, kz, t) and the ker-
nels, respectively. The first point (z, kz0, t0) in the Markov chain is chosen using the
initial density, where kz0 is the third coordinate of the wave vector k0. Next points
(kzj , t

′
j, tj) ∈ (−Q2, Q2) × (tj , tj−1) × (0, tj−1) of the Markov chain:

(kz0, t0) → (kz1, t
′
1, t1) → . . . → (kzj , t

′
j , tj) → . . . → (kzs, , t

′
s, ts), j = 1, 2, . . . , s

do not depend on the position z of the electrons. They are sampled using the transition
density ptr(k,k′, t′, t′′). The z coordinate of the generated wave vectors is taken for the
Markov chain, while the normal coordinates give values for q⊥. As the integral on q⊥
can be assigned to the kernel these values do not form a Markov chain but are indepen-
dent on the consecutive steps. The time t′j conditionally depends on the selected time tj .
The Markov chain terminates in time ts < ε1, where ε1 is related to the truncation error
introduced in first section. Now the functional (5) can be evaluated by N independent

samples of the obtained estimator, namely, 1
N

∑N
i=1(ξs[Jg(f)])i

P−→ Jg(fs) ≈ Jg(f),

where
P−→ means stochastic convergence as N → ∞; fs is the iterative solution ob-

tained by the Neumann series of (4), and s is the number of iterations. To define a MC
algorithm we have to specify the initial and transition densities, as well the modeling
function (or sampling rule). The modeling function describes the rule needed to calcu-
late the states of the Markov chain by using uniformly distributed random numbers in the
interval (0, 1). The transition density is chosen: ptr(k,k′, t′, t′′) = p(k′/k)p(t, t′, t′′),
where p(t, t′, t′′) = p(t, t′′)p(t′/t′′) = 1

t
1

(t−t′′) p(k′/k) = c1/(k′ − k)2 ], and c1 is
the normalized constant. Thus, by simulating the Markov chain under consideration, the
desired physical quantities (values of the Wigner function, the wave vector relaxation,
the electron and energy density) can be evaluated simultaneously.

4 Grid Implementation and Numerical Results

The computational complexity of an MC algorithm can be measured by the quantity
CC = N × τ ×M(sε1). The number of the random walks, N , and the average number

1 r(x) is tolerant of g(x) if r(x) > 0 when g(x) �= 0 and r(x) ≥ 0 when g(x) = 0.
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Fig. 1. Wave vector relaxation of the highly non-equilibrium initial condition. The quantum solu-
tion shows broadening of the replicas. Electrons appear in the classically forbidden region above
the initial condition.

of transitions in the Markov chain, M(sε1), are related to the stochastic and systematic
errors [5]. The mean time for modeling one transition, τ , depends on the complexity
of the transition density functions and on the sampling rule, as well as on the choice of
the random number generator (rng). It is proved [5,6] that the stochastic error has order
O(exp (c2t) /N1/2), where t is the evolution time and c2 is a constant depending on
the kernels of the quantum kinetic equation under consideration. This estimate shows
that when t is fixed and N → ∞ the error decreases, but for large t the factor exp (c2t)
looks ominous. Therefore, the algorithm solves an NP -hard problem concerning the
evolution time. To solve this problem for long evolution times with small stochastic
error we have to combine both MC variance reduction techniques and distributed or
parallel computations. By using the Grid environment provided by the EGEE-II project
middleware2 [8] we were able to reduce the computing time of the MC algorithm under
consideration. The simulations are parallelized on the existing Grid infrastructure by
splitting the underlying random number sequences. The numerical results discussed in
Fig. 1 are obtained for zero temperature and GaAs material parameters: the electron
effective mass is 0.063, the optimal phonon energy is 36meV , the static and optical
dielectric constants are εs = 10.92 and ε∞ = 12.9. The initial condition is a product of
two Gaussian distributions of the energy and space. The kz distribution corresponds to
a generating laser pulse with an excess energy of about 150meV .This distribution was
estimated for 130 points in the interval (0, 66), where Q2 = 66 × 107m−1. The z dis-
tribution is centered around zero (see Figures 2-3) and it is estimated for 400 points in
the interval (−Q1, Q1), where Q1 = 400 × 109m−1. The side a of the wire is chosen
to be 10 nanometers. The SPRNG library has been used to produce independent and

2 The Enabling Grids for E-sciencE-II (EGEE-II) project is funded by the EC under grand
INFSO-RI-031688. For more information see http://www.eu-egee.org/.
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Fig. 2. Electron density along the wire after 200 fs. The ballistic curve outlines the largest distance
which can be reached by classical electrons. The quantum solution reaches larger distances due
to the electrons scattered in the classically forbidden energy region.
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Fig. 3. Energy density after 175fs evolution time. A comparison with the ballistic curve shows
that the mean kinetic energy per particle is lower in the central region. On contrary hot electrons
reside in the regions apart from the center. These electrons are faster than the ballistic ones and
thus cover larger distances during the evolution.

non-overlapping random sequences [9]. Successful tests of the algorithm were per-
formed at the Bulgarian SEE-GRID3 sites. The MPI implementation was MPICH 1.2.6,
and the execution is controlled from the Computing Element via the Torque batch

3 South Eastern European GRid-enabled eInfrastructure Development-2 (SEE-GRID-2) project
is funded by the EC under grand FP6-RI-031775. For more information see http://www.see-
grid.eu/.
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Table 1. The CPU time (seconds) for all points (in which the physical quantities are estimated),
the speed-up, and the parallel efficiency. The number of random walks is N = 100000. The
evolution time is 100 fs.

Number of CPUs CPU Time (s) Speed-up Parallel Efficiency

2 9790 - -
4 4896 1.9996 0.9998
6 3265 2.9985 0.9995

system. The timing results for evolution time t=100 femtoseconds are shown in Table 1.
The parallel efficiency is close to 100%.

5 Conclusion

A quantum-kinetic model for the evolution of an initial electron distribution in a quan-
tum wire has been introduced in terms of the electron Wigner function. The physical
quantities, expressed as functionals of the Wigner function are evaluated within a sto-
chastic approach. The developed MC method is characterized by the typical for quan-
tum algorithms computational demands. The stochastic variance grows exponentially
with the evolution time. The importance sampling technique is used to reduce the vari-
ance of the MC method. The suggested MC algorithm evaluates simultaneously the
desired physical quantities using simulation of Markov chain under consideration. Grid
technologies are implemented to reduce computational efforts.
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