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Abstract. Exact error estimates for evaluating multi-dimensional inte-
grals are considered. An estimate is called exact if the rates of conver-
gence for the low- and upper-bound estimate coincide. The algorithm
with such an exact rate is called optimal. Such an algorithm has an
unimprovable rate of convergence.

The problem of existing exact estimates and optimal algorithms is
discussed for some functional spaces that define the regularity of the
integrand. Important for practical computations data classes are con-
sidered: classes of functions with bounded derivatives and Hölder type
conditions.

The aim of the paper is to analyze the performance of two optimal
classes of algorithms: deterministic and randomized for computing multi-
dimensional integrals. It is also shown how the smoothness of the inte-
grand can be exploited to construct better randomized algorithms.

1 Introduction: Definitions and Basic Notations

The problem of evaluating integrals of high dimension is an important task
since it appears in many important scientific applications of financial mathemat-
ics, economics, environmental mathematics and statistical physics. Randomized
(Monte Carlo) algorithms have proved to be very efficient in solving multidimen-
sional integrals in composite domains [16], [6].

In this paper we are interested in exact error estimates for evaluating multi-
dimensional integrals. An estimate is called exact if the rates of convergence for
the low- and upper-bound estimate coincide. An algorithm which reaches such
an unimprovable rate of convergence is called optimal. The class of functions with
bounded derivatives and Hölder type conditions are considered. We discuss the
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unimprovable limits of complexity for two classes of algorithms: deterministic–
A and randomized–AR. Having these unimprovable rates an important question
arises: which one of the existing algorithms reaches these unimprovable rates?
We analyze the performance, i.e., number of operations (or the computational
cost) of A and AR classes of algorithms. It should be mentioned here that the
performance analysis is connected with complexity that will be defined in Section
2. The complexity characterizes the problem for a given class of algorithms (not
the algorithm itself). In Section 2 we present the computational model and
show how the computational cost is connected with the complexity. In Section
3 we prove some error estimates for Hölder functions. Performance analysis of
algorithms with unimprovable convergence rate is given in Section 4. Complexity
of the integration problem for Hölder functions are considered in Section 5. In
Section 6 we present some concluding remarks.

Let us introduce some basic notations used in the paper. By x = (x1, . . . , xd)
we denote a point in a closed domain G ⊂ IRd, where IRd is d-dimensional
Euclidean space. The d-dimensional unite cube is denoted by Ed = [0, 1]d.

Definition 1. Let d, p be integers, and d, p ≥ 1. Consider the class Wp(α; G)
of real functions f defined over G, possessing all the partial derivatives: Drf =

∂rf(x)
∂x

r1
1 ...∂x

rd
d

, r1 + . . . + rd = r ≤ p, which are continuous when r < p and

bounded in sub norm when r = p. The semi-norm ‖ . ‖ on Wp(α; G) is defined
as α =‖ f ‖= sup

{
|Dpf | , |r1, . . . , rd| = p, x ≡ (x1, . . . , xd) ∈ Ed

}
.

Definition 2. Define the class Hp
λ(α, G), (0 < λ ≤ 1) of functions from W p,

which derivatives of order p satisfy the Hölder condition with a parameter λ:

Hp
λ(α, G)≡

⎧
⎨

⎩
f ∈ W p : |Dpf(y1, . . . , yd) − Dpf(z1, . . . , zd)| ≤ α

d∑

j=1

|yj − zj |λ
⎫
⎬

⎭
.

Usually randomized algorithms reduce problems to the approximate calculation
of mathematical expectations. The mathematical expectation of the random
variable θ is denoted by Eμ(θ), where μ denotes some probability measure.(The
definition of probability measure is given in [11].) Sometimes Eμ(θ) is abbrevi-
ated to Eθ. We shall further denote the values (realizations) of a random point
ξ or random variable θ by ξ(i) and θ(i)(i = 1, 2, . . . , n) respectively. If ξ(i) is
a d-dimensional random point, then usually it is constructed using d random
numbers γ, i.e., ξ(i) ≡ (γ(i)

1 , . . . , γ
(i)
d ). Let I be the desired value of the integral.

Assume for a given random variable θ one can prove that Eθ = I. Suppose the
mean value of n realizations of θ: θ(i), i = 1, . . . , n is considered as a Monte Carlo
approximation to the solution: θ̄n = 1/n

∑n
i=1 θ(i) ≈ I. One can only state that

a certain randomized algorithm can produce the result with a given probability
error.

Definition 3. If I is the exact solution of the problem, then the probability error
is the least possible real number Rn, for which P = Pr

{
|ξn − I| ≤ Rn

}
, where

0 < P < 1. If P = 1/2, then the probability error is called probable error.
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So, dealing with randomized algorithms one has to accept that the result of the
computation can be true only with a certain (even high) probability. In most
cases of practical computations it is reasonable to accept an error estimate with
a given probability.

2 Computational Model

Consider the following problem of integration:

I =
∫

Ed

f(x)dx, (1)

where Ed ≡ [0, 1]d, x ≡ (x1, . . . , xd) ∈ Ed ⊂ IRd and f ∈ C(Ed) is an integrable
function on Ed. The computational problem can be considered as a mapping of
function f : {[0, 1]d → IRd} to IR [10]: S(f) : f → IR, where S(f) =

∫
Ed f(x)dx

and f ∈ F0 ⊂ C(Ed). We will call S the solution operator. The elements of F0
are the data, for which the problem has to be solved; and for f ∈ F0, S(f) is
the exact solution. For a given f we want to compute (or approximate) S(f).
We will be interested to consider subsets F0 of C(Ed) and try to study how the
smoothness of F0 can be exploited. A similar approach (which is in fact included
in the above mentioned consideration) is presented in [18].

We will call a quadrature formula any expression A =
∑n

i=1 cif(x(i)), which
approximates the value of the integral S(f). The real numbers ci ∈ IR are called
weights and d dimensional points x(i) ∈ Ed are called nodes. It is clear that for
fixed weights ci and nodes xi the quadrature formula A may be used to define
an algorithm. The algorithm A belongs to the class of deterministic algorithms
A. We call a randomized quadrature formula any formula of the following kind:
AR =

∑n
i=1 σif(ξ(i)), where σi and ξ(i) are random weights and nodes.

The computational cost of a deterministic algorithm A will be defined as a
supremum (over all integrands f from F0) of the time (number of operations)
needed to perform the algorithm A:τ(A) = supf∈F0

τ(A, f). For a randomized
algorithm AR ∈ AR we will have: τ(AR) = supf∈F0

Eμ{τ(AR, f, ω)}. As a good
measure of the cost can be considered

τ(A, f) = kn + c and τ(AR, f, ω) = kRn + cR,

where n is the number of nodes and k, kR are constants depending on the function
f , dimensionality d and on the domain of integration (in our case on Ed) and
constants c and cR depend only on d and on the regularity parameter of the
problem (in the case of Hp

λ(α, G) - on p + λ). These constants describe the so-
called preprocessing operations, i.e., operations that are needed to be performed
beforehand.

We assume that one is happy to obtain an ε-approximation to the solution
with a probability 0 < P < 1. For a given positive ε the ε-complexity of the
integration problems S and SR are defined as follows: Cε(S) = infA∈A{τ(A) :
r(A) ≤ ε} and Cε(SR) = infAR∈AR{τ(AR) : r(AR) ≤ ε}, where the errors r(A)
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and r(AR) are defined in the Section 3. One can see that in our consideration
ε-complexity characterizes the problem for a given class of algorithms (not the
algorithms itself).

3 Exact Error Estimates in Functional Spaces

Generally, we assume that the problem of integration is not solved exactly, that
is S(f) differs from A(f). We define the error as

r(A) = sup
f∈F0

|S(f) − A(f)|

in the deterministic case and as

r(AR) = sup
f∈F0

Eμ

∣
∣S(f) − AR(f, ω)

∣
∣ = sup

f∈F0

∫

Ed

∣
∣S(f) − AR(f, ω)

∣
∣ dμ(ω),

where A(f, ω) is Σ-measurable in ω for each f in the randomized case.
Let us now define the subset F0 ≡ Hp

λ(α, Ed). In [2] Bakhvalov proved the
following theorem:

Theorem 1. (Bakhvalov [2]) For any deterministic way of evaluating the inte-
gral (1), i.e., for any algorithm from A

sup
f∈Hp

λ(α,Ed)
r(A) ≥ c′(d, p + λ)αn− p+λ

d (2)

and for any randomized way of evaluating the integral (1), i.e., for any algorithm
from AR

sup
f∈Hp

λ(α,Ed)
r(AR) ≥ c′′(d, p + λ)αn− p+λ

d − 1
2 . (3)

The constants c′(d, p + λ) and c′′(d, p + λ) depend only on d and p + λ. This
theorem gives the best possible order for both algorithmic classes A and AR.

In our work [1] we construct two randomized algorithms AR
1 and AR

2 , and
prove that both have the best possible rate (3) for integrands from W p(α, Ed).
The proposed algorithms allow to extend the estimates for the functional class
Hp

λ(α, Ed), where 0 < λ ≤ 1. Here we give the essential idea of the algorithms
(for more details we refer to [1]). In algorithm AR

1 we divide the unit cube Ed

into n = qd disjoint cubes: Ed =
⋃qd

j=1 Kj. Then we select m random points
ξ(j, s) = (ξ1(j, s), ..., ξd(j, s)) from each cube Kj , such that all ξi(j, s) are uni-
formly distributed and mutually independent. We consider the Lagrange inter-
polation polynomial of the function f at the point z: Lp(f, z), which uses the

information from the function values at exactly
(

p + d − 1
d

)
points satisfying a

special property [1]. The second algorithm AR
2 is a modification which calculates

the Newton interpolation polynomial. AR
2 involves less operations for the same
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number of random nodes. Finally, we use the following randomized quadrature
formula:

I(f) ≈ AR
1 =

1
qdm

qd

∑

j=1

m∑

s=1

(f(ξ(j, s)) − Lp(f, ξ(j, s))) +
∫

Kj

Lp(f, x)dx. (4)

Now, for functions from Hp
λ(α, Ed) we can prove the following theorem:

Theorem 2. The quadrature formula (4) satisfies

Rn ≤ c
′
(d, p + λ)

1
m

αn
− 1

2 − p+λ
d and

(

E

(∫

Ed

f(x)dx − I(f)
)2

)1/2

≤ c
′′
(d, p + λ)

1
m

αn
− 1

2 − p+λ
d ,

where the constants c
′
(d, p + λ) and c

′′
(d, p + λ) depend implicitly on the points

x(r), but not on n.

Proof. The proof is a modification of the proof given in [1]. Indeed, taking into
account that f belongs to the space Hp

λ(α, Ed) one can use the following in-
equality: |f(ξ(s, t) − Lp(f, ξ(j, s)| ≤ cd,p+λαn−p−λ. Using the above inequality
and applying similar technique used in the proof of Theorem 2.1 from [1] we
prove the theorem.

Both algorithms AR
1 and AR

2 are unimprovable by rate for all functions from
Hp

λ(α, Ed). Indeed, r(AR
I1

) ≤ c′′1(d, p + λ)αn− p+λ
d − 1

2 for the algorithm AR
1 and

r(AR
I2

) ≤ c′′2 (d, p + λ)αn− p+λ
d − 1

2 for the algorithm AR
2 .

4 Performance Analysis of Algorithms with
Unimprovable Convergence Rate

In this subsection the computational cost of both algorithms AR
1 and AR

2 are
presented. The following theorem can be proved:

Theorem 3. [1] The computational cost of the numerical integration of a func-
tion from Hp

λ(α, Ed) using randomized algorithm AR
i (i = 1, 2) can be presented

in the following form:
τ(AR

i , x, ω) = kR
i n + cR

i ,

kR
1 ≤

[
m +

(
d + p − 1

d

)]
af + m[d(br + 2) + 1] (5)

+2
(

d + p − 1
d

) [
m + 1 + d +

(
d + p − 1

d

)]
, (6)
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kR
2 ≤

[
m +

(
d + p − 1

d

)]
af + m[d(br + 2 + k) + 1] (7)

+2
(

d + p − 1
d

)
(d + 1 + m), (8)

where br denotes the number of operations used to produce a uniformly distributed
random number in [0, 1), af stands for the number of operations needed for each
calculation of a function value, and cR

i = cR
i (d, p + λ) depends only on d and

p + λ.

Remark 1. The performance analysis results of Theorem 3 shows that the com-
putational cost of both algorithms is linear with the number of nodes n. With
such a cost an error of order n−p+λ

d − 1
2 is reached. Such an order is unimprovable

in Hp
λ(α, Ed).

Optimal algorithms for functions from W p(α, Ed) are also proposed in
[7,12,14,4,15,17,9]. It is not an easy task to construct a unified algorithm with
unimprovable rate of convergence for any dimension d and any value of p. Var-
ious methods for Monte Carlo integration that achieve the order O

(
N− 1

2−p
d

)

are known. While in the case of p = 1 and p = 2 these methods are fairly simple
and are widely used (see, for example, [17,14,13]), when p ≥ 3 such methods
become much more sophisticated.

Using the same construction as in [1] it is easy to show that for the determin-
istic case there exists an algorithm for which r(A) ≤ c′A(d, p + λ)αn− p+λ

d . As an
example of such an algorithm could be considered the algorithm AR

1 proposed
in [1] in which the nodes are fixed points.

5 Complexity of the Integration Problem for Functional
Spaces

5.1 Complexity for Hölder Spaces

Now we are ready to formulate a theorem given the estimates of the ε-complexity
of the problem.

Theorem 4. For F0 ≡ Hp
λ(α, Ed) the ε-complexity of the problem of integra-

tion S is Cε(S) = k (cA(d, p + λ)α)
d

p+λ
( 1

ε

) d
p+λ for the class of deterministic

algorithms A, and Cε(S) = kR (cAR(d, p + λ)α)
d

p+λ+d/2
( 1

ε

) d
p+λ+d/2 for the class

of randomized algorithms AR.

Proof. According to the definition of the cost of the algorithm we should take the
worst algorithm in sense of τ(A, f) corresponding to f ∈ Hp

λ(α, Ed). According
to the Bakhvalov’s theorem [2] one can write:

sup
f∈Hp

λ(α,Ed)
τ(A, f) = kn + c = k (c′A(d, p + λ)α)

d
p+λ

(
1

r(A)

) d
p+λ

+ c.
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Now, for a given ε > 0 we should take inf
{

k (c′A(d, p + λ)α)
d

p+λ

(
1

r(A)

) d
p+λ

:

r(A) ≤ ε}. Let us note, that this is a non-uniform complexity notion: for each
ε > 0 a separate A can be designed. However, following the remark that the
algorithms A are uniform over the set of problems, and the fact that the infimum
of the number of preprocessing operations described by c is zero, one can get:

Cε(S) = k (c′A(d, p + λ)α)
d

p+λ

(
1
ε

) d
p+λ

,

which proves the first part of the theorem concerning the deterministic algo-
rithms. The result for the randomized algorithms can be proved similarly.

Corollary 1. The ε-complexity of the problem of integration strongly depends
on the dimension of the problem for the class of deterministic algorithms. With
the increasing of dimensionality the ε-complexity goes exponentially to infinity
for the class F0 = Hp

α(λ, Ed).

Corollary 2. In the case of randomized algorithms the ε-complexity of the inte-
gration problem for functions from F0 = Hp

α(λ, Ed) goes asymptotically to
( 1

ε

)2
.

Remark 2. The fact that the ε-complexity exponentially depends on d makes
the class of deterministic algorithms infeasible for large dimensions.

Remark 3. In the last case the ε-complexity does not increase exponentially with
d. This is why for high-dimensional integration Monte Carlo is a right choice.
Nevertheless, the results presented here demonstrate that the smoothness can
be exploited to improve the rate of convergence by a factor of n− p+λ

d over the
rate of standard randomized algorithms n− 1

2 . This fact allows to decrease the

ε-complexity from (1/ε)2 by a factor of
( 1

ε

)− 4(p+λ)
2(p+λ)+d .

6 Concluding Remarks

As a general remark, one can conclude that as smaller is the order of regularity
as simpler randomized algorithm should be used. Even for low dimensions (d =
1, 2) Monte Carlo is a right choice if the functional class has no smoothness.
It is important to note that the level of confidence P (0 < P < 1) does not
reflect on the rate of convergence of the probability error Rn. It reflects only
on the constant kR. That’s why the choice of the value of P is not important
for the convergence rate (respectively, for the rate of algorithmic complexity).
Nevertheless, for practical computations it may be of great importance to have
the value of the constant in order to get the number of operations for a given
algorithm (as we have done in Section 4).

In case of non-regular input data (discontinues functions and/or singularities)
there are special techniques well developed in Monte Carlo algorithms [8,16,3,1].
These techniques allow to include the singularity into the density function of
special choice (see, for instance [4,5]).
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As a general remark it should be emphasized that the randomized algorithms
have better convergence rate for the same regularity of the input data. The re-
sults can be extended to optimal algorithms for solving integral equations. An
important obvious advantage of randomized algorithms is the case of bad func-
tions, i.e., functions that do not satisfy some additional conditions of regularity.
The main problem with the deterministic algorithms is that normally they need
some additional approximation procedure that require additional regularity. The
randomized algorithms do not need such procedures. But one should be careful
because

– the better convergence rate for randomized algorithms is reached with a
given probability less than 1, so the advantage of Monte Carlo algorithms is
a matter of definition of the probability error. Such a setting of the problem of
error estimation may not be acceptable if one needs a guaranteed accuracy or
strictly reliable results. In fact, we see that this is a price paid by randomized
algorithms to increase their convergence rate.

– If the nature if the problem under consideration do not allow to use the
probability error for estimates or the answer should be given with a guaran-
teed error then the higher convergence order randomized algorithms are not
acceptable.
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