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In models of complicated physical-chemical processes operator splitting is very often applied in order
to achieve sufficient accuracy as well as efficiency of the numerical solution. The recently rediscovered
weighted splitting schemes have the great advantage of being parallelizable on operator level, which
allows us to reduce the computational time if parallel computers are used.

In this paper the computational times needed for the weighted splitting methods are studied in
comparison with the sequential splitting and the Marchuk-Strang splitting and are illustrated by
numerical experiments performed by use of simplified versions of the Danish Eulerian Model.
Keywords: Operator splitting; Computational complexity; Air pollution modeling; Distributed mem-
ory; Shared memory

1 Introduction

Huge systems of equations arise in several fields of applied mathematics. An
example is modeling the long-range transport of air pollutants, where the
number of ODE’s to be solved can be as many as a few hundred thousand in
each time-step of the numerical time integration. In such a case, in addition
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to the requirement for sufficient accuracy, there is a great demand also for
the minimization of the computational costs (efficiency). There is a need
for optimizing the existing algorithms and developing new ones, in which
parallel algorithms and their implementation on parallel computers play an
increasingly significant role [1].

In models of such complex phenomena as air pollution transport the
simultaneous effect of several different sub-processes has to be described. The
direct numerical treatment of such complicated problems is very difficult,
therefore operator splitting is usually applied. The main point in operator
splitting is the replacement of the original model with one in which the
sub-processes take place successively in each time-step. This allows us to
solve a few simpler sub-problems instead of the original one (for more details
see [8–10]).

Numerous splitting schemes have been constructed and used in practice.
These have been analyzed in several papers from the viewpoint of accuracy
(in terms of the local splitting error, see for example [4,5,8]). In this paper the
computational properties of four selected splitting procedures are compared
and conditions are formulated which can help programmers choose the
optimal splitting scheme when huge systems of equations are to be solved by
applying operator splitting.

The paper is organized as follows. In Section 2 the splitting schemes selected
for our study are introduced. In Section 3 the computational complexity for
these splitting methods is estimated. Finally, in Section 4, some numerical re-
sults, showing the computational costs of these splitting methods when applied
to two simplified versions of the Danish Eulerian Model [16,17] are presented.
The results are from sequential as well as from parallel runs (with shared and
distributed memory parallelization on the operator level) where appropriate.
In Section 5 the practicality of our approach as well as the limitations to its
parallel implementation (together with those of the previously implemented
optional levels of parallelism) are discussed. Some conclusions are drawn in
Section 6.

2 Description of the splitting schemes

In this section four basic splitting methods are illustrated in a model problem
with two operators. These methods are as follows:

• the sequential splitting,
• the Marchuk-Strang splitting,
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• the symmetrically weighted sequential splitting,
• the symmetrically weighted Marchuk-Strang splitting.

Consider the following initial value problem

dw(t)
dt

= Aw(t), t ∈ (0, T ]
w(0) = w0,

}

and assume that the operator A can be presented as a sum of two operators,
i.e., A = A1+A2. Let us divide the time interval [0, T ] into n ∈ IN subintervals
of length τ = T/n, the so-called splitting time-step.

2.1. The sequential splitting is the simplest and most natural splitting
scheme, determined by the following systems of equations:

dw
(1)
k (t)
dt

= A1w
(1)
k (t), t ∈ ((k − 1)τ, kτ ]

w
(1)
k ((k − 1)τ) = w

(2)
k−1((k − 1)τ)



 ,

dw
(2)
k (t)
dt

= A2w
(2)
k (t), t ∈ ((k − 1)τ, kτ ]

w
(2)
k ((k − 1)τ) = w

(1)
k (kτ)



 , (1)

for k = 1, 2, . . . , n, where w
(2)
0 (0) = w0. (The superindices in parentheses iden-

tify the number of the sub-problem in the splitting.) So, as a first step we solve
the system with operator A1 using the initial condition of the original problem
and then, applying the obtained solution at time τ as an initial condition, we
solve the system with operator A2. This procedure is then performed cyclicly.
The method can be extended to more than two operators in a natural way.

The sequential splitting has a first order local splitting error, which means
that ignoring the other sources of error (inexact data, rounding, etc.) the
difference between the solution of the original problem and the sequence of
problems (2)–(1) at the end of the time interval is O(τ) (the splitting error at
each time-step is O(τ2)).

This algorithm is not parallelizable on the operator level, because each
step needs the solution of the previous step as an initial value. However,
each step may be parallelizable itself (which is usually the case), so in
general parallelization on lower level is possible. Parallelism of that kind is
not considered in this paper, we will rather concentrate on the operator-
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level parallelism (sometimes both levels can be used together on a big
parallel system in order to exploit its full capacity). Examples of efficient
parallelization of a large air-pollution model that uses sequential splitting
(where each operator is parallelized separately) can be found in [6,12,13,16,17].

2.2. Marchuk-Strang splitting. This is a more accurate (second order –
O(τ2)) method, defined by the following sequence of problems:

dw
(1)
k (t)
dt

= A1w
(1)
k (t), t ∈ ((k − 1)τ, (k − 1

2)τ ]

w
(1)
k ((k − 1)τ) = w

(3)
k−1((k − 1)τ)



 , (2)

dw
(2)
k (t)
dt

= A2w
(2)
k (t), t ∈ ((k − 1)τ, kτ ]

w
(2)
k ((k − 1)τ) = w

(1)
k ((k − 1

2)τ)



 , (3)

dw
(3)
k (t)
dt

= A1w
(3)
k (t), t ∈ ((k − 1

2)τ, kτ ]

w
(3)
k ((k − 1

2)τ) = w
(2)
k (kτ)



 , (4)

for k = 1, 2, . . . , n, where w
(3)
0 = w0. This scheme is non-symmetric with

respect to A1 and A2: in each time-step we begin and end the computations
with operator A1 (two steps with a distance τ

2 ), putting A2 in the middle
(just one step with a distance τ). The method was proposed by Marchuk [11]
and Strang [15] independently in 1968. It is easy to see that the number of
operations performed in the Marchuk-Strang splitting is greater than that
in the sequential scheme. Similarly to the sequential splitting, the Marchuk-
Strang splitting cannot be parallelized on operator level.

If three operators are present, then we can apply Marchuk-Strang splitting
by some symmetric ordering of the operators, e.g. A1A2A3A2A1, stepping τ
with the middle operator A3 and τ

2 with the others. For the sake of efficiency
the computationally most expensive operator is usually put in the middle.

2.3. Symmetrically weighted sequential splitting. An alternative of
the above splitting techniques can be obtained by symmetrizing the sequential
splitting in the following way. In each time-step we apply sequential splitting
both in the order A1 → A2 and A2 → A1 independently, and at the end
of the time-steps we combine both solutions by taking a weighted average of
the results. So, in the k-th time-step we compute the solution u

(2)
k (kτ) of the
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A1 → A2 splitting

du
(1)
k (t)
dt

= A1u
(1)
k (t), t ∈ ((k − 1)τ, kτ ]

u
(1)
k ((k − 1)τ) = ŵ((k − 1)τ)



 , (5)

du
(2)
k (t)
dt

= A2u
(2)
k (t), t ∈ ((k − 1)τ, kτ ]

u
(2)
k ((k − 1)τ) = u

(1)
k (kτ)



 , (6)

and the solution v
(2)
k (kτ) of the A2 → A1 splitting

dv
(1)
k (t)
dt

=A2v
(1)
k (t), t ∈ ((k − 1)τ, kτ ]

v
(1)
k ((k − 1)τ) = ŵ((k − 1)τ)



 , (7)

dv
(2)
k (t)
dt

= A1v
(2)
k (t), t ∈ ((k − 1)τ, kτ ]

v
(2)
k ((k − 1)τ) = v

(1)
k (kτ)



 , (8)

where ŵ(0) = w0, and then compute a weighted average of the solutions as

ŵ(kτ) = Θu
(2)
k (kτ) + (1−Θ)v(2)

k (kτ), (9)

where Θ ∈ (0, 1) is some weight parameter. The scheme belonging to Θ = 1
2 has

been introduced by Strang [14] and is called symmetrically weighted sequential
splitting. It has also second order (O(τ2)) local error [3]. Unlike the sequential
and Marchuk-Strang splittings, this scheme is inherently parallel, because the
computations of the sequential splittings (5)–(6) and (7)–(8) are independent
of each other [2].

When there are three operators we can order them in more than two ways.
Any two can be chosen, their solutions are weighted symmetrically and the
average is taken for the next time-step.

2.4. Weighted Marchuk-Strang splitting. This splitting scheme is de-
fined by computing a weighted average of the solutions obtained by ap-
plying Marchuk-Strang splitting by two different orderings of the operators
(A1A2A1 − A2A1A2). This is again a parallelizable method, but the number
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of operations to perform is greater. The local error of this scheme is of O(τ2)
by any value of the weight parameter, see [7].

If there are three operators, then we can order them in several different ways.
The computationally most expensive operator is usually put in the middle and
the other two are altered in order to get the least expensive (and computa-
tionally balanced) scheme. The two solutions are weighted symmetrically and
the average is taken for the next time-step.

We should mention that in the cases of weighted sequential splitting and
weighted Marchuk-Strang splitting the accuracy can be of even higher than
second order if certain conditions are imposed to the operators, see [3, 7].
However, these conditions are rather strict and are not satisfied in the model
problems studied in this paper. The numerical methods applied to solve the
ODE systems are not discussed in this paper and the numerical errors are not
taken into account.

3 Computational complexity estimations

In this section we analyze the computational times for the different splitting
procedures introduced in Section 2. Two- and three-operator schemes are con-
sidered. Tables 1 and 2 allow us to make a full comparison of all schemes
under consideration from the viewpoint of efficiency. The run-time differences
for different splitting schemes can be seen from these tables (see column ”Com-
putational time”).

Splitting scheme Proc. Computational time
Sequential 1 T1 + T2

Marchuk-Strang (A1A2A1) 1 2T1 + T2

1 2(T1 + T2) + Ta

Weighted sequential 2-SM q(T1 + T2) + Ta

2-DM T1 + T2 + Tc + Ta

1 3(T1 + T2) + Ta

Weighted Marchuk-Strang 2-SM q max{2T1 + T2, T1 + 2T2}+ Ta

(A1A2A1 −A2A1A2) 2-DM max{2T1 + T2, T1 + 2T2}+ Tc + Ta

Table 1. Computational times needed for the splitting schemes under consideration with two operators.

The number of processes and the type of parallelization (if present) is given in the middle column: 1 – one

process (sequential), 2 – two parallel processes, SM – shared memory, DM – distributed memory. q > 1 is

a slowdown parameter of the shared memory due to memory conflicts.

Let the computational time for the sub-problem Ai be denoted by Ti and Ta

be the time for averaging in the weighted splittings. For simplicity, in our esti-
mations we assume that in case of parallel implementation T1 and T2 are the
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same for all the processors, which is not exactly so, see the numerical experi-
ments in Section 4. Table 1 contains the computational times for the different
splitting schemes described in the previous section. For the two weighted split-
ting algorithms the times for parallel execution are also given in the table. Two
parallel processes (distributed or shared memory) are only used, enough to ex-
ploit the operator-level parallelism. Possible parallelization on a lower level is
not considered in this study. The memory can be either distributed or shared.
In the distributed memory case each process uses only its own memory during
the computations. Separate communication procedures are used in order to ex-
change data between the two processes when necessary (in our case these are
called usually before and after the averaging). The communication time (de-
noted by Tc) is pretty much the same in all weighted schemes, as the amount
of data exchanged is the same. If the memory is shared, then both processes
can access the entire memory. There are no explicit communication proce-
dures, the data is exchanged via the shared memory. This means that some
memory conflicts can arise at any time throughout the parallel computations,
which results in certain slowdown of the computational steps, performed in
parallel. For the sake of simplicity we assume that one and the same slowdown
factor q > 1 applies to the times of all computational steps in the schemes
with shared memory parallelization. Note that the factor q does not apply to
the averaging time Ta as that stage is not performed in parallel. We should
mention that the factor q depends on the particular computer used and on
the quality of the parallel implementation. It can vary within broad bounds in
practice. A smaller (close to 1) value of q indicates an efficient shared mem-
ory implementation. In the numerical examples, given in the next section, it
appears that q ≈ 1.2.

Let us emphasize on the following facts:

• The time need of the parallelized weighted sequential splitting is always
greater than that of the sequential splitting; the difference is

(q − 1)(T1 + T2) + Ta if shared memory is used,

and Tc + Ta if distributed memory is used.

However, at the cost of the greater time required we can expect a more
accurate solution.

• The parallelized weighted sequential splitting takes less time than the
Marchuk-Strang splitting if

q(T1 + T2) + Ta < 2T1 + T2 in case of shared memory
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and if Tc + Ta < T1 in case of distributed memory.

• The time need of the parallelized weighted Marchuk-Strang scheme is always
greater than that of the traditional Marchuk-Strang scheme; the extra time
required is

q(max{2T1 + T2, T1 + 2T2})− 2T1 − T2 + Ta in case of shared memory

and max{T1, T2} − T1 + Tc + Ta in case of distributed memory.

• It is more advantageous to use shared memory instead of distributed memory
for the weighted sequential splitting if the following relation is satisfied:

(q − 1)(T1 + T2) < Tc

• Similarly, for the weighted Marchuk-Strang splitting it is more advanta-
geous to use shared instead of distributed memory if the following relation
is satisfied:

(q − 1)max{2T1 + T2, T1 + 2T2} < Tc

Splitting scheme Proc. Computational time
Sequential 1 T1 + T2 + T3

Marchuk-Strang (A1A2A3A2A1) 1 2(T1 + T2) + T3

1 2(T1 + T2 + T3) + Ta

Weighted sequential 2-SM q(T1 + T2 + T3) + Ta

2-DM T1 + T2 + T3 + Tc + Ta

1 4(T1 + T2) + 2T3 + Ta

Weighted Marchuk-Strang 2-SM 2q(T1 + T2) + pT3 + Ta

(A1A2A3A2A1 −A2A1A3A1A2) 2-DM 2(T1 + T2) + T3 + Tc + Ta

Table 2. Computing times needed for the splitting schemes under consideration with three operators. The

number of processors and the type of parallelization (if present) is given in the middle column: 1 – one

processor (sequential), 2 – two parallel processors, SM – shared memory, DM – distributed memory. q > 1

is a slowdown parameter of the shared memory due to memory conflicts.

The corresponding times for these splitting schemes in case of three opera-
tors are given in Table 2. The possible operator-level parallelizations are also
included.
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Comparing the times, given in the table, we can conclude that the weighted
sequential splitting (which is always more expensive than the similarly ac-
curate Marchuk-Strang splitting in sequential runs) is faster than Marchuk-
Strang if

q(T1+T2+T3)+Ta < 2(T1+T2)+T3 on two processors with shared memory

and if Ta+Tc < T1+T2 on two processors with distributed memory.

4 Numerical experiments

In order to show the differences between the splitting schemes presented in
Section 2 (in terms of computational time and parallelization abilities), all of
them were implemented into some simplified versions of the Danish Eulerian
Model (DEM). This model has been created for studying long-range transport
of air pollutants over the European region. The model is described in detail
in [16].

All experiments are performed on a Linux cluster of four nodes MAC Pow-
erPC. Each node is a shared memory computer with two processors type G4.
However, each node has its private memory, i.e., the memory is distributed on
node level. This makes it possible to use both shared and distributed mem-
ory programming models on the cluster. Standard parallelization tools (MPI
and OpenMP) are used for the distributed memory and the shared memory
parallel implementations, respectively.

The DEM is able to treat numerically all important sub-processes of the
air pollution transport: advection, diffusion, emission, chemical reactions and
deposition. In the computer program of the model the advection is treated to-
gether with the diffusion and the emission together with the chemistry. There
is also a three-dimensional version of the model, in which the atmosphere is
stratified into several layers and the vertical transport of the pollutants (in-
cluding the sub-processes of convection and vertical diffusion) is also taken
into account. In the first group of experiments, presented in Tables 3 and 4,
a simplified two-dimensional version of DEM is used with only two subprob-
lems present: the advection-diffusion subproblem and the emission subprob-
lem. These are to illustrate the two-operator splitting schemes. In Tables 5
and 6 the three-operator splitting schemes are presented by using the corre-
sponding three-dimensional version of DEM (with the vertical transport sub-
problem switched on). For the sake of simplicity only one chemical species was
taken into account. The numbers in all tables of this section are CPU times in
seconds, averaged over several runs and rounded to the first digit after the dec-
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imal point. In the experiments below Θ = 0.5 has been used for the weighted
splitting schemes. This choice of Θ affects only the accuracy, so very similar
computational times will be obtained with any other value of Θ.

Stage S MSt-AEA MSt-EAE W WMSt
Data input 0.3 0.3 0.4 0.3 0.3
Parameter setup 6.8 7.0 6.9 7.5 7.1
Advection (T1) 42.1 86.7 43.3 86.5 130.3
Emission (T2) 1.3 1.3 2.7 2.6 4.0
Data output 18.3 18.0 18.1 18.2 18.2

Total 68.8 113.3 71.3 117.4 162.6

Table 3. Sequential computational times (in seconds) for different splitting schemes applied to the

advection-emission problem (S – sequential splitting, MSt – Marchuk-Strang splitting, A – advection and

diffusion, E – emission, W – weighted sequential splitting, WMSt – weighted Marchuk-Strang splitting).

Table 3 contains the sequential execution times of the main stages and the
total times of the sequential (S), Marchuk-Strang (MSt), weighted sequential
(W) and weighted Marchuk-Strang (WMSt) splitting schemes, applied to the
simplified two-dimensional version of DEM. Each row corresponds to one of
the stages as follows. Data input refers to the reading of input data (such as
emission and meteorological data fields) from the corresponding input files.
Parameter setup includes the initialization of some parameters (chemistry,
emission, deposition and diffusion coefficients; pointers to certain work arrays;
initial values of the concentrations; etc). The Advection and Emission rows
contain the accumulated times for the solutions of the advection-diffusion and
the emission subproblems on each time-step, as required by the corresponding
splitting scheme. The time for writing the results in files is given in the Data
output row. The times for data input, parameter setup and data output are
obviously independent of the applied splitting procedure. The small differences
between the values in these rows is a result of random factors. As seen from
Table 3, the weighted sequential splitting takes longer time than the Marchuk-
Strang splitting even if the latter one starts and ends with the longer-working
advection-diffusion operator, which is not usually the case in practice. The
Marchuk-Strang scheme starting with emission takes about 38 seconds (37%)
less time, and so hardly more than the sequential splitting. It is also clear
from this table that the weighted sequential splitting is not worth using if all
computations are performed sequentially.

Table 4 contains the parallel execution times of the above problem for the
parallelizable on operator level splitting schemes. Each submodel of DEM has
efficient lower level parallelization, which is beyond the scope of this paper
(see for details [6,12,13,17]). The lower level parallelization is not used in our
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Weighted sequential Weighted MSt
Stage Process 1 Process 2 Pr.1 - AEA Pr.2 - EAE

Data input 0.4 0.4 0.4 0.4
Parameter setup 8.0 7.0 7.9 7.0
Advection (T1) 44.8 43.9 87.3 42.0
Emission (T2) 1.5 1.7 1.3 2.4
Data output 19.8 18.8 19.9 19.4
Communication (Tc) 28.1 48.3 27.8 47.8
Averaging (Ta) 0.6 0.4 0.5 0.5

Total 122.2 156.6

Table 4. Parallel execution times on two proc. (distributed memory) for the weighted sequential and

weighted Marchuk-Strang splitting schemes applied to the advection-emission problem (A – advection and

diffusion, E – emission, MSt – Marchuk-Strang splitting)

experiments. It should be mentioned, however, that the two levels of paral-
lelism are not exclusive, they can be used together on a huge parallel system
in order to exploit better its capacity. Results of parallelization on two dis-
tributed memory processes are presented in Table 4. The Communication time
given there includes also some idle time (when one of the processes has to wait
for the other to respond in order to complete certain communication proce-
dure). That is why it is different for the two processes within one and the
same task (the weighted sequential scheme or the weighted Marchuk-Strang
scheme). The total time, however, is always equal for both processes. It should
be higher than or at least equal to the sum of the stage times of the either
process in the task.

In the experiment, presented in Table 4, the communication times are rather
long. The communication stage in Process 2 of the weighted sequential splitting
takes more than the average time needed for the advection stage. This is
the reason why the parallelization of the weighted sequential splitting is not
advantageous in this example (its running time exceeds that of the sequentially
computed weighted sequential splitting if distributed memory is used). In the
case with the weighted Marchuk-Strang splitting the total computational time
is reduced by 6 seconds (3.7%). This is either not a practical advantage of the
parallelization. Despite the large communication time, another problem here is
the big difference between the times of Advection and Emission stages, which
makes the two processes rather imbalanced. This is an inherent disadvantage of
the weighted Marchuk-Strang splitting in case of two operators with different
costs.

A more complex (but still simplified version of the air pollution model,
without the non-linear chemistry submodel) is obtained by including the ver-
tical exchange subproblem (describing the convection and the vertical diffusion
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Stage MSt-EVAVE MSt-AVEVA
Data input 0.4 0.4
Parameter setup 58.4 61.1
Advection (T1) 878.6 1021.3
Emission (T2) 26.9 17.4
Vertical exchange (T3) 844.5 938.8
Data output 169.2 186.4

Total 1558.7 2225.4

Table 5. Sequential execution times for two different Marchuk-Strang splitting schemes, applied to the

three-dimensional simplified version of DEM (A – advection and diffusion, V – vertical exchange, E –

emission, MSt – Marchuk-Strang splitting).

Weighted sequential splitting
Stage Distributed mem. Shared memory

Process 1 Process 2 Thread 1 Thread 2
Data input 0.4 0.4 0.4 0.4
Parameter setup 65.5 64.4 71.8 67.6
Advection (T1) 446.6 436.6 525.6 533.0
Emission (T2) 21.6 14.0 27.8 15.1
Vertical exchange (T3) 412.3 411.9 487.8 481.6
Data output 172.3 170.3 192.7 260.2
Communication (Tc) 440.5 472.8 — —
Averaging (Ta) 13.8 4.3 13.9 6.5

Total 1580.1 1410.5

Table 6. Execution times for the distributed memory and shared memory parallel models (on two proces-

sors) of the weighted sequential splitting (EVA - AVE, A – advection and diffusion, V – vertical exchange,

E – emission) applied to the three-dimensional simplified version of DEM.

processes). This model is three-dimensional and contains ten layers in vertical
direction, which makes the computations about ten times more expensive than
in the above two-dimensional version.

Table 5 shows the sequential computational times obtained by applying
Marchuk-Strang splitting schemes with two different orders of the three sub-
problems and Table 6 – the parallel computational times of the weighted split-
ting scheme, obtained on two processors by using either distributed or shared
memory parallelization techniques.

It is seen that the weighted sequential splitting is more advantageous than
the Marchuk-Strang splitting if shared memory is used (we can gain almost
150 seconds (9.5%)), while for distributed memory the results for the weighted



Computational Complexity of Weighted Splitting Schemes 13

sequential splitting are somewhat worse than but comparable with those ob-
tained by applying Marchuk-Strang splitting.

5 Practicality and limitations of our parallelization approach

Splitting approach is commonly used in the solution of large and complex
PDE systems as those arising in environmental modeling. Development of
new highly accurate splitting algorithms that can be performed efficiently on
the up-to-date parallel supercomputers is an important task in the efficient
numerical solution of such problems. Such algorithms have been discussed,
implemented and tested in this paper. We have applied them to a particular
large-scale air pollution model - DEM, in order to examine their practical ac-
curacy and parallel properties. The DEM itself is optimized to work efficiently
on a wide spectrum of parallel machines [6,12,13,17], so each potential draw-
back in the performance of the proposed algorithms would easily show up.
There are four distinct levels of parallelism in the current version of DEM,
listed below (from finer to coarser):

(i) instruction level parallelism (called sometimes software pipelining), is
strongly dependent on the hardware type. It is achieved automatically by
the compiler if certain optimization level is enabled;

(ii) loop level parallelism - either shared memory or virtual shared memory
via OpenMP is necessary;

(iii) algorithm level parallelism - MPI is mandatory for this level;

(iv) splitting method parallelism, achieved also by MPI.

In this paper we pay attention only to the last (coarsest) level of parallelism
that can be applied if an appropriate (parallelizable) splitting method is used.
The other levels are not considered here. More details on the two lower levels
of parallelism with a lot of experimental results can be found in [6, 12, 13].
The numerical experiments here are meant to show just the potential of the
splitting method parallelism. They prove the quality of the proposed splitting
algorithms and their place in the model. We can expect similar results if these
splitting techniques are applied to any other environmental, or even large-scale
computational model, based on similar PDE systems.
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6 Conclusions

We compared the computational complexity of the traditional splitting meth-
ods (sequential and Marchuk-Strang splitting) with those of the corresponding
weighted splitting methods by using three different ways of computation: (i)
sequential run, (ii) parallel run by using shared memory, (iii) parallel run by
using distributed memory. Numerical experiments were performed in simpli-
fied 2D and 3D versions of the Danish Eulerian Model, however, we expect
qualitatively similar results for other model problems, too. Only operator-level
parallelism was used in both (ii) and (iii), lower level parallelization possibili-
ties were not considered.

All experiments were performed on a Linux cluster of four nodes MAC Pow-
erPC. (We remark that the results may be different if we use other computers.)
The computational times of the different schemes depended very much on the
way of computation.

Our main conclusions with respect to the results, presented in Section 4,
can be summarized as follows.

• The weighted splittings are not worth using if all computations are per-
formed sequentially.

• If distributed memory is used and the communication between the proces-
sors takes too long time, it is not advantageous to parallelize the weighted
methods.

• If the memory conflicts do not slow down very much the computations when
shared memory is used, weighted sequential splitting becomes more efficient
than Marchuk-Strang splitting. We remark that in our case (two processors
only) the slowdown is usually not yet significant.

• In the weighted Marchuk-Strang splitting the parallelized computation may
be inefficient if the costs of the two operators differ too much.
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Havasi in the Institute for Parallel Processing, Bulgarian Academy of Sciences,
Sofia within the framework of the project Center of Excellence (grant ICA1-
CT-2000-70016). The work was also supported in part by EC grant BIS21++,
as well as by the Bulgarian Academy of Sciences and Hungarian Academy of
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[3] Csomós, P., Faragó, I. and Havasi, Á., 2005, Weighted sequential splittings and their analysis,
Comp. Math. Appl., 50, 1017–1031.
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