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The need for µFE analysis of bones I

Osteoporosis

A disease characterized by low bone mass and deterioration of
bone microarchitecture (trabecular bone).

High lifetime risk for a fracture caused by osteoporosis.
In Switzerland, the risk for an osteoporotic fracture in women above

50 years is about 50%, for men the risk is about 20%.

Since global parameters like bone density do not admit to
predict the fracture risk, patients have to be treated in a more
individual way.
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Osteoporosis

A disease characterized by low bone mass and deterioration of
bone microarchitecture (trabecular bone).

High lifetime risk for a fracture caused by osteoporosis.
In Switzerland, the risk for an osteoporotic fracture in women above

50 years is about 50%, for men the risk is about 20%.

Since global parameters like bone density do not admit to
predict the fracture risk, patients have to be treated in a more
individual way.

Research

µFE analysis improves the understanding of the importance of the
structure of the trabecular bone.
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The need for µFE analysis of bones II

Progress

New approach consists of combining 3D high-resolution CT scans
of individual bones with a micro-finite element (µFE) analysis.
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Another problem

A. Wirth et al.: Mechanical competence of bone-implant systems can

accurately be determined by image-based µFE analyses. Arch. Appl. Mech. 80

(2010), 513–525.
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Work flow

pQCT: Peripheral Quantitative Computed Tomography
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The mathematical model

Equations of linearized 3D elasticity (pure displacement
formulation): Find displacement field u that minimizes total
potential energy∫

Ω

[
µε(u) : ε(u) +

λ

2
(divu)2 − ftu

]
dΩ−

∫
ΓN

gtSudΓ,

with Lamé’s constants λ = Eν
(1+ν)(1−2ν) , µ = E

2(1+ν) , volume
forces f, boundary tractions g, symmetric strain tensor

ε(u) :=
1

2
(∇u + (∇u)T ).

Free boundary except top/bottom

The computational
domain Ω consist of
identical voxels
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Discretization using voxel elements

Finite element approximation: displacements u represented by
piecewise trilinear polynomials

Each voxel has 8 nodes

In each node we have 3 degrees of freedom: displacements in
x-, y -, z-direction

In total 24 degrees of freedom per voxel

strains / stresses computable by means of nodal displacements
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Solving the system of equations

The discretization results in a linear system of equation:

Au = f

A is sparse and symmetric positive definite.

The fine resolution of the CT scan entails that A is HUGE.

Approach to solve this linear system: preconditioned
conjugate gradient (PCG) algorithm

Diagonal (Jacobi) preconditioner (Rietbergen et al., 1996)
Avoid the assembling of the stiffness matrix. Compute the
matrix-vector multiplication in an element-by-element (EBE)
fashion

A =

nel∑
e=1

TeAeTT
e , (1)

Multigrid preconditioning (SA-AMG)

Talk at SuperCA++, Bansko BG, Apr 23, 2012 10/28



Introduction Modelling SA-AMG Full space Octree Results Conclusions & future work

ParFE: Smoothed aggregation I (Trilinos ML package)

Parts of SA-AMG

Prolongator

First level: Tentative (unsmoothed) prolongator formed from
the aggregation of the matrix graph.
Second level and beneath: Smoothed aggregation

Coarser level matrix: Ki+1 = PT
i KiPi

Smoother: Chebyshev polynomial that is small on the upper
part of the spectrum of K`

Memory savings about factor 3.5 (Arbenz et al., 2008)

2009: Solved a problem with 1.9 · 109 dofs at CSCS.

ParMETIS → Recursive Coordinate Bisection

Limiting number of levels (no direct solving on coarsest level)
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Very large real bone

Effective strains with zooms.
(Image by Jean Favre, CSCS)
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“Full space” approach

Motivation

We did not exploit regular structures except on finest level.

To reduce overhead for information on unstructured grids:

Use regular grids on all levels.
Apply geometric multigrid
Stay matrix-free on all levels

First approach in this direction:

Embed the bone structure in a cuboid with original regular grid
extended.
The ‘empty space’ is assumed to be filled with very soft
material (Margenov, 2006).

Goal is to have an algorithm with high memory efficiency.
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“Full space” approach (con’t)

Parts of “full space” approach

Empty region also meshed
=⇒ increased number of dof’s

Poisson’s ratio (ν) constant, Young’s modulus (E) can vary

Geometric multigrid preconditioner

Prolongator: trilinear interpolation
Smoother: Chebyshev polynomial
Coarser level problem: average of the Young’s modulus of the
encased voxels
Iterative solver with limited precision on coarsest level
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“Full space” approach (con’t)

Parts of “full space” approach II

All matrix-vector multiplications are implemented in a
element-by-element manner

K` =

n`el∑
e=1

E `
e T `

e K `
e (T `

e )T ,

E `+1
x ,y ,z =

1

8

1∑
i ,j ,k=0

E `
2x+i ,2y+j ,2z+k , K `+1

e =
1

8
K `
e .

Perfect weak scalability up to 8000 cores on a Cray XT5

Largest problem had 16 · 109 dofs (Flaig, Arbenz, LSSC’11)
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Octree approach

1D: binary tree

intervals are divided into
2 subintervals

2D: quadtree

squares are divided into 4
subsquares

3D: octree

cubes are divided into 8
subcubes
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Octree approach

1D: binary tree

intervals are divided into
2 subintervals

2D: quadtree

squares are divided into 4
subsquares

3D: octree

cubes are divided into 8
subcubes

→ Depth first traversal results in the Morton ordering (Z curve)
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Octree approach (con’t)

Left: finest level right: various levels of a quadtree
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Octree approach (con’t)
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Octree approach (geometric multigrid)

Parts of octree approach

Same setup as the “full space” approach
Geometric multigrid preconditioner:

Prolongator: Trilinear interpolation
Smoother: Chebyshev polynomial
Coarser level problem: Average of the Young’s modulus of the
encased voxels
Iterative solver with limited precision on coarsest level

Poisson’s ratio (ν) constant, Young’s modulus (E) can vary

Computational region is stored in a hierarchical data structure
Octree (H. Sundar et al., 2007), Space filling curve (M. Mehl et al.,

2006), p4est (Burstedde et al., 2011)

Linearized octree
Nodes are stored according to their Morton ordering (Z curve)
Optimized search strategy to access the nodes of the elements
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Numbering

0 1
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Coordinate to key transformation: key = · · · y3x3y2x2y1x1y0x0
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Accessing the nodes

0 1

2 3

4

6

9

11

12 13

14 15 26

33 36 37 48

0 1 2 3 4 6 9 11 12 13 14 15 26 33 36 37 48

Left lower node has always the
smallest key

Space filling curve leads to
locality of the nodes in the array

Interval increasing by factor of
4 corresponds to ascending one
level in the quadtree

function int SearchIndex(int start, t octree key key , t tree tree)
int count = 1;
while key > tree[start + count].key do

count = count · 4;
end while
return binarySearch(start + count/4, start + count, key , tree);
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Coarsening

key = · · · y3x3y2x2y1x1y0x0

coarsekey = · · · y3x3y2x2y1x1

coarsekey =
key

4

On the coarser level: Young’s modulus is obtained by averaging the
Young’s moduli of the encased voxels.
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Partitioning and load balancing

Key objective: equal memory
usage per core

Distribution to the cores is done
according to space filling curve

Equally sized sets of contiguous
nodes

Coarser levels are not
redistributed

Communication scheme:
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Memory consumption

Memory consumption [Bytes per dof](measured values )

SA-AMG “full space” “Octree”

Mesh 366 2.5 5.5
Matrix, PCG 199 32 32
Preconditioner 523 39.5 43
temporary memory ∼400 ∼7 ∼12

Total ∼1488 ∼81 ∼92.5

About 15 mio. dofs per compute core with 1.33 GB memory.

SA-AMG needs more than 16× more memory.

For dense bone, “full space” approach should be chosen.
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Weak scalability

Weak scalability test with two meshes:

c240 is encased in a 2403 cube with 6.98 · 106 dofs
c320 is encased in a 3203 cube with 11.8 · 106 dofs

Bigger grids are generated by
“3D-mirroring”

Chebyshev smoother deg 6

Stopping criterion:
||rk ||M−1 ≤ 10−6||r0||M−1

Biggest mesh: 388 · 109 dofs

Talk at SuperCA++, Bansko BG, Apr 23, 2012 25/28



Introduction Modelling SA-AMG Full space Octree Results Conclusions & future work

Weak scalability (94 · 109 dofs) Smoother: Cheb. deg. 6, tol. 10−6
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Timings are measured on a Cray XT5 at CSCS

The iteration counts varies between 15 and 17

Very good scaling up to 8000 cores.
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Strong scalability
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Execution times measured on a Cray XT5 at CSCS

Stopping criterion: ||rk ||M−1 ≤ 10−6||r0||M−1

Mesh: c320 3×“3D-mirrored”

Good scaling from 27 cores to 576 cores

Higher smoother degree results in a better efficiency

It is worth to limit the number of levels
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Extended weak scalability on Cray XT5 Jaguar at Oak
Ridge NL (388 billion dofs)
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Conclusion, future work

Conclusions

Solved huge problem with 388 · 109 dofs.
Real bones up to 3.1 · 109 dofs.

New approach has 16× smaller memory footprint than ParFE.

Perfect weak scalability and a good strong scalability.

Space filling curve is a good tool for partitioning.

Code is cache efficient.

Future work

Improve the access of the node by using low collision hashing.

Individual redistribution of the coarser meshes.

Find a better homogenization procedure.

GPU implementation (full space approach).
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Chebyshev smoother

Smoother

Degree 10 polynomial of the diagonally scaled matrix

Polynomial is chosen to be minimal on [λmin, λmax ]

The spectrum (biggest, smallest eigenvalue) is estimated with
10 steps of Lanczos algorithm.

Important to set λmin relative to λmax : λmin = λmax/16
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Real Bone Smoother: Cheb. deg. 6, tol. 10−6

Part of the human radius

Global size: 303× 459× 553

9 · 106 elements, 36.5 · 106 dofs

Prec #iter time [s]

GMG 54 1336

Jac. 6827 5891
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