Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work

A highly scalable matrix-free multigrid solver for μ FE analysis of bone structures based on a pointer-less octree

P. Arbenz, C. Flaig ETH Zurich

Talk at SuperCA++, Bansko BG, Apr 23, 2012

Talk at SuperCA++, Bansko BG, Apr 23, 2012

▲ 伺 ▶ | ▲ 三 ▶

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
Outline						

- 2 Mathematical model
- 3 SA-AMG approach
- 4 Full space approach
- 5 Octree approach
- 6 Numerical results

Osteoporosis

- A disease characterized by low bone mass and deterioration of bone microarchitecture (trabecular bone).
- High lifetime risk for a fracture caused by osteoporosis. In Switzerland, the risk for an osteoporotic fracture in women above 50 years is about 50%, for men the risk is about 20%.
- Since global parameters like bone density do not admit to predict the fracture risk, patients have to be treated in a more individual way.

Osteoporosis

- A disease characterized by low bone mass and deterioration of bone microarchitecture (trabecular bone).
- High lifetime risk for a fracture caused by osteoporosis. In Switzerland, the risk for an osteoporotic fracture in women above 50 years is about 50%, for men the risk is about 20%.
- Since global parameters like bone density do not admit to predict the fracture risk, patients have to be treated in a more individual way.

Research

 $\mu {\rm FE}$ analysis improves the understanding of the importance of the structure of the trabecular bone.

The need for μFE analysis of bones II

Progress

New approach consists of combining 3D high-resolution CT scans of individual bones with a micro-finite element (μ FE) analysis.

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
Another	r probler	n				

A. Wirth *et al.*: Mechanical competence of bone-implant systems can accurately be determined by image-based μFE analyses. Arch. Appl. Mech. 80 (2010), 513–525.

6/28

Talk at SuperCA++, Bansko BG, Apr 23, 2012

pQCT: Peripheral Quantitative Computed Tomography

• Equations of linearized 3D elasticity (pure displacement formulation): Find displacement field **u** that minimizes total potential energy

$$\int_{\Omega} \left[\mu \varepsilon(\mathbf{u}) : \varepsilon(\mathbf{u}) + \frac{\lambda}{2} (div\mathbf{u})^2 - \mathbf{f}^t \mathbf{u} \right] d\Omega - \int_{\Gamma_N} \mathbf{g}_S^t \mathbf{u} d\Gamma,$$

with Lamé's constants $\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$, $\mu = \frac{E}{2(1+\nu)}$, volume forces **f**, boundary tractions **g**, symmetric strain tensor

$$\varepsilon(\mathbf{u}) := \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T).$$

- Free boundary except top/bottom
- The computational domain Ω consist of identical voxels

Talk at SuperCA++, Bansko BG, Apr 23, 2012

• Equations of linearized 3D elasticity (pure displacement formulation): Find displacement field **u** that minimizes total potential energy

$$\int_{\Omega} \left[\mu \varepsilon(\mathbf{u}) : \varepsilon(\mathbf{u}) + \frac{\lambda}{2} (div\mathbf{u})^2 - \mathbf{f}^t \mathbf{u} \right] d\Omega - \int_{\Gamma_N} \mathbf{g}_S^t \mathbf{u} d\Gamma,$$

with Lamé's constants $\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$, $\mu = \frac{E}{2(1+\nu)}$, volume forces **f**, boundary tractions **g**, symmetric strain tensor

$$arepsilon(\mathbf{u}) := rac{1}{2} (
abla \mathbf{u} + (
abla \mathbf{u})^T).$$

- Free boundary except top/bottom
- The computational domain Ω consist of identical voxels

Talk at SuperCA++, Bansko BG, Apr 23, 2012

8/28

- Finite element approximation: displacements **u** represented by piecewise trilinear polynomials
- Each voxel has 8 nodes
- In each node we have 3 degrees of freedom: displacements in x-, y-, z-direction
- In total 24 degrees of freedom per voxel
- strains / stresses computable by means of nodal displacements

• The discretization results in a linear system of equation:

$$Au = f$$

- A is sparse and symmetric positive definite.
- The fine resolution of the CT scan entails that **A** is HUGE.
- Approach to solve this linear system: preconditioned conjugate gradient (PCG) algorithm
 - Diagonal (Jacobi) preconditioner (Rietbergen et al., 1996)
 - Avoid the assembling of the stiffness matrix. Compute the matrix-vector multiplication in an element-by-element (EBE) fashion

$$A = \sum_{e=1}^{n_{\rm el}} T_e A_e T_e^T, \tag{1}$$

• Multigrid preconditioning (SA-AMG)

Introduction Modelling SA-AMG Full space Octree Results Conclusions & future work

ParFE: Smoothed aggregation I (Trilinos ML package)

Parts of SA-AMG

- Prolongator
 - First level: Tentative (unsmoothed) prolongator formed from the aggregation of the matrix graph.
 - Second level and beneath: Smoothed aggregation
- Coarser level matrix: $K_{i+1} = P_i^T K_i P_i$
- Smoother: Chebyshev polynomial that is small on the upper part of the spectrum of K_ℓ

Memory savings about factor 3.5 (Arbenz et al., 2008)

2009: Solved a problem with $1.9 \cdot 10^9$ dofs at CSCS.

- $ParMETIS \rightarrow Recursive Coordinate Bisection$
- Limiting number of levels (no direct solving on coarsest level)

Talk at SuperCA++, Bansko BG, Apr 23, 2012

Introduction Modelling SA-AMG Full space Octree Results Conclusions & future work

ParFE: Smoothed aggregation I (Trilinos ML package)

Parts of SA-AMG

- Prolongator
 - First level: Tentative (unsmoothed) prolongator formed from the aggregation of the matrix graph.
 - Second level and beneath: Smoothed aggregation
- Coarser level matrix: $K_{i+1} = P_i^T K_i P_i$
- Smoother: Chebyshev polynomial that is small on the upper part of the spectrum of K_ℓ

Memory savings about factor 3.5 (Arbenz et al., 2008)

2009: Solved a problem with $1.9 \cdot 10^9$ dofs at CSCS.

- ParMETIS → Recursive Coordinate Bisection
- Limiting number of levels (no direct solving on coarsest level)

Introduction Modelling SA-AMG Full space Octree Results Conclusions & future work
Very large real bone

Effective strains with zooms.

(Image by Jean Favre, CSCS)

• • • • • • • • • •

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
"Full sp	ace" ap	proach				

Motivation

- We did not exploit regular structures except on finest level.
- To reduce overhead for information on unstructured grids:
 - Use regular grids on all levels.
 - Apply geometric multigrid
 - Stay matrix-free on all levels
- First approach in this direction:
 - Embed the bone structure in a cuboid with original regular grid extended.
 - The 'empty space' is assumed to be filled with very soft material (Margenov, 2006).

• Goal is to have an algorithm with high memory efficiency.

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
"Full sp	ace" ap	proach				

Motivation

- We did not exploit regular structures except on finest level.
- To reduce overhead for information on unstructured grids:
 - Use regular grids on all levels.
 - Apply geometric multigrid
 - Stay matrix-free on all levels
- First approach in this direction:
 - Embed the bone structure in a cuboid with original regular grid extended.
 - The 'empty space' is assumed to be filled with very soft material (Margenov, 2006).

• Goal is to have an algorithm with high memory efficiency.

Parts of "full space" approach

- ٩
- Empty region also meshed \implies increased number of dof's

- $\bullet\,$ Poisson's ratio (ν) constant, Young's modulus (E) can vary
- Geometric multigrid preconditioner
 - Prolongator: trilinear interpolation
 - Smoother: Chebyshev polynomial
 - Coarser level problem: average of the Young's modulus of the encased voxels
 - Iterative solver with limited precision on coarsest level

 Introduction
 Modelling
 SA-AMG
 Full space
 Octree
 Results
 Conclusions & future work

 "Full space" approach (con't)

Parts of "full space" approach II

 All matrix-vector multiplications are implemented in a element-by-element manner

$$\mathcal{K}_{\ell} = \sum_{e=1}^{n_{el}^{\ell}} E_{e}^{\ell} T_{e}^{\ell} \mathcal{K}_{e}^{\ell} (T_{e}^{\ell})^{T},$$
$$E_{x,y,z}^{\ell+1} = \frac{1}{8} \sum_{i,j,k=0}^{1} E_{2x+i,2y+j,2z+k}^{\ell}, \qquad \mathcal{K}_{e}^{\ell+1} = \frac{1}{8} \mathcal{K}_{e}^{\ell}.$$

Perfect weak scalability up to 8000 cores on a Cray XT5
 Largest problem had 16 · 10⁹ dofs (Flaig, Arbenz, LSSC'11)

 Introduction
 Modelling
 SA-AMG
 Full space
 Octree
 Results
 Conclusions & future work

 "Full space" approach (con't)

Parts of "full space" approach II

 All matrix-vector multiplications are implemented in a element-by-element manner

$$\begin{split} \mathcal{K}_{\ell} &= \sum_{e=1}^{n_{el}^{\ell}} E_{e}^{\ell} \, \mathcal{T}_{e}^{\ell} \, \mathcal{K}_{e}^{\ell} \, (\mathcal{T}_{e}^{\ell})^{\mathcal{T}}, \\ \mathcal{E}_{x,y,z}^{\ell+1} &= \frac{1}{8} \sum_{i,i,k=0}^{1} E_{2x+i,2y+j,2z+k}^{\ell}, \qquad \mathcal{K}_{e}^{\ell+1} = \frac{1}{8} \mathcal{K}_{e}^{\ell}. \end{split}$$

Perfect weak scalability up to 8000 cores on a Cray XT5
 Largest problem had 16 · 10⁹ dofs (Flaig, Arbenz, LSSC'11)

- 1D: binary tree
 - intervals are divided into 2 subintervals
- 2D: quadtree
 - squares are divided into 4 subsquares
- 3D: octree
 - cubes are divided into 8 subcubes

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
Octree	approacl	h				

2	3
0	1

- 1D: binary tree
 - intervals are divided into 2 subintervals
- 2D: quadtree
 - squares are divided into 4 subsquares
- 3D: octree
 - cubes are divided into 8 subcubes

- 1D: binary tree
 - intervals are divided into 2 subintervals
- 2D: quadtree
 - squares are divided into 4 subsquares
- 3D: octree
 - cubes are divided into 8 subcubes

(日)

3. 3

- 1D: binary tree
 - intervals are divided into 2 subintervals
- 2D: quadtree
 - squares are divided into 4 subsquares
- 3D: octree
 - cubes are divided into 8 subcubes

• • • • • • • • • •

 \rightarrow Depth first traversal results in the Morton ordering (Z curve)

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
Octree a	approach	(con't)				

Left: finest level

right: various levels of a quadtree

Talk at SuperCA++, Bansko BG, Apr 23, 2012

Parts of octree approach

- Same setup as the "full space" approach
 - Geometric multigrid preconditioner:
 - Prolongator: Trilinear interpolation
 - Smoother: Chebyshev polynomial
 - Coarser level problem: Average of the Young's modulus of the encased voxels
 - Iterative solver with limited precision on coarsest level
 - Poisson's ratio (u) constant, Young's modulus (E) can vary
- Computational region is stored in a hierarchical data structure Octree (H. Sundar et al., 2007), Space filling curve (M. Mehl et al., 2006), p4est (Burstedde et al., 2011)
 - Linearized octree
 - Nodes are stored according to their Morton ordering (Z curve)
 - Optimized search strategy to access the nodes of the elements

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
Numbe	ring					

0 1 2 3 4 6 9 11 12 13 14 15 26 33 36 37 48

20/28

• Coordinate to key transformation: $key = \cdots y_3 x_3 y_2 x_2 y_1 x_1 y_0 x_0$

Talk at SuperCA++, Bansko BG, Apr 23, 2012

- Left lower node has always the smallest key
- Space filling curve leads to locality of the nodes in the array
- Interval increasing by factor of 4 corresponds to ascending one level in the quadtree

A 10

- Left lower node has always the smallest key
- Space filling curve leads to locality of the nodes in the array
- Interval increasing by factor of 4 corresponds to ascending one level in the quadtree

< A ▶

- Left lower node has always the smallest key
- Space filling curve leads to locality of the nodes in the array
- Interval increasing by factor of 4 corresponds to ascending one level in the quadtree

< A >

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
Accessi	ng the n	odes				

- Left lower node has always the smallest key
- Space filling curve leads to locality of the nodes in the array
- Interval increasing by factor of 4 corresponds to ascending one level in the quadtree

< A ▶

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
Accessi	ng the n	odes				

- Left lower node has always the smallest key
- Space filling curve leads to locality of the nodes in the array
- Interval increasing by factor of 4 corresponds to ascending one level in the quadtree

A 10

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
Accessi	ng the n	odes				

- Left lower node has always the smallest key
- Space filling curve leads to locality of the nodes in the array
- Interval increasing by factor of 4 corresponds to ascending one level in the quadtree

< A ▶

- Left lower node has always the smallest key
- Space filling curve leads to locality of the nodes in the array
- Interval increasing by factor of 4 corresponds to ascending one level in the quadtree

```
function int SearchIndex(int start, t_octree_key key, t_tree tree)
int count = 1;
while key > tree[start + count].key do
    count = count · 4;
end while
return binarySearch(start + count/4, start + count, key, tree);
```

Talk at SuperCA++, Bansko BG, Apr 23, 2012

うへで 21/28

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
Access	sing the n	odes				

- Left lower node has always the smallest key
- Space filling curve leads to locality of the nodes in the array
- Interval increasing by factor of 4 corresponds to ascending one level in the quadtree

```
function int SearchIndex(int start, t_octree_key key, t_tree tree)
int count = 1;
while key > tree[start + count].key do
        count = count · 4;
end while
return binarySearch(start + count/4, start + count, key, tree);
```


 $key = \cdots y_3 x_3 y_2 x_2 y_1 x_1 y_0 x_0$ $coarsekey = \cdots y_3 x_3 y_2 x_2 y_1 x_1$ $coarsekey = \frac{key}{4}$

22/28

On the coarser level: Young's modulus is obtained by averaging the Young's moduli of the encased voxels.

- Key objective: equal memory usage per core
- Distribution to the cores is done according to space filling curve
- Equally sized sets of contiguous nodes
- Coarser levels are not redistributed

Talk at SuperCA++, Bansko BG, Apr 23, 2012

Communication scheme:

וּאַלאַ אַ אַדּאַ אָד אָדָאָער אַדאָער אָדאָער אָדאָער אָדאָער אָדאָער אָדאָער אָדאָער אָדאָער אַדער אַדער אַ 23/28

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
Memory	, consun	nption				

Memory consumption [By	tes per dof](n	neasured value	es)
	SA-AMG	"full space"	"Octree"
Mesh	366	2.5	5.5
Matrix, PCG	199	32	32
Preconditioner	523	39.5	43
temporary memory	\sim 400	\sim 7	$\sim \! 12$
Total	$\sim\!1488$	~ 81	\sim 92.5

• About 15 mio. dofs per compute core with 1.33 GB memory.

- \bullet SA-AMG needs more than 16 \times more memory.
- For dense bone, "full space" approach should be chosen.

- Weak scalability test with two meshes:
 - $\bullet~c240$ is encased in a 240^3 cube with $6.98\cdot 10^6~dofs$
 - $\bullet\,$ c320 is encased in a 320 3 cube with $11.8\cdot10^6$ dofs
- Bigger grids are generated by "3D-mirroring"
- Chebyshev smoother deg 6
- Stopping criterion: $||\mathbf{r}_k||_{M^{-1}} \le 10^{-6} ||\mathbf{r}_0||_{M^{-1}}$
- Biggest mesh: $388 \cdot 10^9$ dofs

Full space

Results

Octree

Conclusions & future work

Modelling

- Execution times measured on a Cray XT5 at CSCS
- Stopping criterion: $||\mathbf{r}_k||_{M^{-1}} \le 10^{-6} ||\mathbf{r}_0||_{M^{-1}}$
- Mesh: c320 3× "3D-mirrored"
- Good scaling from 27 cores to 576 cores
- Higher smoother degree results in a better efficiency
- It is worth to limit the number of levels

Extended weak scalability on Cray XT5 Jaguar at Oak Ridge NL (388 billion dofs)

Full space

Modelling

Results

Octree

Conclusions & future work

Conclusions

- Solved huge problem with $388 \cdot 10^9$ dofs. Real bones up to $3.1 \cdot 10^9$ dofs.
- New approach has $16 \times$ smaller memory footprint than ParFE.
- Perfect weak scalability and a good strong scalability.
- Space filling curve is a good tool for partitioning.
- Code is cache efficient.

Future work

- Improve the access of the node by using low collision hashing.
- Individual redistribution of the coarser meshes.
- Find a better homogenization procedure.
- GPU implementation (full space approach).

Introduction	Modelling	SA-AMG	Full space	Octree	Results	Conclusions & future work
Referen	ces					

- P. Arbenz, G. H. van Lenthe, U. Mennel, R. Müller, and M. Sala. A scalable multi-level preconditioner for matrix-free μ-finite element analysis of human bone structures. Internat. J. Numer. Methods Eng. 73(7), 927–947, 2008.
- [2] C. Flaig and P. Arbenz. A scalable memory efficient multigrid solver for micro-finite element analyses based on CT images, Parallel Comput. 37(12) 846–854, 2011.
- [3] C. Flaig and P. Arbenz. A highly scalable matrix-free multigrid solver for μFE analysis based on a pointer-less octree. Proceedings LSSC 2011. Springer Lecture Notes in Computer Science 7116, 498–506.

<ロ> (四) (四) (三) (三) (三)

Smoother

- Degree 10 polynomial of the diagonally scaled matrix
- Polynomial is chosen to be minimal on $[\lambda_{min}, \lambda_{max}]$
- The spectrum (biggest, smallest eigenvalue) is estimated with 10 steps of Lanczos algorithm.
- Important to set λ_{min} relative to λ_{max} : $\lambda_{min} = \lambda_{max}/16$

- Part of the human radius
- Global size: $303 \times 459 \times 553$
- $\bullet~9\cdot 10^6$ elements, $36.5\cdot 10^6~\text{dofs}$

Prec	#iter	time [s]
GMG	54	1336
Jac.	6827	5891