Effect of the precipitation of acid soap and
alkanoic acid crystallites on the bulk pH

Gergana Velikova, Ivan Georgiev, Milena Veneva

Introduction

As known from everyday life, physical properties of solutions drastically differ
from those of the pure solvents. One distinctive characteristic of the mixtures
is their surface tension () after the addition of solute. In many cases, such
as multifarious industry productions, the usage of surface-active substances is
desired, because of their ability to lower the value of v. By definition, the surface
tension is described as the tension of the liquid molecules on the interface, caused
by their interactions with the molecules in the bulk of the liquid, which are
thermodinamicaly more favorable.

One possible application of surface-active substances as soaps and detergents
are in the emulsion industry. In particular, soaps are widely used for hygienic
purposes for hundreds of years. They are products of a chemical reaction be-
tween fatty acids (mostly from Cis to Cig saturated and Cig mono-, di- and
triunsaturated ones), and sodium or potassium hydroxide in a process called

saponification.
0 0]
I i
CH,—0—C—R CH,0H Na*"0-C-R
l 0 I 0

I
CH—O0—C—R’ + 3NaOH - CH—0H + Na'"O—C-R'

I I
CH,—O0—C—R" CH,0H Na*"0—-C-R"
fatty acid sodium hydroxide glycerol sodium soap

Before any of the aforementioned detergents can be used as a cleaning agent
they need to be solubilized. In fact, the solubility of soaps and other ionic surfac-
tants depends strongly on the temperature. Therefore, their chemical presence
in solution is low, before the temperature reaches the Krafft point. Another key
feature of soap colloid solutions is the presence of micelles. As known from the
experience, all types of surfactants exist as monomers in the solution, before they
reach the critical micelle concentration (CMC), and start self-assembling into mi-
celles. It is important to realize that the soap’s micelles cleaning mechanism is

Effect of The Precipitation of Acid Soap ESGI'104

the trapping of substances, which are insoluble in water.

The water solutions of such soaps include different chemical species such as ions
of water, soap and hydrogen carbonates, the last ones are results of the solubility
of CO, in water. Moreover, because of the industry needs, the behavior of the
system is examined in the presence of sodium chloride salt and under different
acidity.

Formulation of the problem

Chemical settling and goals

One of the most important characteristics of the industrial cleaning products
is their optimal pH, which is monitored with addition of fatty acid salts. Given
all introductory points, the one component system including sodium soap, water,
sodium chloride, and dissolved carbon dioxide is modelled in the paper. Further,
chemical species in the complex mixture, coefficients, and constants used in the
model formulation are denoted as: K, — fatty acid’s dissociation constant; K, —
water’s dissociation constant; @),,, — rate constant of the soap production; K, Oy
— used, because of the solubility of the COy from the atmosphere; C;, — concen-
tration of the hydrogen cations; C, — concentration of the fatty acid anions; C|;
— concentration of the metal cations; C|,, — concentration of the soaps; Cy,; —
concentration of the hydroxide anions; C},,. — concentration of the hydrogencar-
bonate anions; C, — concentration of the added salt (NaCl); Cy, — concentration
of the added base (NaOH); C,;, — concentration of the undissociated fatty acid.
The rate coefficient of soap production and all other dissociation constants are
of the type of rate constants. In addition, because of the nature of the manufac-
turing process, we assume that all reactions are in equilibrium. Therefore, the
system of ordinary differential equations from the reaction scheme simplifies to a
system of polynomial equations with more than one variable.

Fj(z1,72,...,2Nn) =bj,j =1, N

In that case, we expect to obtain more than one solution and we need to set goals
for our numerical implementation of the formulated mathematical model:

goal 1: fast algorithm for solving the system;

goal 2: fast algorithm to detect the positive solution among all of the system’s
solutions;

goal 3: fitting the theoretically evaluated data for pH with the experimentally
obtained one;

goal 4: high precision of the solution.

84

ESGI'104 Effect of The Precipitation of Acid Soap

Mathematical Model
The system of polynomial equations is in the form

CuCyd = K, Cy,

CuCi = QuCus

CHCOH’Y:QI: = Ky

CuCuco, ¥t = Koo, (1)
I=Cy+Cy = Cou+Cypo, +C,+C,

my, = C,+C, +C,-C,-C,,

m, = 0y =0, = Cyy = Oy

where K, = 6.81 x 107 M2, K, = 1.995 x 107 M, and Q,,, = 2.84 M. The
activity coefficient v+ is calculated from the semi-empirical formula:

0.5115VT
lo =0.055] — —— = 2
810 T+ 11 1.316V1 (2)
where [is the ionic strength and
pH = —log;4(7£Cy)- (3)

First case — without NaCl

NaMy without NaCl, 25°C

1 I I
| |
: | |
10 T | | &T
: | |,
g] I | .l
' | ot
I g HZ I *® . (|-|Z)1(NE)1_
e precipitate ' P ** precipitats
] I . I
] I o |
7 | . *® I
] ..,' (HZ),(V2), |
. Lo . l precipitate l
b I I
LN) | |
] I |
5 1 by : !
0.01 0.1 1

NaMy concentration, ¢y (mM)

e, =0Mand Cp=0M

85

Effect of The Precipitation of Acid Soap ESGI'104

Second case — with NaCl

NaMy + 10 mM NacCl, 25°C
1 + + +

10 {

(HZ); (MZ),
precipitate

I
|
|
|
.t
|
|

pH
w

{ Hz precipitate
] (HZ)4(ME)4
precipitate

1 *
6;‘. ..

I
+ .

. 4
t T

0.01 0.1 1
NaMy concentration, ¢ (mM)

e C, =001Mand C; =0M

First and second case — first interval

e solution with fatty acid precipitates
e (C,,=5,=52x10""M
e m, =0
= fit K,
= comparison between the obtained K 0y values in the two cases.

First and second case — second interval

e solution with precipitate of j : n acid soap
my, m
o — — —_—
n n-+7
. CﬂCﬁCé+nfyij+2n =Kj,, ifj=4andn=1
. CI{IC;ZCZ‘F”’V:?H" =Kj,, if j=3andn =2

Z

= fit Ky
= fit K3

86

ESGI'104 Effect of The Precipitation of Acid Soap

First and second case — third interval

e solution with precipitate of j : n acid soap
Y % = —
n n-+7

. CﬂCﬁCﬁ*"fyij+2n =Kj,, ifj=landn=1

My

= fit Ky
= comparison between the obtained Ki; values in the two cases.

Solution

In order to fit the theoretically evaluated data with the experimentally ob-
tained one, we minimize the following functional:

n

P(Kcog:lz[l_mr

n k=1 pHea:p(k)

by numerical variation of K co,- Here pHy, are the values for pH obtained from
(1)-(3) and pH,,, are the measured experimental data. Using software for sym-
bolic computations (like Mathematica) one can find a good initial approximation
for the parameter Kco,.

First case (first interval) — values of P(K_,), n =20

CO9

0.0014

0.0012 \
0.0010 \ /
0.0008 \
0.0006 \ /

0.0004 [/
[\

0.0002 \\

87

Effect of The Precipitation of Acid Soap ESGI'104

First Case (first interval) — fit of the theoretically evaluated data
for pH with the experimentally obtained one (KCO2 ~ 1.8 x 10719)

0.0002 0.0003 0.0004 0.0003 0.0006

Second Case (first interval) — values of P(K,), n =20

0.0020
0.0015 | y,
0.0010} y

0.0005 | \ ,f

88

ESGI'104 Effect of The Precipitation of Acid Soap

Second Case (first interval) — fit of the theoretically evaluated data
for pH with the experimentally obtained ones (KCO2 ~2x10710)

6.4
6.2 1
6.0 -
® []
S8 e
®
0.00012 0.00014 000016 000018 000020 000022 0.00024

Using the obtained value of Ko, and the same technique one can fit the
parameters K39 and K7 for the second and respectively the third interval.

Fast algorithm for finding the positive solution

So far we have talked about solving the system of equations we have and
fitting the theoretically evaluated data for pH with the experimentally obtained
one. However, a very important step of the problem solving is to detect quickly
the positive solution aomung the whole set of the system’s solutions.

The problem now is the following:

e we have a system of no more than 20 polynomial equations;

e there is no estimation for the number of the solutions that such a system
can have, because this number depends on the type of the crystals that are
used;

e the components of the solutions could be complex numbers;

e according to a hypothesis from the practice the system can have only one
positive solution.
The aim is a fast algorithm to detect the positive solution.
We are going to show two different algorithms, each of them was implemented
both in C++ and Matlab. In order to compare the two algorithms, we have been
given an example — system, which consists of 16 equations with 16 variables.

89

Effect of The Precipitation of Acid Soap ESGI'104

The solutions obtained with Mathematica are 9, only one of which is positive.
For the needs of the computer programs we have written, we assume that each
component of each solution is a complex number.

First approach

The first approach is to compare each component of each solution with 0:

a+bi

So, the algorithm is the following: we take the first component of the first
solution. If the real part of this component is not negative, then we compare
the imaginary part of this component with 0. If this part is also not negative,
we take the second component of the current solution and continue in the same
manner. If we find a negative part in a component, we reject the current solution
and continue with the next one. Because of the fact that existence of only one
positive solution is just a hypothesis, our algorithm does not stop if it finds a
solution, which consists of only positive components, but continues searching for
other positive solutions.

This way, the complexity of the first algorithm is O(n % m), where n is the
number of the solutions of the system and m is the number of the components
in each solution.

Second approach

In order to garantee the needed precision of the solution, we represent the real
and the imaginary part of each component of each solution as a double-precision
floating-point number. The benefit is that each double-precision floating-point
number has 15 decimal digits in the decimal part of the mantis and the absolute
value of such a number is between 1073% and 103%8.

Each double-precision floating-point number is represented in the computer’s
memory as 8 B = 64 bits (according to the standard IEEE). In the picture below
you can see what each of these 64 bits is used for. The most important bit for

90

ESGI'104 Effect of The Precipitation of Acid Soap

our second approach is the sign bit. It contains 0 if the number is > 0 and 1, if
it is negative.

exponent fraction
5|gn (11 bit) (52 bit)

63 52

Thus, the second approach is the following: instead of comparing lexicograph-
ically all the bits in the binary representation of a number with the binary rep-
resentation of 0, as we did in our first approach, we compare only the sign bit of
the current number with the sign bit of 0, which is 0. The remaining part of the
first algorithm is not changed.

Then:
e the complexity of the algorithm comparison with 0 is: O(l * n x m);
e the complexity of the algorithm bit comparison is: O(n * m),

where [is the number of the bits in the binary representation of the numbers,
which we consider. In our case it is 64.

In the worst case scenario, the second algorithm works as fast as the first one.
It depends on the optimizations that the processor makes.

Comparison between the two algorithms

C++/Fortran vs. Matlab/Mathematica

o ('++ and Fortran are compiled programming languages, which means that
the source code of the program is transformed into a machine code before
the execution of the program;

o Matlab and Mathematica are interpreted programming languages, which
means that the programs are executed directly, which usually makes them
slower because of the overhead of the processor.

= (C++ and Fortran are better for scientific computations.

91

Effect of The Precipitation of Acid Soap ESGI'104

Implementation with MATLAB — time (in seconds)

3.683144e-005 2.888495e-005
5.576608e-005 3.135687e-005
2.870890e-005 2.804986e-005
4.362872e-005 4.470864e-005
3.317848e-005 3.355881e-005

A number of tests (~ 50) were made. Only two of them show that the al-
gorithm bit comparison is faster than the algorithm comparison with 0 (these
are the results in the last two rows at the table below). According to all of the
other tests (such results are shown in the first three rows at the table below) we
conclude that the algorithm bit comparison is slower than the algorithm compar-
ison with 0. The reason is that the function, which Matlab uses for finding the
sign bit, probably has the following implementation (with some optimizations):
signv = —(v < 0). We cannot be sure, because the function is build-in. The same
situation is observed in Mathematica. So, using of Matlab (and Mathematica, too)
for solving this problem cannot give us satisfying results.

Implementation with C++ — time
As an example we consider a system having 9 solutions, each with 16 compo-
nents:

e the average time of the algorithm comparison with 0: 1 us;

e the average time of the algorithm bit comparison: 0 us.

801 15 18 560 597
1601 31 39 1090 1113
8001 136 237 5377 5454

92

ESGI'104 Effect of The Precipitation of Acid Soap

This means that the average time of the algorithm bit comparison is in nanosec-
onds. In order to compare the average time for the execution of both implemen-
tations of the two algorithms, we test them for bigger number of solutions. In the
table above one can see that for 8001 solutions within which only one is positive
the algorithm comparison with 0 is slower than the algorithm bit comparison and
the difference in times is 50 ps.

References

1]

[6]

Peter Kralchevsky, Krassimir Danov, Cenka Pishmanova, Stefka
Kralchevska, Nikolay Christov, Kavssery Ananthapadmanabhan, Alex
Lips. Effect of the Precipitation of Neutral-Soap, Acid-Soap, and Alkanoic
Acid Crystallites on the Bulk pH and Surface Tension of Soap Solution.
Langmuir (2007), 23, 3538-3553.

Mariana Boneva, Krassimir Danov, Peter Kralchevsky, Stefka Kralchevska,
Kavssery Ananthapadmanabhanb, Alex Lipsc. Coezistance of micelles and
crystallites in solutions of potassium myristate: Soft matter vs. solid matter.
Colloids and Surfaces A: Physicochem. Eng. Aspects 354 (2010) 172-187.

Krassimir Danov, Peter Kralchevsky, Kavssery Ananthapadmanabhan.
Miccele-monomer equilibra in solutions of ionic surfactants and in ionic-
nonionic mixtures: A generalized phase separation model. Advances in Col-
loid and Interface Science 206 (2014) 17-45.

K. Birdi. Surface and Colloid Chemistry: Principles and Applications (2009),
244 pages.

Peter Atkins, Julio de Paula. Physical Chemistry. 9th Edition (2009), 972
pages.

Preslav Nakov, Panayot Dobrikov. Programirane=++Algoritmi. 3rd Edition
(2005), 703 pages.

93

Circular arc spline approximation
of pointwise curves for use
in NC programing

Ana Avdzhieva, Dragomir Aleksov, Ivan Hristov, Nikolai Shegunov,
Pencho Marinov

1. Introduction

We consider a numerical control (NC) cutting machine which can cut only
line segments and circular arcs. Thermal cutting processes require constant tool
velocity because

e too slow velocity leads to overheating and melting,
e too fast velocity interrupts the cutting process.

The inputs with which the machine works are sets of points in a particular order
which are in Cartesian plane.

From a set of points (inputs) we must create a sequence of line segments and
circular arcs that pass through some of the points and are ”sufficiently close” to
the others — € error condition. The case in which the points can be approximated
with straight line segments is well investigated. We are interested in the sets
of points which can only be approximated by arcs. Below we formulate this
particular task.

2. The problem
A sequence of N points is given. A curve must be created, composed of circular
arcs, such that:

it passes through/nearby the given points in the same sequence;

— the Hausdorff distance between the points and the curve does not exceed a
certain value e;

— it is composed of minimal number of arcs;

— the output should consist of sets of the type:
{(.%'1, yl)v (1‘2, y2)7 (xw yC)7 E}7

where (z1,y1) and (x9,y2) are respectively the initial and the final points of a
certain arc, (¢, y.) is its center and E' = +1 if the direction of the arc is counter

ESGI'104 Circular Arc Spline Approximation

clockwise or £ = —1 if the direction of the arc is clockwise.
Remark. Local minimum - fitting an arc to each set of 3 points — is not a
solution of the task.

2.1. Summary of the approach

e We begin with a program for finding the center and the radius of a circle

that passes through three fixed points.

Having such a program we make another one for finding the ”best” arc that
connects two fixed points (which have at least two inner points between
them). This arc passes through the two fixed points and through one of the
points between them.

Next we find the "best” arc between any two points (that have at least two
inner points) of the set of points we are given.

From the set of arcs that we have created, we exclude those that do not
satisfy our error condition.

From the arcs that are left we may choose different ways to get from the
initial point to the last. We chose such a path that contains minimal num-
ber of arcs. Usually the connecting points are spread almost uniformly
throughout the set we are given.

2.2. An arc through three fixed points

Let us have the points P (x1,y1), Pa(z2,y2), P3(x3,y3), Fig. 1. The midpoints
A and B of the line segments connecting (x1,y1) and (x2,y2) and (z2,y2) and
(x3,y3) have coordinates (x4,ya), (zB,yr). Obviously

and

. T2t T " T3+ 22
A= 5 P TBE T

Y2 + U1 Y3 + Y2
Yya = 5) yB:T'

The equations of the lines that pass through the points P (z1,y1), P2(x2,y2) and
Py(z2,y2), P3(x3,ys3) are respectively

and

lh:Aix+Biy+Ci =0

lQ:Agw‘—f—Bgy—f—CQ:O,

95

Circular Arc Spline Approximation ESGI'104

Figure 1: The center C of the circle through P, P>, Ps

where A1 = yo —y1, B1 = 22— 21, C1 = —21(y2 —y1) +y1(z2 —21), Ao = y3 — o,
By = 23— x9, Cy = —x2(y3 —y2) + y2(x3 — x2). Now, since the vectors p; (A, By)
and po(Ag, Bs) are orthogonal respectively to the lines /1 and lo and we have the
coordinates of A and B, we can easily find the equations of the line bisectors of
the arcs that are orthogonal to I3 and Iy and pass respectively through (z4,y4)
and (zp,yp). We have

by : Bix — A1y + (= Biza + A1ya) =0,

by : Box — Aoy + (—BQSCB + AzyB) =0.

The center C(p,q) of the circle is where the two line bisectors intersect. Its
coordinates are the solution of the system

Bix — A1y + (—Bixa + Aya) =0,

Box — Ay + (—BQxB + AQyB) =0.

So we have that

__—ABizat AiBoxp + A1Agya — ArAsys
P AsBy — A1 By ’
—B1Byxp + B1Bexp + A1 Baya — AaB1yp
AyB1 — A1 By
As for the radius of the circle, it is equal to the distance between the center and
any point on it. We can use the point Pj(x1,y1). We have that

r=+/(z1-p)%+ (y1 — 9%

q=—

96

ESGI'104 Circular Arc Spline Approximation

The direction of the arc is positive (negative) exactly when the orientation of the
triangle P P, P is positive (negative). This orientation is equal to the sign of the
determinant

T2 =21 Y2—W

T3 — T2 Y3 — Y2

2.3. “Best” arc

Let us consider the task for connecting two fixed points Py(xo,y0) and
Poi1(n41,Ynt1) (which have n inner points, n > 2) of our input set. First
we build all the arcs that connect the two end points and pass through an inner
one - that makes n arcs. Let r; and C;(p;,qi), i = 1,...,n be respectively the
radii and the centers of these arcs. For every arc with a center (p;,q;) and ra-
dius r;, (i = 1,...,n) we calculate its Hausdorff distance to the inner points P;,
j=1,....,n.

dig = /@5 = p)? + (0 — 07 = 7|

We now denote
di = max{divl, . adi,n}~

For the i-th arc d; is its greatest Hausdorff distance to an inner point. We remind
that we now consider all the arcs that connect two fixed points and pass through
a third between them. For the “best” arc of such kind we chose the k-th arc for
which

dr, = min{dy,...,d,}.

“Best” arc — new suggestions.

The input set is the same: two fixed points Py(xo,y0) and Ppi1(Tn+1, Yn+1)
(which have n inner points, n > 2). The midpoint M of the segment PyP, 1 has
coordinates (zs,yar). Obviously

S T +2-Tn+17 ar = Yo +2yn+1'

The equations of the line that passes through the point M and is perpendicular
to the segment Py P, are:

xo =xp +d*yl0/w
c:
yo = ym + d * 201 /w

where: 201 = 29 — 2p11, Y10 = Yni1 —vo, w?= (201)?+ (y10)2.

97

Circular Arc Spline Approximation ESGI'104

For i = 1,...,n we calculate the oriented distance d; from M to the C;-center
of the circle through the points Py, P;, Pyy1

(@) A+ (v —ym)® — w?/4)w 1 |
&= 2((x; — xpr).y10 + (y; — yar)-x01) d= n Zdz'

Next we define the center C' of the optimal arc: C is at distance d from M. The
radius of the arc is r = /d? + w? /4. We calculate the errors e; for the points P;.
Note that e; = \/(2; — xar)? + (y; — ym)? — r is the Euclidean distance between
P; and the point);, which lies on this circle and on the radius through the point
P;. At the same time e; is the Hausdorfl distance between P; and the optimal
arc. More precisely this is one-side Hausdorff distance from given points to the
found arc.

2.4. Next stages

Now we consider all the combinations of two points from our input set that

have at least two inner points. For all such pairs of points we take the best
(according to one of the ways previously described) arc that connects them. Since
not all these arcs are close enough to all of their inner points (for an example we
can rarely connect the first and last point with only one arc) we exclude those for
which the distance between them and their inner points (at least one of them) is
more than e. Now we have a set of suitable arcs.
We may consider the problem for constructing a curve (made of arcs) from the
first to the last point as a question for finding a path in a graph. We consider
each point of the input set as a node and the arcs (connecting some of them and
satisfying the error condition) as ribs.

For construction of the adjacency matrix A = (aij)gj)]]VV we first set A to
have only zeros. For i = 1,...,N — 3 (N is the number of the input points)
we consider the best arc (rib) connecting the i-th and the j-th points (j = i +
3,...,N). If this arc satisfies the error condition we predefine a;; = 1.

We compare different paths by the length of their shortest arc (according to the
number of inner points). One approach is to find all the paths in the graph
we have derived and then chose the one in which the shortest arc is as long as
possible. However, we have adapted an algorithm for finding a path with smallest

amount of ribs. Usually the nodes we get are spread uniformly.

98

ESGI'104 Circular Arc Spline Approximation

3. Numerical experiments

We have applied our approach to real examples. On Figure 2 the black curve
consists of 200 points, that lie on the parabolic curve y = 300 — 200 * (1 — z/500)?
and the white inner segments are the arcs (6 is their number), approximate the

points.

300

280

260

240

220

200

180

160

140

120

100 1 ! L 1 1 1 1 ! 1
0 50 100 150 200 250 300 350 400 450 500

Figure 2: Approximation of the data by 6 arcs

LN DL S B B S B B BN R S B

Data

Error

000 100 200 300 400 500
X-axis

Figure 3: Approximation by 7 arcs (above) and the error of approximation (be-

low)

99

Circular Arc Spline Approximation ESGI'104

On Figure 3 we show the approximation of the same data by 7 arcs and below
we demonstrate how the error of approximation changes. The maximal error with
5 arcs is about 0.0183, but with 7 arcs — less than 0.0085. The output data for
these two cases are:

Number of arcs is Ny =5

A (500.000,300.000) (370.000,286.480) (500.58361, -337.37167) 1
A (370.000,286.480) (270.000,257.680) (514.73312, -404.07667) 1
A (270.000,257.680) (177.500,216.795) (553.71037, -509.27917) 1
A (177.500,216.795) (85.000,162.220) (628.01623, -652.46917) 1
A (85.000,162.220) (0.000,100.000) (744.77653, -828.28417) 1
Number of arcs is Ny =7

A (500.000,300.000) (407.500,293.155) (500.20991, -331.25917) 1
A (407.500,293.155) (320.000,274.080) (506.36069, -370.56000) 1
A (320.000,274.080) (250.000,250.000) (525.32585, -436.58167) 1
A (250.000,250.000) (190.000,223.120) (556.08512, -513.63000) 1
A (190.000,223.120) (125.000,187.500) (602.69383, -607.08750) 1
A (125.000,187.500) (65.000,148.620) (669.89912, -719.13000) 1
A (65.000,148.620) (0.000,100.000) (761.34933, -850.08750) 1

4. Summary
To recap, the problem was how to create a sequence of arcs

e passing through some of the given points and being sufficiently close to the
others points,

e arcs must be as long as possible.

We did the following activities:

e examined the problem in the literature,

e developed an algorithm for constructing a sequence of arcs,
e tested our approach with a real data,

e improved the method,

e compared the results.

100

ESGI'104 Circular Arc Spline Approximation

References

[1] Kazimierz Jakubczyk. Approximation of Smooth Planar Curves by Circular
Arc Splines. May 30, 2010 (rev. January 28, 2012)

[2] O. Aichholzer, F. Aurenhammer, T. Hackl, B. Jittler, M. Oberneder, and

Z. Sir. Computational and structural advantages of circular boundary rep-
resentation.

101

