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PREFACE

This book contains extended abstracts (short communications) of some of the pre-
sented papers during the International Conference on "Numerical Methods for Sci-
entific Computations and Advanced Applications" (NMSCAA’14), May 19-22, 2014,
Bansko, Bulgaria. The conference was organized by the Institute of Information and
Communication Technologies, Bulgarian Academy of Sciences in cooperation with
Society for Industrial and Applied Mathematics (STAM) and devoted to the 60th
anniversary of Svetozar Margenov.

His main fields of research include: Large-Scale Scientific Computing and Parallel
Algorithms; Numerical Methods for Partial Differential Equations (Finite Differ-
ence Schemes and Finite Element Method); Computational Linear Algebra (Iterative
Methods and Algorithms, Preconditioning, Sparse Matrices); Large-Scale Computing
of Environmental Problems; Biomedical and Engineering Problems; Supercomput-
ing applications, etc. Svetozar Margenov receive his PhD in 1984 and the degree
of Doctor of Science in 2002. From 2003 he was promoted to Full Professor in 2003.
Currently, prof. Margenov is Director of the Institute of Information and Communica-
tion Technologies of the Bulgarian academy of sciences and Head of the Department
of Scientific computing in the the same institute. He is an eminent scientists and
university lecturer. Svetozar Margenov is an author of two monographs and more
than 140 papers published in high ranked international journals and proceedings of
conferences. He is a member of the Editorial Boards of

e Numerical Linear Algebra with Applications (NLAA),
e Scalable Computing: Practice and Ezperience (SCPE),
o International Journal of Numerical Analysis and Modelling, Series B.

During his very successful carrier he was a scientific advisor and mentor of many
Ph.D. and MSc students.

The Conference Specific topics of interest are as follows:

e Multiscale and multiphysics problems;

Robust preconditioning;

Monte Carlo methods;

Optimization and control systems;

Scalable parallel algorithms;

Advanced computing for innovations.



The list of plenary invited speakers includes: Peter Arbenz (ETH Zurich, CH); Owe
Axelsson (Institute of Geonics, ASCR, CR); Radim Blaheta (Institute of Geonics,
ASCR, CR); Oleg Iliev (ITWM, Kaiserslautern, Germany); Johannes Kraus (RICAM,
Linz, AT); Raytcho Lazarov (TA&MU, College Station, USA); Peter Minev (Univer-
sity of Alberta, CA); Panayot Vassilevski (LLNL, Livermore, USA); Vladimir Veliov
(TU-Vienna, AT and IMI BAS, BG) and Lyudmil Zikatanov (The Pennsylvania State
University, USA).

Krassimir Georgiev

May 2014
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A Periodic Optimal Control Problem in Biology

Laura-Iulia Anita, Sebastian Anita, Costicdi Morosanu

The model to be investigated here describes the dynamics of a population species:

B (t) = rh(t) <1 - %) F ), t>0

h(0) = ho,

where h(t) is the number of individuals at the moment ¢, » > 0 is the natural growth
rate of this species, K is the carying capacity of the region, and hg > 0 is the
initial number of individuals; f(t) represents a certain infusion of population, which
is time periodic (the period is T' > 0). Actually, this model describes for example the
dynamics of the horse chestnut leafminer moth and f(¢) represents the individuals
brought in the domain by wind, car wheels, etc. and T is one year. Since we wish
to diminish this population acting in the region (we are not able to act everywhere),
then a natural problem would be to introduce a certain periodic control with period
T (represented in this case by traps) such that the cost of this control to be small
and to get a long-term diminishment of the population. The particularity of the trap
is that it acts on a certain time interval and that its action diminish exponentially.
Actually, considering the traps, the problem becomes

W) = rh(t) (1-%)”@)— /w“(a,t)da Mo, t=0 )
0

h(0) = hy,
where w" is the solution to

we(a,t) + we(a,t) = —aw(a,t), ae(0,T),t>0
w(0,t) = u(t), t>0 (2)
w(a,0) =0, ac€(0,7).

Here a > 0 and
uelU={veL*0,0); 0<u(t)<Lae ,vt+T)=0(t) ae }.

Hence, w" satisfies an age structured problem.
Assume that

feL®0,+0), ft+T)= f(t) ae. t >0, f(t)>0ae. t>0.

We denote h* the solution to (1) corresponding to u € Y. The first thing we shall

prove is that ~
lim (h"(t) — h"(t)) =0,

t——+oo
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(for any hg > 0) where h* is the unique positive solution to
t

h'(t) = rh(t) (1 — %) + f(t) — /w“(a,t)da h(t), t>0 3)
0

h(t+T) = h(t), t > 0.
It means that for any v > 0:

/n(n+1>T [l}“ (t) + t)} dit — /0 ! [R*(t) + yu(t)] dt,

T
as n — 400, for any u € Y.

The optimal control problem to be investigated is the following one
T
(P) Minimize / [R*(t) + yu(t)] dt,
0

where v > 0 is a positive constant. It means we are interested to minimize the pest
population over one year on long term at a small control cost. We shall prove that
problem (P) has at least one optimal control u*.

The following Pontryagin principle can be derived:

Theorem. If u* is an optimal control for problem (P) and if p is the solution to

. ¢
2rh* u*
e p(t) + /w (a,t)da | p(t) — 1, t>0 (1)
0

p(t+T)=p(), t>0,

p'(t) = —rp(t) +

then .
0, y—e [pO)h* (0)e=*%df >0
t

u'(t) = T ()
L, y—e [p@)h* (0)e=*%do < 0.

Using (3), (4) and (5) we shall derive and a numerical algorithm to approximate the
optimal control v*. Numerical results will be obtained.
We shall extend the investigation to a model containing diffusion and migration terms.

12
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Energy Aware Performance Study for a Class of MC
Algorithms

Emanouil Atanassov, Todor Gurov, and Aneta Karaivanova

Performance per watt is a measure of the energy efficiency of a particular computer
system. It measures the rate of computation that can be delivered by a computer for
every watt of power consumed. In this sense, there is an improvement by over a trillion
times in last 50 years. Development of energy efficient algorithms becomes more and
more important with the growing size of the applied problems that need solution
and the power of modern computer systems. The development of exascale systems
made it clear that current technologies, algorithmic practices and performance metrics
need significant improvement. The FLOPS/WATT (F/W) metric was introduced
and successfully used as the de facto standard in measuring the energy efficiency of
a computing system, see www.green500.org. The scientific community continues to
investigate metrics and approaches that address the effective use of computer systems
in terms of energy efficiency. The importance of fault tolerance in algorithmic design
has also been raised due to increased probability of hardware failure. Considering
the significant probability of error during a run, some authors [1, 2] proposed the
time to solution metric for algorithm performance. Small time to solution means
reduced chances of a hardware error happening. On the other hand, fast restart
from intermediate results will lead to decreased time to solution. They propose to
use f(timetosolution).energy(FTTSE) as the performance metric, where f(.) is an
application-dependent function of time [1].

In this work we propose and study a performance metric that includes not only time
to solution and energy, but also price of equipment, divided over its efficient lifetime,
with the aim to define a metric that optimizes the overall output from the computer
system.

In our work we concentrated on use-cases that we observed during the establishment
of a regional high-performance computing infrastructure for the South-Eastern Eu-
rope, taking into account the specific requirements that arise due to the economical
and social conditions in the region. Considering the current deployments (several
high-performance clusters and two Blue Gene P supercomputers) and extrapolating
the future deployment plans, we concentrate on the study of heterogeneous high-
performance computing clusters, since the other type of resource is extensively stud-
ied by IBM research groups (see, e.g., the publication [1]). Here we point out two
important features: (i) the extensive use of computational accelerators like GPU-
computing cards and Intel Xeon Phi processors; (ii) the rapid evolution of hardware
in HPC clusters, which leads to frequent necessity to upgrade in order to meet the
challenges of contemporary research.

These points motivate the inclusion of substantial factor to account for the purchasing
price of the equipment, so that the individual optimization efforts at the level of algo-
rithms should lead to global optimum in the sense of computational results achieved
for a given yearly budget. Our experience shows that although the hardware can
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GPU GPGPU Equipment | Ener Total
cards (n) A Time (s) L2 1 u?st l‘.DStg:v cost
1 442 246 0.3020 0.75 2.42 3.17

2 609 145 0.2453 0.89 1.96 2.85

4 790 89 0.1953 1.09 1.56 2.65

8 1066 67 0.1984 1.64 1.59 3.22

Table 1: Test results using GPU devices.

be operational for longer period, there is an efficient lifetime for a cluster that lasts
between 3 to 4 years. On the other hand the x86-based HPC clusters can be upgraded
in a more gradual way, presenting the possibility to use savings of energy costs for
hardware upgrading. We propose to enhance the formula in [1] in the following way:

F(T).(E +nCT),

where C' is the price of core-hour, excluding energy, n is the number of cores used
by the algorithm, 7" is the time to solution and F is the cost of energy consumed.
The price C should be based mainly on purchasing price of the equipment, divided by
number of cores and number of hours in the efficient lifetime. Based on the substantial
improvements in the computational power of accelerators over time we can postulate
the efficient lifetime to be equal to 4 years, because experience shows that after 4
years the same computational results can be achieved by several times less expensive
equipment that also uses much less energy. We point out that cloud providers offer
access to their equipment based on single price-per-core number. However, a national
computational infrastructure provider has more flexibility and can stimulate the de-
velopment of algorithms that minimize the above function instead. Our formula is
not more difficult to compute because the purchasing price is readily available.

The initial experiments in our study were performed on the heterogeneous cluster
HPCG in the Grid Computing Centre of the Institute of Information and Commu-
nication Technologues, Bulgarian Academy of Sciences (IICT-BAS) [5].This cluster
combines CPU-based computing blades with servers with high-end GPU computing
devices. Let us remind that GPUs have continued to increase in energy usage, while
CPUs designers have recently focused on improving performance per watt. High
performance GPUs may now be the largest power consumer in a system. Peak per-
formance of any system is essentially limited by the amount of power it can draw and
the amount of heat it can dissipate. Consequently, performance per watt of a GPU
design translates directly into peak performance of a system that uses that design.
Our study is based on the purchasing price of our equipment, which lead us to consider
the cost of CPU-core hour to be 1.248 €cents per 1 hour for a CPU core and 11 €cents
per 1 hour for 1 GPU card NVIDIA M2090. The price of energy is taken as 8 €cents
per 1KWh. The energy consumption when using n CPU cores or GPU devices is
denoted by Wy while W,, means the consumption when using n processing elements.
The difference AW,, = W,, — AW, is attributed to the computational workload being
run.

The Table 1 shows the energy consumption, cost and equipment costs for a particular

16
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Figure 1: Cost per GPU device (€ cents).

CPU i
Cores @ | % | Timeg | K0 | ™| o | cont
1 51 84.2 0.0119 0.02898 0.0954 0.1244
2 60 42.2 0.0070 0.02905 0.0563 0.0853
4 77 21.6 0.0046 0.02974 0.0370 0.0667
8 144 11.06 0.0044 0.03045 0.0354 0.0658
16 316 6.06 0.0053 0.03337 0.0426 0.0759
32 704 2.94 0.0057 0.03238 0.0460 0.0784
64 1201 1.56 0.0052 0.03436 0.0416 0.0760
128 1951 1.02 0.0055 0.04493 0.0442 0.0892

Table 2: Test results using CPU cores.

Monte Carlo algorithm that uses Metropolis-Hastings sampling in order to fit the
parameters of a Heston process modeling price evolution. The total cost is obtained
in € cents.

We can observe from the table and the following graph (Figure 1) how there is an
optimum in energy price when using the highest possible number of cards, while
the optimum in total usage according to our formula E 4+ nC7T is achieved at lower
number of GPU devices, suggesting that sharing the computational facilities with
other computational jobs or finding other strategy for course-grain parallelization
should be performed.

Similarly in the case of CPU-based computations we see how the shapes of the curves
describing energy use and total cost are different. They both suggest that optimal
usage will be achieved when one blade node is used. However, when the problem size
becomes larger this will not be feasible.

In any case the use of the rough metrics £ + nC'T favors usage similar to Grid jobs,
where a large number of jobs divide the resources. When we consider the full metrics
F(T).(E + nCT), the situation is changed dramatically, because the function F(T)
that penalizes algorithms that are slow to reach a solution heavily favors jobs that
use the maximum amount of processing elements. In our view more work should be
done to establish a function F(T') that leads to more desirable usage patterns instead
of those proposed so far. For example, a power low with exponent between 0 and 1
may be more useful.

17
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Figure 2: Cost per CPU core (€ cents).

The initial results of our study demonstrate the importance of taking into account
not only energy efficiency but also equipment cost. It also shows how the optimal
algorithm from point of view of the scientific user may be different from the behavior
that is desirable from point of view of an infrastructure operator that attempts to
optimize their OPEX and CAPEX expenses. In the future work more precise mea-
surements should be done and the impact of mixing of different computational tasks
should be studied.
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Preconditioners for Linear and Nonlinear
Poroelasticity Problems

R. Blaheta, O. Axelsson, M. Hasal, Z. Michalec

We shall consider efficient preconditioners for a hierarchy of porous media flow models
starting from stationary Darcy flow model and continuing through nonstationary
Darcy flow model to Richards model with variable saturation. The stationary Darcy
flow is described by the equations

V- (pv) +pQ =0
—keat (Vp 4 pgVG)

14

v =

where p is the fluid density, p is the fluid viscosity, v is the Darcy velocity, @ stands
for the fluid source/sink, ksq: stands for the permeability, p is the pore pressure, g is
the gravity acceleration and G is the elevation function. Note that v = ¢vy where ¢

is the porosity and vy is the fluid velocity.
If the quantities p, @) depend on time, and 0 # a(g:) = %ﬁ)% ~ pCStOT% we get

nonstationary Darcy flow described by the equations

PCstor% + V- (pv) = pQ
v = —ksat(Vp + pgVG).

above, Csi,, is the storativity coefficient.
In the case of variable saturation, we add the saturation function S € (0, 1) and
consider correspondingly modified mass conservation and velocity equations

p(Csca;D(S) + SCstoT)% +V- (,OU) - pQ
v = S (g 4 00V E),

These equations describe variable saturated flow, if we assume that the pore space
is variably saturated by fluid and gas and that the gas pressure remain constant.
Assuming also that saturation is through the water retention curve a function of
pressure, S = R(p), the above equations define so called Richards flow model.

All the above models can be discretized by mixed finite element method with lowest
order Thomas-Raviart finite elements. This space discretization can be combined
with backward Euler discretization in time for the nonstacionary Darcy and Richards
model and Picard linearization for the Richards model.

For the stationary Darcy flow, it leads to the solution of systems in the form

RSN

where M is a positive definite velocity mass matrix, B is a full rank matrix repre-
senting the divergence of velocity and B” the pressure gradient. The systems can be

19



solved by a suitable Krylov space method with a preconditioner. In [5] we investigated
block type preconditioners with a special emphasis on augumented lagrangian type
preconditioners in the block diagonal or block triangular form, e.g.

M +r-'BTW-'B
rW |’

where r is a parameter, W is a suitable matrix (can be also identity).
For the nonstationary Darcy flow, we have to solve systems in the form

5 L llo] e e
B —%4C ||p]| | R"—ACpF!

in each time step k. Here M and B are the same matrices as before, C' is a positive
definite diagonal mass matrix arising from the time derivative term. The term ﬁC
provides a regularization, which strength depends on physical parameters (storativity)
and can be employed for the block preconditioners of the same type as before.

For the Richards equations, we get nonlinear systems in each time step

M (p) BT AL £,
B _§C(p) :| |: p :| B fzk _ ﬁc(pkfl)pk—l .

Using the simplest Picard linearization we get the same type of systems as before and
therefore we can use the same type of preconditioners as above.

Moreover the nonstationary Darcy flow and Richards flow models can be coupled with
elasticity through a source term

J(tre)
ot

and elasticity model with the effective stress, i.e.

Q= —ax(p)

Veo+ fmn=0

o =o' —ax(p)pl
o' =C:e(u)

where o is the total stress, o’ is the effective stress, u is the displacement, e(u) is
the small strain tensor, tre is the trace of €, C is the elasticity tensor, « is the Biot-
Willis constant, x(p) is the Bishop function, which is identical to identity for the
nonsationary Darcy problem and equal to saturation or a function of saturation in
the unsaturated case. The arising coupled poroelasticity models with the flow part
discretized as shown above and the mechanical part discretized by standard linear
finite elements lead to linear systems

A BT ul® fi
M BT v | = f2
B, B -4C P f," — Lopht



or, it the case of Richards flow, to nonlinear systems

A BTp) 1°Twu]" f1(p)
M(p) BT v | = f2 ,
B.(p) B —2%C(p) p £, — Lo(p<-1)p

which provide systems of the above type if we apply the Picard linearization. As
it is described in [3], these systems can be again solved by block diagonal or block
triangular preconditioners with Schur complements with respect to the lower right C
block.

Let us mention that the systems of the above type also appear if the backward Euler
time discretization is replaced by the Radau type higher order discretization method,
see [2, 4].

The poroelasticity problems with saturated or variably saturated flow have a lot
applications in geosciences and other fields. As an example we can mention modelling
the test of the rock mass permeability which was done in the Tournemire underground
rock laboratory as a part of SEALEX experiments oriented to assessment of long term
performance of bentonite plugs within the concept of underground deposition of the
spent nuclear fuel, see [6].
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Reduced Order POD-DEIM Application of a
Haptotaxis Model Describing a Process of Tumor
Invasion

Gabriel Dimitriu, Riazvan Stefinescu, Ionel M. Navon

Proper Orthogonal Decomposition (POD) is probably the mostly used and most suc-
cessful nonlinear model reduction technique and relies on the fact that the desired
simulation is well simulated in the input collection. The basis functions contain in-
formation from the solutions of the dynamical system at pre-specified time-instances,
so-called snapshots. Due to a possible linear dependence of the snapshots a singular
value decomposition is carried out and the leading generalized eigenfunctions are cho-
sen as a basis, referred to as the POD basis. A considerable reduction in complexity is
obtained by DEIM aAS a discrete version of “Empirical Interpolation Method” (EIM),
introduced by Barrault et al. in [2]. This method eliminates the POD major disad-
vantage where the nonlinear reduced terms still have to be evaluated on the original
state space making the simulation of the reduced-order system too expensive.

In this study we perform an application of DEIM combined with POD to provide di-
mension reduction of a model describing a process of tumor invasion into surrounding
healthy tissue. The model proposed in [1] is defined by the 2D system of advection-
reaction-diffusion equations:

us + V- (x(0)uVo) = dyAu — Y(z, y, w)u + p(x, y, w)u,
vy = —a(z,y)hv,

hi = dpAh + 0(z,y)u — Bz, y)h,

wy = dyAw + y(z,y)v — ez, y)w — n(z, y, u)w.

(1)

The dependent variables in (1) have the following significance: u(z,y, t) represents the
density of tumor cells, v(z,y, ) is the density of extracellular matrix macromolecules,
h(z,y,t) is the concentration of matrix degradative enzyme, and w(z, y, t) denotes the
concentration of oxygen. The parameters x(v), d., ¥(x,y,w), p(x,y,w), a(z,y), dn,
0(z,y), B(x,y), dw, v(x,y), n(x,y,u), and e(x,y), as well as the initial and boundary
conditions associated to (1) are specified in the numerical tests. In our numerical
approach we only consider p and 7 variable parameters (depending on w and u,
respectively), the other ones being constant parameters.

Using the notations u, v, h, w € R” with n = n;n, being the number of mesh points,
the system (1) in matrix form after discretization of the space variables becomes

u(t) = =Ny(u(t), v(t)) + duGu(t) + F1(u(t)) + Na(u(t), w(t)),
v(t) = N3(v(t),h(t)), @)
h(t) = d,Gh(t) + Fy(u(t), h(t)),

w(t) = dpGw(t) + F3(v(t), w(t)) + Ny(u(t), w(t)).



In (2), F1 : R® — R" and Ny, Ny, N3, Ny, Fo, F3 : R" x R® — R" are

Ni(u,v) = x(u. * Gv + Gu. * G, v + Gyu. * Gyv),
No(u,w) = —p(w).*u, N3z(v,h)=—ch.xv, Ny(u,v,w)=—n(u).*xw,
Fi(u) = —¢u, Fy(u,h)=0u—ph, F;z(v,w)=9v—ew.
POD-reduced system. We consider the following snapshot matrices for the con-
struction of POD-reduced system U=[u,...,u=], V=[v,. . . v, H=

[h! ... h":], and W = [w!,...,w"] € R"*":. Here, u/, corresponds to the solution
of the FD discretized system at time t; and similarly for v/, h’ and w’. Let r, =

rank(U), r, = rank(V), r, = rank(H), r, = rank(\/ﬂ\/'). Let k < min{ry, 7y, 7k, T'w }-
The POD basis of dimension & of the snapshots {u’}7, is the set of left singular
values and likewise for the snapshots v}z, {n’ }iz1, {w/}jz,. Hence, the POD
basis of the snapshots {uJ 1 denoted by A consists of the leading k orthonormal
columns of A, A = A(.,l : k) € R"*¥ where

U =Ax*(z"T
is the SVD of U with A € R"*", Y% € R™™ and Z" € R"*". The diagonal entries

of ¥* are the singular values of U Similarly, let B, C, D € ]R"Xk be matrices whose
columns corresponding to the POD basis of dlmenslon k of the snapshots {v/}"s
{hj}J 1, and {wj}?;‘l.
The POD reduced-order system is constructed by applying Galerkin projection method
on the equations in (2). In particular, replacing the discrete state variables by their
truncated POD expansions

u— A, v« Bv, h—Ch w«<Dw

J:la

with reduced variables u, v, fl, w € IR*, and then forcing the Galerkin orthogonality
condition of the residuals by pre-multiplying the four equations in (2) by AT, BT,
CT, and D7, respectively, we obtain the following reduced-order system
u(t) = —ATNy (a(t), v(t)) + d, ATGA a(t)
Gu

v(t) = BTN (¥(t), h(1)), )
h(t) = d, C'GCh(t) + CTFy(u(t), h(t)),
G,
w(t) = d, DYGD w(t) + DTF3(Bv(t), Dw(t)) + DTNy (a(t), w(t)),
Gy
where Nl, Ng, Ng, N4 :RF x RF — R™ are
Ny(a,v) = x(a*xATGBv+ATG,Au +xATG,Bv +ATG,An. « ATG,BvV)
No(i,w) = —p(W).*1, N3(v,h)=—ah xv, Ny(a,w)=—n(a).*w,
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Let f: D — R” be o nonlinear vector-valued function with D C R?, for some positive
integer d. Let {S}}”, C R™ be a linearly independent set, for m = 1,...,n. For
7 € D, the DEIM approximation of order m for f(7) in the space spanned by {S}}*,
is given by ([3])

f(r) .= S(PTS)'PTH(7),

where S = [Sy,...,S,,] € R™™™ collects the first m POD basis modes of nonlinear
function fand P = [e,,, ..., €,,,] € R™*™ is the DEIM interpolation selection matrix.
The DEIM procedure employs a greedy technique and iteratively constructs a set
of indices {01, ..., om} using the input basis {S;}7,, in such a way that, at each

iteration, the current selected index captures the maximum variation of the input
basis vectors (see [2], [3]).

POD-DEIM reduced system. Let SN, 8V2 §Ns gNa ¢ pnxm 1y < be the matrices
whose columns containing the POD basis of the nonlinear functions N, Ny, N3, and
Ny defined in (3). These POD bases are used to select the sets of m interpolation
indices from DEIM algorithm. Let vec(0)™, vec(o)™2, vec(o)™V2, vec(o)™, be the
DEIM interpolation indices of the nonlinear functions defined in (3). Let Py, € R™*™
be the matrix whose j-th column is the gévl -th column of the identity matrix, i.e.,
it is the vector [0,...,0,1,0,...,0]7 € R, having all zeros entries except one at the
entry gévl, for j =1,...,m. Define Py,, Pn,, Py, € R"*™ in a similar way as Py, .
Then the DEIM approximation of the nonlinear functions in (3) is of the form:

N, ~SM(PLSY)TN;, Ny~ S™(PL,SY) N,

~ ~ ~ M 4
Ny ~SUELSV)INY, N esvelsvony, @

and the nonlinear terms for the POD reduced system can be approximated as

AN (&, 9) & ATSM(STL )TN, AN (i, W) ~ ATSY (8D )TN,
E1 E2

B N3 (v, h) ~ B'S™(S]E ) 7' Ny, D Nu(a,w) ~ D'SV(s]t )TNy,
E3 E4

where the nonlinear functions N:n, N;n, N;n, NZL : RF x R¥ — R™ are defined as:

Ny (1,v) = P% N (a,v), N, (1, W) = PL Na(it, w), 5
5
N;n ({’a fl) = P%:;Nj ({’a fl)a NZL (ﬁ7 ‘i’) = P%4N4(ﬁa W)

o
<

3

The explicit form of N;n( ) is given by

= x[(PN,Aq). « (P}, GBV) + (P}, G,Ad). « (P}, G,BV)
+ (P}, G,A @) * (P, G,BV)]
N——— ——
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and similarly for N;n', N;n, NT. We remark that the k-by-m matrices

E; = ATSM(S]}

vec(e)

)7t By =ATSM (sl

vee(g))

E; = BTsVs (8N

_ _ TaNi/aN. —1
veeo) + Ba=DISTS )T

can be precomputed and reused at each time step. Also, each of the m-by-k coef-
ficient matrices in (6) grouped by the curly brackets are precomputed so that the
computational complexity of each nonlinear function is independent of the dimension
n of the original full-order system. Using the coefficient matrices in (3) the form of
the POD-DEIM reduced system is

m

(1) = ~E\NT(@(0), 9(0) + du G (1) + ATF (A1) + EaNj (a(t), w(t)),
¥(t) = BsN3 (¥(1), h(1)),

1 )+ CTFo(a(t), h(1)), )

W(t) = duGuW(t) + DTF3(B(t), DWw(t)) + E4N| (), w(t)).

We show DEIM improves the efficiency of the POD approximation and achieves a
complexity reduction of the nonlinear terms. Numerical results are presented.
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Methods For Flood Hazard Mapping On The Test
Area Of Svilengrad

Nina Dobrinkova

1 Objectives

SMART WATER project idea has its origin from the territorial needs of the Veneto
Region - Province of Padua, in particular after the tragic flood event that has affected
the area in November 2010. Main problems registered in that occasion have been
the lack of an integrated communication system between regional and local Civil
Protection authorities and the lack of coordination between relevant territorial actors.
Such events has occured on the territories of Romania, Greece and Bulgaria during
this period too. That is why the Province of Padua have contacted competent entities
in Europe, in order to develop a concrete, easy to use and low cost solution for
the territorial needs and built up consortia with Romanian, Bulgarian and Greek
representatives who are having test cases with flood events similar to the one of
Veneto Region. This objective has been shared by the entities that decided to take
part in the project called SMART WATER, due to similar problems experienced in
their test case areas.

2 Actions and means involved
The SMART WATER project has as main activities the following actions:

1. Analysis of the existing tools developed at European level for real time fore-
casting of flood events and of the linked hydraulic risk and selection of the best
performing one.

2. Relevant territorial data collection, data standardization and shared data bases
creation will be performed on the Italian, Romanian, Bulgarian and Greek test
areas.

3. Development of a dedicated web based application, access-free at each territorial
level. The application will be linked to the shared data bases and the flood
hazard model will be implemented in its modules.

4. Training sessions dedicated to end-users from regional to local levels will take
place at each test case area.

5. Networking with relevant territorial actors, drafting and signing of Memoran-
dum of Understanding to assure continuous and updated data availability for
the tool will give stakeholders and representative authorities sustainable results
and future expansion of the SMART WATER tool.
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6. Pilot testing within project area in order to calibrate and validate the flood
hazard model will be conducted within the test area of Svilengrad, Bulgaria.

3 Flood Hazard Methods short description for Svi-
lengrad test area

For Svilengrad test area will be used the free US flood hazard mapping model HEC-
RAS. To set up correctly our data for the simulation with HEC-RAS model we needed
to define which areas along the river will be included. The model requires the input of
geometric data to represent river networks, channel cross-section data, and hydraulic
structure data such as bridges, culverts, and weirs. The river networks define the
connectivity of the river system, which is a collection of reaches, all oriented down-
stream. A reach is defined in HEC-RAS as starting or ending at junctions - locations
where two or more streams join together or split apart. A river may be composed of
one or more reaches with accordance to the river specifications. Channel cross-section
data are used in HEC-RAS to characterize the flow carrying capacity of the river and
adjacent floodplain. Cross-section data includes station-elevation data, main chan-
nel bank stations, downstream reach lengths, roughness coefficients, and contraction
and expansion coefficients. Station-elevation data represent the ground surface at
designated locations in a river reach. Cross-sections are taken perpendicular at the
direction of flow both in the main channel and in the overbank areas. Bank stations
separate the portion of the cross-section that is the main channel of the river from
the adjacent floodplain areas termed the left and right overbank areas. Reach lengths
are used to define the distance between cross-sections and are used for energy loss
calculations in HEC-RAS. Reach lengths are considered for the left overbank, main
channel, and right overbank areas and indicate the path of flow between cross sections.
Roughness coefficients are an indication of the relative channel roughness. Channel
roughness is considered for calculating frictional energy loss between cross sections.
Typically, channel roughness is indicated by Manning’s n-values. Contraction and
expansion coefficients are flow dependent and characteristic of abrupt changes in flow
direction [1, 2]. An example of a river cross-section is given on Figure 1.

4 WEB-GIS platform in SMART WATER project

The project Smart Water has technical specifications which are oriented to the civil
protection engineers, who could apply field response for the population in risk by
having webGIS tool that could support their decision making in cases of large flood
events. The test areas are river sections defined for each project partner and the
Bulgarian region is on the territory of municipality Svilengrad. The end user needs
for the test cases cover the following types of information for the river monitoring;:

e Distance from water level to river bank side

e Flooding areas
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Figure 1: Example of cross-section in the test area.

e Speed and direction of the water
e Water blades

e A series of maps of predefined and variable flood scenarios, with greater fre-
quency for the selected test case area provided in an information layer (i.e.
raster images) corresponding to the information required by the civil protection
units, where the reliability of forecasts is the main focus.

e A set of data in the form of graphs, tables, or files for download will be also
available for the identified critical levels.

e For each simulation and for each point, the maximum water height indepen-
dently from the moment, when it is reached, will display immediate worst sce-
nario situation possible from the given initial conditions.

The standard WMS interface will be applied for displaying the hydrological model
outputs on the webGIS platform. The maps in raster format like JPEG or PNG will
give opportunity for punctual queries for the users. The identification of the strategic
locations and data supply will have geomorphologic and hydrodynamic sets, where
will be included DEM (Digital Elevation Model) for the catchment basin, ortophoto
images for better justification of land use, meteorological data for precipitations and
additional climatic conditions.On Figure 2 is given the structure of the information
flow that the webGIS platform will have.

5 Conclusions

Increased information and awareness of citizenship thanks to widely used, innovative
and low cost communication methods like (Internet/Intranet Networks, GSM/WAP/
GPRS mobile) give SMART WATER project vast options for fast and easy imple-
mentation on local, regional and national levels.
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Figure 2: Information flow as it will be implemented in the webGIS tool that will be
the result of Smart Water project.
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Wind Model in a Wild Fire Spread

Stefka Fidanova and Pencho Marinov

1 Introduction

The wild fires are a big problem for a countries with dry climate. Every year a big
regions of forest are burn. The problem is very serious in South Europe, USA and
Australia. This part of the world becomes dryer, because of the climate change and
the number of wild fires and damages increase. A wild fire spread model can have
several applications. The prevision of the fire front can help firemen to optimize their
work. Possible scenarios can be played and train the firemen. The model can show
the dangerous places for appearance of wild fire. Existing models are not satisfactory
because they are very complicate and slow to be used in real situation [4, 5]. Most of
them are used only for training.

In our work we apply game method for modeling with hexagonal cells to model wild
fire spread. We include wind influence and the change of the form and spread of the
fire front.

2 Game Method

The Game Method for Modeling (GMM) is applied of modeling different processes
as biological processes, forest dynamic, natural processes etc. The idea of the GMM
comes from Conway’s Game of Life [3]. First the GMM is proposed by Atanassov [1].
It is a kind of cellular automate. In its first variant the GMM uses two-dimensional
finite grid of squares. Every cell (square) has his own initial state, which forms the
initial configuration of the hall area (grid). There is a set of rules which describes the
change of the state of the cell according their previous state and according the state of
the closer cells. The process is iterative, divided on time steps. The final state of a cell
is a result of modifications which occurred during the certain number of application
of the rules. The final configuration is the set of the final states of hall cells. The
single application of the rules over a given configuration is called elementary step.
The process stops after some predefined conditions, for example obtaining predefined
configuration or execution of fixed number of steps.

In our previous work we use square cells for wild fire modeling [2]. In this work we
apply GMM with hexagonal cells. The wild fire spread is circle when there is not
a wind. The hexagon is close to the circle. Other reason is that in hexagonal mesh
there is only one kind of neighbors and all neighbor cells have side contacts. In a
square variant there are two kind of neighbor cells, with side contacts and with corner
contacts.
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3 Wind Modeling

In our wild fire model, considered area is represented by hexagonal cells. The problem
is very difficult, therefore we complicate the model step by step. In this work we
include modeling of the wind wile the area is flat. The parameters of our wild fire
model are: burning time of the cell, time to start to burn, force of the wind, direction
of the wind. The model is prepared for fixed humidity and air temperature. We
suppose existing of pre-processing and recalculation of the parameters, before the
start of the modeling. The burning time (burning duration) shows how many time
steps are needed, the material inside the cell to be totally burned. The time to start
to burn is related with ignition speed if one neighbor cell burns. If the material in the
cell is unburned, than the burning duration and the speed for ignition are equal to 0.
The rules of our fire model are: The modeling starts from the initial state of the
area where one ore more cells are burning; Every time step the burning duration of
burning cells decrease with 1 till it becomes 0 (totally burned); If a cell is burning,
the speed of ignition of closer cells are changed, depending of the force and direction
of the wind; When the speed of ignition becomes 0 the cell start to burn; The process
continues until no other change of the parameters is possible or the number of the
applied time steps is equal to the predefined time steps.

Advantage of our model is that it can start from any stage of the area, which is a
realistic case, because the forest fires are discern after some acceleration. We suppose
that the initial model parameters are fixed. We use average wind. The wind is
represented by vector. Every cell can have its own wind vector. If some cell is
burning the spread of the heat depends of the projection of the wind vector on the
directions of other cells and inversely of the square of the distance of a cell to the
burning cell. If the force of the wind is 0, there is not a wind, the burning cell has
influence only on direct neighbors. In this case the ignition time of neighbor cells
decrease with 1 every time step till it becomes 0. In the case with wind the ignition
time of the affected cells decrease with number from the interval [0, 1]. We can have
several scenarios. When the force of the wind is big and the ignition time is small,
than the fire front spread on the wind direction and there are not or there is very
small fire spread in the opposite direction. When force of the wind is small and the
ignition time is big, than the fire front spread on the direction opposite to the wind
direction, but with much less speed.

On Figure 1 is shown wind effect on the wild fire spread when the burning material is
the same in all cells. The force of the wind shown on Figure 1b and Figure 1d is two
times higher than this on the Figure la and Figure 1lc. On the all figures is shown
the fire front after 17 time steps. The fire is started from the black cell. We observe
that on the Figure 1b and Figure 1d the distance between the fire start and the front
to the wind direction is longer than on Figure 1a and Figure 1c. Other observation
is that the distance from the fire start and the front on the direction opposed to the
wind direction is shorter.

We tested wind with various directions and forces. We verify if the form of the fire
front is the same with same wind force and different directions, when the all cells have
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Figure 1: Wind effect with: (a) light wind with direction 45 degrees; (b) hight wind
with direction 45 degrees; (c) light wind with direction 90 degrees; (d) hight wind
with direction 90 degrees
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same burning time and ignition time. On Figure 1c the wind force is the same as on
Figure 1a only the direction is different. The same is on Figure 1b and Figure 1d. We
observe that the achieved by our model front of the fire is almost similar when the
force of the wind is the same.

4 Conclusion

On this paper we apply GMM on wild fire modeling. In our model we take in to
account the presence of the wind and it influence on closer cells. We run various tests
and verify that the fire spread looks realistic.
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Computer Simulations of the Atmospheric
Composition Climate of Bulgaria - Some Basic
Results

Georgi Gadzhev, Kostadin Ganev, Maria Prodanova,
Dimiter Syrakov, Nikolai Miloshev

1 Introduction

Recently extensive studies for long enough simulation periods and good resolution of
the atmospheric composition status in Bulgaria have been carried out using up-to-date
modeling tools and detailed and reliable input data [1, 2, 3, 4].

The simulations aimed at constructing of ensemble, comprehensive enough as to pro-
vide statistically reliable assessment of the atmospheric composition climate of Bul-
garia - typical and extreme features of the special/temporal behavior, annual means
and seasonal variations, etc.

The present paper, in which a brief review of the studies, will focus on some important
characteristics of the atmospheric composition climate of Bulgaria

2 Modeling tools and input data

All the simulations are based on the US EPA Model-3 system [5]The large scale
(background) meteorological data used by the study is the NCEP Global Analysis
Data with 1x1 degree resolution. The MM5 and CMAQ nesting capabilities are used
to downscale the problem to a 3 km horizontal resolution for the innermost domain
(Bulgaria).

The TNO high resolution emission inventory [6] is exploited. A detailed description
of the emission modeling is given in [4]

3 Some illustrations

As already explained, the 8-year simulated fields ensemble is large enough to allow
statistical treatment. In particular the probability density functions for each of the
atmospheric compounds can be calculated, with the respective seasonal and diurnal
variations, for each of the points of the simulation grid or averaged over the territory of
the country. Knowing the probability function we know everything about the climate
of the different compound concentrations (see Figure 1).

Another important characteristic of the atmospheric composition climate of the coun-
try is the contribution of the emission of different categories to the overall atmospheric
composition pattern (see Figure 2).
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Figure 1: Annually mean diurnal variations of the averaged for the country NO2,
S02, O3 and fine PM surface concentrations [ug/m3]: curves of mean, maximal and
minimal values as well as curves show the imaginary concentrations for which the
probability of the simulated ones to be smaller is respectively 0.25, 0.75, 0.1 and 0.9.

4 Some basic facts about the atmospheric composi-
tion climate of Bulgaria

Some of the major findings about the atmospheric composition climate of Bulgaria
are as follows:

e the behavior of the surface concentrations, averaged over the ensemble annually,
or for the four seasons and over the territory of the country is reasonable and
demonstrates effects which for most of the compounds can be explained from
a point of view of the generally accepted schemes of dynamic influences (in
particular the role of turbulent transport and its dependence on atmospheric
stability) and/or chemical transformations;

e the SNAP 1 contribution to the surface SO2 concentrations is smaller than one
should expect, having in mind that the 'Maritza’ power plants are among the
biggest sulfur sources in Europe. Probably, a significant amount of SO2 from
these sources becomes a subject of larger scale transport and so is moved outside
the country;
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Figure 2: Annually mean diurnal variations of the averaged for the country contri-
bution [%] of different emission categories on NO2, SO2, O3 and fine PM surface
concentrations.

e the contribution of biogenic emissions to surface ozone in the country is rel-
atively small. This indicates that local O3 production rate is limited by the
availability of NOx concentration, a regime which is called NOx-limited. Ob-
viously from a point of view of atmospheric composition climate the Balkan
Peninsula and Bulgaria are predominantly ’rural’ environment which explains
the ozone photochemistry specifics in the region.;

e the contribution of the emission from categories 1 and 7, which are the major
sources of the other ozone precursor - nitrogen oxides, is also small. This, once
again is an indirect indicator, that the surface ozone in Bulgaria is to a small
extend due to domestic sources, but is mostly imported;

e the results produced by the CMAQ - Integrated Process Rate Analysi s- demon-
strate the very complex behavior and interaction of the different processes. The
analysis of the behavior of different processes does not give simple answer of the
question how the air pollution in a given point or region is formed.
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Air Quality Index Evaluations for Bulgaria

Ivelina Georgieva

1 Introduction

In communication with the general public providing information on the actual air
quality is not meaningful to present concentration values unless the concentrations are
related to the effect levels. Frequently this is done by converting the concentration into
a dimensionless scale which is also associated with an intuitive color code (from green
to red) and a linguistic description (e.g. from very good to very poor). Commonly the
reference levels used in the conversion are based on health-protection related limit,
target or guideline values set by the EU, at national or local level or by the WHO.
For describing the ambient pollutant mix, an overall air quality index (AQI) is con-
structed. In calculating such an overall AQI, firstly for each individual pollutant a
sub-index is calculated. The overall index is set to the highest value of each of the
pollutant, considered.

The AQI has become part of the information routinely provided to the public. The
AQI makes it possible to describe the air quality in a simple, understandable way.

2 Computer simulated atmospheric composition

Recently extensive studies for long enough simulation periods and good resolution of
the atmospheric composition status in Bulgaria have been carried out using up-to-date
modeling tools and detailed and reliable input data [1, 2, 3, 4, 5, 6, 7, 8, 9].

The simulations aimed at constructing of ensemble, comprehensive enough as to pro-
vide statistically reliable assessment of the atmospheric composition climate of Bul-
garia - typical and extreme features of the special/temporal behavior, annual means
and seasonal variations, etc.

3 Some AQI examples

Utilization of the ensemble for studying the AQI climate in Bulgaria is the goal of the
present work.

The AQI, calculated in the frame of Bulgarian Chemical Weather Forecast System
[10, 11], ver.3, which follows the UK Air Quality Index [12] is used in the present
work as well. Due to the limited volume of the present abstract only few examples,
illustrating the AQI climate in Bulgaria will be demonstrated.

Figure 1, for example, demonstrates the seasonal and diurnal variation of the recur-
rence of different AQI categories, averaged for the territory of Bulgaria. As it can
be seen AQI2 and 3 are with highest recurrence, while all other AQI are much less
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Figure 1: Diurnal and seasonal variations of the averaged over Bulgaria recurrence
[%] of the different AQI.
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Figure 2: Diurnal variations of the annually averaged recurrence [%] of the different
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probable. Exceptions can be seen at noon for spring and summer, when probability
of AQI4 becomes higher than the one for AQI2.

The AQI probabilities have not only seasonal and diurnal, but also spatial variability.
Figure 2 demonstrates the annual AQI recurrence for different points. As can be seen
AQI2 and 3 have highest impact, while all others AQI are with negligible impact.
AQI4 probability has local maximum at midday for Sofia, Rojen and Stara Zagora.
The general conclusion that can be made is that the air quality status of Bulgaria is
rather good (evaluated with a spatial resolution of 3km) - the recurrence of high AQI
values is close to zero. It should be also noted that the dominant pollutant - the one
that determines the AQI value is mostly the surface ozone.
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Statistical Estimation of Brown Bears Population in
Rhodope Mountains

Todor Gurov, Emanouil Atanassov, Aneta Karaivanova,
Ruslan Serbezov, and Nikolai Spassov

The brown bear (Ursus arctos) is the most widespread bear in the world. It can
be found across Europe, Asia and North America in habitats ranging from forests
to dry deserts and tundra. One of the best bear habitats in Europe are located in
Bulgaria. They are situated in the mountains of Rhodopa, Stara planina, Rila, Pirin,
Vitosha. Until 1992 the bear had been a game target. By Order 1023 dated 31.12.1992
of the Ministry of Environment and Water (MoEW)the species has been declared
protected, in compliance with the Nature protection act. This status has been kept
also after the Biodiversity act was passed in 2002. The Habitat directive requires strict
protection of the species and declaration of special protected areas for conservation of
its habitats [5]. The main habitats of the bear in Bulgaria are included in the ecological
network NATURA 2000 [6]. For the purposes of protection of the habitats and the
management of the network NATURA 2000 a mapping and determination of their
environmental status was carried out in the frame of project under the EU operational
programmes environment. The acquired information are used for elaboration of plans
for management of the protected areas and the populations of the species as well as for
regulation of the investment projects therein. That is why it is important to estimate
habitat use and population dynamics of brown bears in the country. In this work we
study the population of brown bears in Rhodopa Mountains, using data received from
the monitoring that was carried out in Autumn 2011. Recommendations regarding
the obtained estimators and the necessary sample sizes are presented, as well as some
ways to improve data collection during future monitoring.

1 Evaluation of the population size of the brown bear

In this study, we use the transect method and statistical approches [1, 3, 4] to estimate
population size of the brown bear. The transect method is based of collection of traces
of brown bear on predefined set of routes (transects) and analysis to determine the
unique traces. It is a popular and cheap method for monitoring the bear population.
The numerical analysis of brown bear population is made using statistical methods,
by using the data collected on size of front/rear paw of bears obtained during the
National Monitoring (26-27 October 2011 ) in the Western Rhodopes, the territory of
Pazardzhik region and parts of the Plovdiv region. These data, together with data for
nutritional importance of forest types, enable us to evaluate the numerical population
throughout Western area of Rhodope mountains where there are large areas with a
permanent presence of the species.

The number of transects used during the National Monitoring was 48 covering 14
forest administrative units, see Table 1. For determining the unique traces of brown
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Transects 3 5 2 3

Number of traces [ 0|0 0 4 1 1 1 0 1 0 0 2

Number of transects
Number of bear’s
traces

Total transects : 48

Table 3: Distribution of the bear’s traces on the forestry areas and on the transects.

Min Max Roundto a Level of Confidence
EREEET deviation el deviation | whole number | significance xg interval B
1.0742885 45.89 49.04 52.19 45-53 3.00 99.7%
1.0742885 47.21 49.04 50.79 47-51 1.67 95%

Table 4: Number of unique traces by using different confidence interval.

bears the main quantitative indicator was the width of the front paw of the bear,
while the width of the rear paw of the bear was used as a secondary indicator.

The Table 4 shows results for mean value and standard diviation of the non-groupped
data, presented in Table 3

The GPS data was used to perform classification based on a statistical method (Ma-
halanobis distance - D2) [2].

For this purpose, 412 GPS locations of brown bears are used (traces marked trees,
burrows, observations, genetic samples collected from sites in the hair bear habitat,
excrement, etc.).

Based on this data, we performed statistical extrapolation, taking into account the
suitability of different types of woodland, namely 4 groups of woodland were consid-
ered:

14 Forestry areas with

transects 271.72 835.99 399.51 343.73 1850.95

Other  forestry  areas
(Pazardjik and Plovdiv) 351.619 896.9119 452226 448.6128 2149.369
without transects

all fit areas bear habitats

in Smolyan and Kardjalii 671.28 988.36 609.9237 447.5292 2717.094

Table 5: 4 fit areas bear habitats in square kilometres (km2), grouped by regions of
the Rhodope mountain.
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Fit areas bear habitats Other land | Coniferous | Mixed | Deciduous Total
cover forest forests forest

14 Forestry areas with
transects ; Other forestry
Breas (Pazardjik e 4.75 20.08 19.35 12.43 56.61
Plovdiv) without transects
Round to a whole number 5 21 20 13 57/59
Alpigacasgbeagabicl] g o; 22.13 26.09 12.40 69.69
in_Smolyan and Kardjalii
Round to a whole number 10 23 27 13 70/73
Total size population 15 44 47 26 127/132

Table 6: Results for population size of the brown bear in Rhodope mounting.

e other land cover (like blackberries, shrubs, forest herbs - mean value of D2 -
11.4;

e coniferous forest - mean value of D2 - 6.8;
e mixed forests - mean value of D2 - 3.6;
e deciduous forest - mean value of D2 - 5.56.

The distribution of forest area per woodland type is shown in Table 5. The final re-
sults, which offer an estimate of the brown population in the whole Rhodopi mountain,
are shown in Table 6.
Based on the estimated statistical error of about 8%, the population size should be
between 137 and 143.

2 Conclusion

Data from national monitoring the size of bear paws can be used to determine height,
age and sex of bears. It is a task, the results of which will be presented in a later
publication. When collecting data during national monitoring, several sources of
subjective errors were observed, namely: (i) availability of feeders on some of the
routes leading to correlation of the results and increase the error in the calculations.
(ii) uneven number of routes in the forestry areas (administrative unit or forest farm).
In some forest farms there were large number of routes, while others need to be
supplemented with new routes. It is recommended that the average number of routes
per farm depend on the size of the areas that are fit for habitat. (iii) accuracy of trace
determination - wrong determination of front/rear paws.

To improve the mathematical model to assess the brown bear population need for a
National Monitoring each fall , usually in the middle or end of October. Provision
is also generating simulation data using high performance computing systems with
the main objective to improve the model. The introduction of the principle of re-
peatability for the transects will allow to compare the data with those from previous
monitoring and observe the tendencies. It is important to collect information about
the type of forest where each trace was found. The accumulation of data from several
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national monitorings will allow to assess the development trend of the population - if
we have a sustained increase or decrease.

3 Future work

Based on the developed methodology, an estimate for population size in the whole
country can be obtained when more data is available. In addition to that an estimate
the trend of growth for the brown bear population in the country shall be obtained,
when data from consecutive and consistent monitorings can be used. Our ambition
is to create a program product for solving the above problems.
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Structure Analysis of HLA Complexes in the
Presence of Co-Receptors

Nevena Ilieva, Damyan Grancharov, Peicho Petkov,
Michael Kenn, Reiner Ribarics, and Wolfgang Schreiner

The major histocompatibility complex (MHC) molecule and the T cell antigen
receptor (TCR) are the primary components of the immunological synapse which
realises the cell-cell interactions of the adaptive immune response. MHC molecules
(in humans also called human leukocyte antigen — HLA) are highly polymorphic
proteins which bind protein fragments (epitops) and present them on the cell surface.
TCR is responsible for the antigen recognition and succeeding signal transmission into
the cell interior. The binding of the antigen within the MHC is not covalent, also its
interaction with the TCR is of relatively low affinity, so there are many factors which
can influence the stability of the immunological synapse.

Molecular dynamics (MD) is a powerful method for modelling and investigation of the
structure and behaviour of biomolecules, which provides an insight into dynamics of
the processes they undergo and is a valuable completion to the experimental studies.
In a previous work, we have critically investigated the reliability of the RMSD-based
MD analysis [1] and have emphasized the importance of identifying semi-rigid do-
mains in the biomolecules [2] on the example of LC13 TCR/ABCD3/HLA-B*44:05,
which has been crystallized by MacDonald et al [3]. In the present paper, we extend
the investigated system by including also the CD8 co-receptor, which is believed to
intervene in the dynamics of the whole process [4]. However, the specific mechanisms
behind this influence are still not clarified, not least because of limited experimental
data (some recent work is contained in [5, 6]).

As there is no structure available for this extended complex, we engineered it from the
PDB entries 3KPS (LC13 TCR in complex with HLA B*4405 bound to EEYLQAFTY
— a self peptide from the ABCD3 protein, [3]) and 1AKJ (a complex between human
CD8ar, HLA-A*0201 and a HIV reverse transcriptase epitope). The alignment was
based on a contact map between CD8 and MHC molecules, including the close-contact
C-a atoms of MHC, with a cutoff of 1.5nm.

The two complexes (with and without CD8 co-receptors) were subjected to 200ns
GROMACS 4.0.7 simulations at 310K, with the GROMOS96 53a6 force field, time
step of 5fs (after removing the hydrogen motions), v-rescale temperature coupling
with a time constant of 0.1ps and Berendsen pressure coupling with a time constant
of 0.5ps. Both Van-der-Waals and Coulomb interactions were computed with 1.4nm
cutoff, and for the long-range electrostatics PME method with standard parameters
was applied.

Based on an extensive analysis, encompasssing RMSD distributions for functionally
critical parts of the investigated complexes, such as the binding groove of the MHC
molecule, its @3 domain and the TCR, interface surface area between a3 domain of
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MHC and the CD8, hydrogen-bond dynamics and relative distances between MHC
and TCR, conclusions may be drawn about the stabilizing role of the CD8 co-receptor
on the whole complex. The influence of the CD8 presence on the semi-rigid domain
formation is to be kept in mind as well. The present analysis may also be envisaged
as a proof-of-concept for the engineering protocol, to be used in forthcoming sudies of
the allorecognition patterns in complexes with point mutations of the MHC molecule.
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Structured Low-Rank Approximation by
Factorization

Mariya Ishteva, Konstantin Usevich, Ivan Markovsky

We consider the problem of approximating an affinely structured matrix, for example
a Hankel matrix, by a low-rank matrix with the same structure. This problem occurs
in system identification, signal processing and computer algebra, among others. We
consider a factorization approach and enforce the structure on the approximation by
introducing a penalty term in the objective function. The proposed local optimization
algorithm is able to solve the weighted structured low-rank approximation problem,
as well as to deal with the cases of missing or fixed elements.

1 Introduction

Low-rank approximations are widely used in data mining, machine learning and signal
processing as a tool for dimensionality reduction and factor analysis. In system iden-
tification, signal processing and computer algebra, the matrices are often structured,
e.g., (block) Hankel, (block) Toeplitz, Sylvester, or banded matrices with fixed band-
width. The goal of structured low-rank approximation is to preserve the given struc-
ture while obtaining a low-rank approximation. Although each of the “constraints”
can easily be handled separately, imposing both low-rank and fixed structure on the
approximation is nontrivial.

To deal with the rank constraint, we consider a matrix factorization approach, i.e.,
given a structured matrix D € R™*™ and a number r such that » < m,n, find two
factors P € R™*" and L € R™™", such that

D~ PL and PL is a structured matrix.

The structure will be enforced by introducing a penalty term in the objective function.

2 Problem formulation

Affine structures can be defined as

S(p) = S0+ Skpr,
k=1
where Sp,S1,...,5,, € R™*", p € R"™ and n, € N is the (minimal) number of

parameters. Let vec(X) denote the vectorized matrix X and let

S = [vec(S1) -+ vec(Sn,)] € R™X"r,
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Since n, is minimal, S has full column rank. For simplicity, we assume that the
elements of S are only 0 and 1, and there is at most one nonzero in each row (non-
overlap across Sy), i.e., every element of the structured matrix corresponds to only
one element of p.

2.1 Orthogonal projection on image(S)

It can be shown that the orthogonal projection of a matrix X on image(S) is given
by
Ps(X) := S(STvec (X)), where ST:=(ST8)7!ST. (1)

The effect of applying the pseudo-inverse St on a vectorized matrix X is producing a
px structure vector by averaging elements corresponding to the same S;. Note that
applying ST on a (vectorized) structured matrix extracts its structure vector, since
StSp = p. Finally,

vec(Ps(X)) = vec(Sp) + g vec(X), (2)

where IIs = SST = S(ST S)~!ST is the orthogonal projector on the image of S.

2.2 Optimization problem

We solve a series of related simpler subproblems, the solution of each subsequent
problem being forced closer to the feasible region of the main problem. One of the
requirements (low-rank or structure) will always be imposed, while the other one will
be satisfied only upon convergence. We have the following two choices (see Figure 1):

— low-rank constraint
— structure constraint

PL in (3): Ps(PL) in (4), (6):
— low-rank v — penalized low-rank deviation
— penalized structure deviation — structure v’

Figure 1: Optimization problems

o Penalize the structure deviation
win D~ PLI% + N|PL ~ Ps(PL) 3. 3)
where A is a penalty parameter, || - ||z stands for the Frobenius norm, Ps(PL) is
defined in (1), and |- ||w is a semi-norm on the space of matrices R™*" induced

by a positive semidefinite matrix W € R™"*™" ag || D||2, := (vec(D)) T Wvec(D).
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e Penalize the low-rank deviation

win | D = Ps(PL) Iy + NIPL ~ Ps(PL)|3- )

Note that for A = oo, the term ||PL — Ps(PL)|| has to be 0 and problems (3) and 4)
are equivalent. The interpretations of (3) and (4) are however different. In (4) the
main part is the structure and the low rank is ‘secondary’. In (3) it is the other way
around, although in both cases both constraints are satisfied at the solution.
In the literature [2], the weighted structured low-rank approximation problem is often
formulated as

min ||p — plly7, such that rank(S(p)) <, (5)

2

where W € R™*"» is a symmetric positive definite matrix of weights. (If W is the
identity matrix, || - |5 = || - [|2.) o
Note that (4) can be formulated using W in the following way

III)liBHp— STvec(PL)HQW—i—)\HPL—PS(PL)H%. (6)

3 The proposed algorithm

3.1 Main idea

We solve the minimization problem (6) by alternatingly improving the approximations
of P and of L,
min [[p — 8 vee(PL)|[F + A PL — Ps(PL)|3,

7
min p — S vee(PL)|% + N|PL - Ps(PL)3. g

until convergence.

Let I,, be the nxn identity matrix, ’®’ denote the Kronecker product and W = M.
Then (7) can be reformulated as

2

M St Mp
min (I, ® P)vec(L) — )
L ||V IIs, Vvec(Sp) )
M St Mp ?
min (LT @ I,,,) vec(P) — ,
Pl Vg, VAvec(Sp) )

IIs, = (I;nn — Ig) being the orthogonal projector on the left kernel of S.

These are least squares problems and can easily be solved by standard techniques.
The matrix P can be initialized by a matrix representing the left dominant subspace
of A. We declare that PL is a structured matrix if

|PL — Ps(PL)||% < 10~ *2.
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3.2 Parameter )\

In theory, if we fix A = oo, then we have the exact structured low-rank approximation
problem. In practice, we start from a small value and increase it with each iteration
until it reaches a “large enough” value. This way we allow the algorithm to move to a
“good region” quickly and then impose more strictly all constraints. For convergence
properties, we rely on the theory of quadratic penalty method from [3, §17.1].

4 Conclusions

The proposed algorithm solves the weighted structured low-rank approximation prob-
lem and can deal with the cases of missing elements in the data matrix or fixed ele-
ments in the structure. This is interesting not only from optimization point of view,
but also has great impact on the applicability of the proposed approach. Practically
relevant simulation examples from system identification, computer algebra (finding a
common divisor of polynomials with noisy coefficients), and symmetric tensor decom-
position are presented in [1], demonstrating its consistently good performance.
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LScalable implementation of the parallel multigrid
method on massively parallel computer

Kab Seok Kang

Fast elliptic solvers are a key ingredient of massively parallel Particle-in-Cell (PIC)
and Vlasov simulation codes for fusion plasmas. This applies for both, gyrokinetic
and fully kinetic models. The currently available most efficient solver for large elliptic
problems is the multigrid method, especially the geometric multigrid method which
requires detailed information of the geometry for its discretization.

The multigrid method is a well-known, fast and efficient algorithm to solve many
classes of problems [1, 5]. In general, the ratio of the communication costs to compu-
tation costs increases on the coarser level, i.e., the communication costs are high on
the coarser levels in comparison to the computation costs. Since, the multiplicative
multigrid algorithm is applied on each level, the bottleneck of the parallel multigrid
lies on the coarser levels, including the exact solver at the coarsest level. The additive
multigrid method could combine all the data communication for the different levels
in one single step. Unfortunately, this version can be used only for the preconditioner
and usually needs almost twice as many iterations instead. The multiplicative version
can be used both as a solver and as a preconditioner, so we consider the multiplicative
version only.

The feasible coarsest level of operation of the parallel multigrid method depends on
the number of cores since there must be at least one degree of freedom (DoF) per core
(the coarsest level limitation). Thus, the total number of DoF of the coarsest level
problem increases with increasing number of cores. To improve the performance of the
parallel multigrid method, we consider reducing the number of executing cores to one
(the simplest case) after gathering data from all cores on a certain level (gathering the
data) [3]. This algorithm avoids the coarsest level limitation. Numerical experiments
on large numbers of cores show a very good performance improvement. However, this
implementation may still be further improved, if we manage to reduce the number of
MPT tasks to yield better scaling properties.

Modern computer architectures have highly hierarchical system design, i.e., multi-
socket multi-core shared-memory computer nodes which are connected via high-speed
interconnects. This trend will continue into the foreseeable future, broadening the
available range of hardware designs even when looking at high-end systems. Conse-
quently, it seems natural to employ a hybrid programming model which uses OpenMP
for parallelization inside the node and MPI for message passing between nodes.
Expected benefits with OpenMP /MPI hybridzation are a good usage of shared mem-
ory system resources (memory, cache, latency, and bandwidth), and a reduced memory
footprint [2]. OpenMP coarsens the granularity at the MPI level (larger message sizes)
and allows increased and/or dynamic load balancing. This is preferential for some
problems which have naturally two-level parallelism or only use a restricted number
of MPI tasks. Consequently, such a programming model can have better scalability
than both pure MPI and pure OpenMP. The most important benefit of applying the
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hybrid OpenMP/MPI programming model to the parallel multigrid method is that
it can reduce the number of MPI tasks and thus decrease the communication cost of
the coarser level. This simple fact leads to better scalability on the same number of
cores.

In this paper, we consider a structured triangulation of a hexagonal domain for an
elliptic partial differential equation as a test problem [4]. The matrix-vector mul-
tiplication is the key component of iterative methods such as CGM, GMRES, and
the multigrid method. Many researchers have developed parallel solvers for partial
differential equations on unstructured triangular meshes. In [4], we considered a new
approach to handle a structured grid of a regular hexagonal domain with regular trian-
gle elements. In this context we showed that the matrix-vector multiplication of this
approach has an almost perfect scaling property [4]. We modify the parallel multigrid
algorithm, which was implemented using MPI, by adding OpenMP parallelization at
the node level.

To get performance results we run the program on the HELIOS machine. The HE-
LIOS machine is located in the International Fusion Energy Research Centre (IFERC)
at Aomori, Japan. IFERC was built in the framework for the EU(F4E)-Japan broader
approach collaboration. The machine is made by 4410 Bullx B510 Blades nodes of
two 8-core Intel Sandy-Bridge EP 2.7 GHz processors with 64 GB memory and con-
nected by Infiniband QDR. So it has a total of 70560 cores total and 1.23 Petaflops
Linpack performance.
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Figure 1: (Semi-weak scaling) The solution time in seconds of the multigrid method
with a Gauss-Seidel smoother as a preconditioner for the PCGM with (in black) and
without (in red) gathering the data as a function of the number of cores for domains
with 2K DoF (solid line), 8K DoF (e), 32K DoF(+), and 132K DoF(o) per core.
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Figure 2: (Semi-weak scaling OpenMP /MPI) The solution time in seconds of the
multigrid method with a Gauss-Seidel smoother as a preconditioner for the PCGM
as a function of the number of cores for a fixed number of DoF per core. (The best
results of the hybrid model in black, pure MPI in red. 2K (solid), 8K (o), 32K (e),
130K (x) and 500K (o) per core).

The parallel multigrid method with gathering the data avoids the coarsest level limi-
tation and numerical experiments on large numbers of cores show a very good perfor-
mance improvement as can be seen in Fig. 1. There, we depict the semi-weak scaling
results which measure the solution time of a problem with almost the same number
of DoF per core. For the multigrid method a pure weak scaling seems to be hard to
achieve as the number of operations per core has to be fixed. However, increasing
the problem size according to the number of cores automatically leads to introducing
additional multigrid levels to keep the size of the coarsest level problem constant.
Therefore, the number of operations per core slightly increases in our semi-weak scal-
ing due to additional multigrid levels. The numerical results in Fig. 1 show that this
implementation still needs improvements for large number of MPI tasks and small
numbers of DoF per core.

Next, we depict in Fig. 2 the semi-weak scaling results for the selected test cases:
2k, 32k, 32k, 130k, and 500k DoF per core. There we compare the pure MPI case
occupying all 16 cores on each node (in red) with the best performing hybrid cases of 1,
4, or 16 OpenMP threads per MPI task, i.e., 16, 4, or 1 MPI task per node (in black).
For the pure MPI case the performance significantly degrades when the number of
cores becomes large for cases with a small number of DoF per core. This situation
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improves with the hybrid model, i.e., problems with small number of DoF can be
solved with a larger number of threads on a larger number of cores. The threads work
on the shared memory of a node which makes this method more efficient by avoiding
part of the internode communication of the MPI method.
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Finite element based finite difference method for
multidimensional
convection-diffusion-reaction equations

Adem Kaya, Dr. Ali Sendur

Abstract

An efficient finite difference method is proposed for multidimensional convection-
diffusion-reaction equations which is obtained from finite element method, par-
ticularly designed to treat the (most interesting) case of small diffusion, but is
able to adapt naturally from the diffusion-dominated regime to the convection-
dominated and/or to the reaction-dominated regime.

1 Introduction

The multidimensional convection-diffusion-reaction equation (CDR) is an active re-
search area. It is well known that standard methods such as Galerkin finite element
method and central differencing produce undesired oscillations that pollute whole do-
main when convection or reaction dominates and sharp layers occur in the solution
of CDR equation. To cure this situation many methods have been proposed so far,
especially in finite element approach. Streamline-Upwind Petrov Galerkin (SUPG) is
one of the first approach to cure this situation. Another approach is Residual-Free-
Bubble (RFB) method which is based on enriching the finite element space. It is first
studied to find a suitable value of stabilizing parameter for SUPG method. The main
problem with this method is that it requires the solution of a local PDE which is as
difficult as solving the original problem.

Most of finite element methods depend on mesh dependent parameters. Altough,
there exist stabilization parameters that give nodally exact solutions in 1D, finding
optimal mesh dependent parameters is intractable in 2D and 3D. Furthermore, in
multi-dimensions it is more difficult to design numerical methods which are robust
(that is, monotone) in all regimes.

Link-cutting bubble strategy (LCB) [1] is a stabilized finite element method which
is nodally exact in 1D. It aims to stabilize the Galerkin method by using a suitable
refinement near the layer region. LCB strategy uses the piecewise linear bubble
functions to find the suitable sub-grid nodes. It works as the plain Galerkin method
on augmented meshes. It is extended to time-dependent convection-diffusion-reaction
problem in 1D in [2]. Implementation of the LCB method in multi-dimension is not
easy.

I will propose a new strategy which is robust in all regimes and depends on LCB
method for multidimensional CDR equation. It can be easily implemented even for
4D and 5D CDR equations. Discretization of domain contains two steps: first, we
will do an initial discretization then, we will place subgrid nodes into the initial
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discretization using some arguments in [1]. After solving equation on augmented grid
we exclude subgrid nodes to simulate the numerical solution.

2 Link-cutting Bubble strategy

Link-Cutting Bubble strategy introduced in [1] was designed for one-dimensional
convection-diffusion-reaction equation (1);

Lu=—eu + pu +ou= f(x)onl,
{ u(0) =wu(l) =0. (1)

It aims to approximate the basis bubble functions with piecewise linear functions
including subgrid nodes into elements. If we consider a typical element K = (z1,x2)
and assume 3 > 0 and ¢ > 0, then the subgrid nones are obtained by placing two
extra nodes, say z; and zs, such that x1 < 21 < 22 < 2 where locations of z; and
2o depend on problem parameters. After derivation of sub-grid nodes Link-cutting
bubble strategy works as plain Galerkin method with piecewise linear basis functions
on augmented mesh.

It is well known that in one space dimension standard Galerkin finite element method
with piecewise linear basis functions corresponds to following finite difference method
for CDR equation on uniform mesh:

Uil — 2u; +ujq Ujp1 — Uj—1 Ujp1 +4du; +ujq . fj,1 + 4fj + fj+1
€ e + 8 o7 +o 5 =
(2)

where h is the length of each element. On non-uniform meshes it corresponds to
following difference method:

_ Uj41 'Ll,_j & _ Uj—1 Uj41 — Uj—1 h2uj+1 + 2h2Uj + 2h1uj' + hluj,l
T S S T 6

_ hafir1 +2haf; +2hi fj + hafj—1

- (3)

where hg = Ti+1 — T4, h1 =T — Ti—-1-

3 The numerical approach

In two space dimensions we will consider the following constant coefficient linear
elliptic convection-diffusion-reaction problem in a polygonal domain 2:

2 2
—e(Zp+5%) +b. (%2 8) +ou=flz,y) on 2 @)
u(z,y) = g on 912
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Figure 1: Initial discretization and modified discretizations in three different regimes
for N =M = 4.

where € > 0, b = (b1,b2) and o > 0. We can write equation (4) as follows:

8%u ou [b1] 8%u ou [ba |
( )—l—bl( )—l—a‘b E e( )—|—b2( )—|—a‘b1‘+|b2‘
|b1‘+|b2‘f(33 y) + \b1|+\b2|f(x y) on {2 (5)
u(x,y) = g on 012

where by and by are not equal zero, simultaneously. We can consider equation (4) as
a sum of the following equations;

(g;;) + 6 (5 )+0|b1|\+|‘b2\“ = \bl‘&\lbﬂf(x’y) (6)

and

¢ (8y ) + 5 (8J) + 0 [l = T/ () (7)

Applying finite difference method in (3) to the equations (6-7) and summing up we
get the finite difference formulation for equation (4).

99



3.1 Discretization of the domain

We start the discretization of the domain with an initial discretization which can be
structured or unstructured. For simplicity, let N denotes the number of uniformly
spaced grid points in z-direction , M in y-direction and K in z-direction on initial
discretization. Second discretization (modified discretization) is derived by placing
subgrid nodes which are obtained with applying Link-cutting bubble strategy in =,
y and z-direction, separately. x-coordinates of modified discretization is obtained
by applying the procedure in Link-cutting bubble strategy to the equation (6) and
y-coordinates to the equation (7) in 2D. The modified discretization consists of
(3N — 2) x (3M — 2) points in 2D and (3N — 2) x (3M — 2) x (3K — 2) points in
3D. Figure 1 shows an example of initial discretization and modified discretizations
obtained from the initial discretization in different regimes in 2D.
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A Fast Parallel Algorithm for Direct Simulation of
Particulate Flows Using Conforming Grids

Johnwill Keating and Peter D. Minev

This study presents a development of the direction splitting algorithm for problems in
complex geometries proposed in [1] to the case of flows containing rigid particles. The
main novelty of this method is that the grid can be very easily fit to the boundaries
of the particle and therefore the spatial discretization is very accurate. This is made
possible by the direction splitting algorithm of [1]. It factorizes the parabolic part
of the operator direction wise and this allows to discretize in space each of the one-
dimensional operators by adapting the grid to fit the boundary only in the given
direction. Here we use a MAC discretization stencil but the same idea can be applied
to other discretizations. Then the equations of motion of each particle are discretized
explicitly and the so-computed particle velocity is imposed as a Dirichlet boundary
condition for the momentum equations on the adapted grid. The pressure is extended
within the particles in a fictitious domain fashion.
The incompressible Navier-Stokes equations for the fluid occupying a domain ¢ are
given by: D .
u

o=~ Vrt ﬁv%, Vu =0, in Q. (1)
The equations of motion of the i*! rigid particle with a density p,;, occupying the
domain Q,;,%=1,..., N, are given by

dX;

U, =—, 2
7 (2)
dU; 1 1
i =m—1)= —F, 3
dwi
L — = T,. 4
nili— (4)
Here, X; is the center of mass of the i'" particle, U; is its velocity, 1, = Pp,i/py is
its relative density, V; is its volume, I, is its inertia tensor, F; = [ o -ndS is

0y s
the hydrodynamic force acting on the particle, n is the unit normal pointing out of
the particle, ¢ = —pd + 1/Re(Vu + (Vu)?) is the stress tensor of the fluid, and
T, = [ (x—X;)x (6 -n)dS is the hydrodynamic torque acting on the particle.
OQp,i
For spherical particles, I; = diag(2/5V;r?), where 7; is the radius of the i*® particle.

2000 Mathematics Subject Classification. 65N12, 65N15 , 35Q30.
Key words and phrases. Direction Splitting, Particulate Flows, Direct Numerical Simulation,
Navier-Stokes Equations
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The discretization of this mixed system of ODEs and PDEs proceeds by first dis-
cretizing the particle equations by a second order explicit scheme:

(2

Fr— / o™ ndA, (5)

aan
T = / (x = XI) x (6" -n)dA, (6)
oar
urtt —ur Vi 3 1.
Vi [ ———L ) = (g — D) mbe, + SFP — —F7 L, 7
¥ (P gt ) = - e + R 5 ¢
n+1 n
w, T — Wi 3 1 .4
I (2 %) — S 8
n ( At ) PR ®)
X -Xr 1
i) i Un+1 ur 9
o= U U, ©)
where the stress tensor at time level n in (5) and (6) is approximated by
n 1 n—1i *n+ 2 1 n n\T
o :—E(p 5 4 p* 2)6+§(Vu + (Vu)T). (10)

Equation (7) may also include an additional force to prevent overlapping of particles
or to model their collisions (see for example [2]). Various approaches for treatment of
collisions can be used and easily incorporated in the present scheme. The so-computed
velocity of the particles is then used as boundary conditions for the Navier-Stokes
equations on the particle boundaries. However, imposing these boundary conditions
in the traditional manner would require to grid the fluid domain and apply classical
discretizations like finite elements or finite volumes. Such an ALE procedure would
therefore require to re-grid the fluid domain very often that is absolutely unfeasible
if the flow involves more than several particles. The goal of this study is to perform
simulations involving millions or even billions of particles and therefore we used an
approach based on the modified Douglas scheme that is essentially a direction splitting
scheme. If 2 is an extension of the fluid domain €2y that includes all domains occupied
by particles then the scheme proceeds as follows:

1 Pressure predictor
The pressure is predicted in the entire extended domain Q by:

Pt =phTE g (11)
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2 Velocity update

The velocity is computed in the velocity domain Q}H'l via:

§n+1A; u” n g(un V)" — %(un—l V)unt =

— VpttE 4 é (Ozam™ + 0yyC" + 0z2u")

%fﬁl = %Ream (™t —n"), (12)
n+1 n+1

% = 2LRe vy (Cnﬂ - Cn) )

un+1 o Cn—i—l 1

AL = Q—Reazz (u"Jrl —u").
The rigid body velocity u"*t = Ut 4+ o+l x (x — X"*1) (computed from (7)
and (8)) is prescribed at all points of the grid that lie inside QZ;H and on 892}'1.
While discretizing (12) in space, the grid is fitted to the boundary of the fluid domain
89;}“. As mentioned above, if this fitting needs to be performed in multi dimensions
and many particles, the problem is not treatable by contemporary mesh generators.
However, since (12) requires only the solution of one dimensional problems in each
direction, it would be necessary to adult the grid only on each individual grid line in a
given direction. In fact, the current procedure does not require to adjust positions of
grid nodes on a given line but only to adjust the finite difference stencil around points
of intersection of this line with particle boundaries. More details on this procedure
can be founds in [1] and [5].

3 Pressure correction

The pressure time-increment ¢ is approximated by solving

(L= 0.0)(0 ~ D)1~ B.0)0* ) = -t gy (13

over the entire domain = [0,X] x [0,Y] x [0,Z]. The scaling factor 9min =
min {1, 1211i<1’lN {ni} ¢ is included following an idea proposed in [3] for modification

of the classical projection schemes for flows with discontinuous density. This scheme
avoids the need to solve a pressure Poisson equation with a discontinuous coefficient
resulting from the density discontinuity. Indeed, particulate flows can be interpreted
as flows of a variable density fluid over a simply-shaped domain. The stability and
optimality of such formulations is analyzed in [4]. Equation (13) is supplemented
by homogeneous Neumann boundary conditions on 92, and can be solved as the
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following series of one-dimensional problems:

0 — Oprl = —%VunJrl; 8a:g|a::0,X =0,
b — 8yy'¢ =0, 8y"My:O,Y =0, (14)
¢E 0" =y, 0.0" |0z =0

4 Pressure update

The pressure is corrected in the entire extended domain 2 by:

X Y@ +u) in Q. (15)

ntd _pnd o gntd
p p +9 2Re

where 0 < y < 1 is a parameter of the scheme.

Finally, the presentation will demonstrate the accuracy and stability of the method
on various benchmark problems involving rigid particles (see [5]). In addition, some
results of direct simulations of fluidized beds involving thousands and millions of
particles will be presented. Further details of these simulations can be found in [6].
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Robust preconditioning of Darcy problem for highly
heterogeneous media

J. Kraus, R. Lazarov, M. Lymbery, S. Margenov, L. Zikatanov

1 Darcy problem

Consider the following second order elliptic boundary value problem written in mixed
form for the unknown scalar functions p(z) and the vector function u:

u+ K(z)Vp=20 in ©, (1a)
diva=f inQ, (1b)

p=0 onl'p, (1c)

u-n=20 on I'y. (1d)

Here K (z) is uniformly bounded positive function in Q, f € L%*(Q), and Q c R?
(d = 2,3) is a bounded polyhedral domain with its boundary 9 split into two
non-overlapping parts I'p and I'y. For the pure Neumann problem assume that f
satisfies the compatibility condition fQ fdx = 0. In this case the solution is determined
uniquely by taking fQ p dx = 0. To simplify the presentation, assume that I'p is a non-
empty set with strictly positive measure, so the above problem has a unique solution.
This equation is a model used for example in heat and mass transfer, flows in porous
media, diffusion of passive chemicals, electromagnetics, and other applied areas. The
methods presented in this note are targeting applications of equations (la)—(1d) to
flows in highly heterogeneous porous media. The goal is to design a preconditioner
for the mixed finite element approximation of the above problem that will lead to
efficient iterative methods which converge independently of the contrast in K (x).
The construction is based on the method developed in [4, 5].

A fundamental role in the analysis plays the weighted inner product

An(u,v) = (o u,v) + (divu,divv), a(z) =K (z), (2)

in the space
H(div) := H(div; Q) = {v e L*(Q)%: divv € L*(Q)}. (3)

Multigrid methods for H(div)-systems have been designed earlier, see, e.g., the
work by Arnold, Falk, and Winther [2] who considered the weighted bilinear form
Ag(u,v) = a(u,v) + B(div u,div v) with constants a > 0 and 5 > 0. A key moment
in their study was robustness with respect to o and 8. The important difference
between our form A, and A4, however, is that in A, the parameter « is a highly het-
erogeneous function with very large ratio between the smallest and the largest values.

1991 Mathematics Subject Classification. 65F10, 65N20, 65N30.
Key words and phrases. weighted H(div)-norm, mixed finite elements, least-squares, high con-
trast media, robust preconditioners
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This makes the design of a robust multigrid method and also the proof of a proper
inf-sup condition much more difficult. To present the dual mixed weak form define
the function spaces

V = Hy(div;Q) ={veL?Q)?: divve L*), and v=0 on I'y}
W = {qeL*Q) and /qu:O if T'n=00}.
Q

Then the weak form of the problem (1a)—(1d) is: Find u € V and p € W such that
APM (v, g) = —(f,q) + (f,div) V(v,q) €V x W, (4)
where the bilinear form APM (u, p;v,q) : (V,W) x (V,W) — R is defined as
APM (u p:v, q) == (au, v) + (divu,divv) — (p,divv) — (divu, g). (5)

Obviously the form APM (u,p;v,q) is symmetric but indefinite. Note that this is
a slightly modified mixed method, which yields the same solution but offers some
advantages in designing efficient solution methods, see e.g. [2, 8]. Consider a stable
mixed method, e.g., Raviart-Thomas method, to approximate the solution of (4):
Find (up,pn) € Vi, x W), such that

(@up, vp) +(V-vi,pn) = 0 Vv, €Vy, (6a)
(Voun,qn) = (fiqn) Yan € Wh. (6b)

The saddle point problem (6) is equivalent to the following indefinite system of linear

algebraic equations
Mh Bh u _ 0 (7)
BF 0 p| | f|

In short one can write (7) in the form
Apmz, = mf), (8)

where Ay, : X}, — X/ is a self-adjoint and indefinite operator and X;, = Vi, x Wj,.
As it has been shown in [3] the operator norms
ARl c(x,,x+) and ||-A]:1||E(X,:,Xh) are uniformly bounded (9)

h

for stable mixed finite element disretizations of problem (6).

2 Two-level preconditioner

Following [1], the goal is to construct a positive definite self-adjoint operator

By, : X — X} such that all eigenvalues of B,:lAh are bounded uniformly independent
of h and independent of the variations of the coefficient «, i.e., independent of the
contrast. From (9) it follows that

1Bullc(x,.x;) and ||B,:1||£(X;,Xh) being uniformly bounded in A and «  (10)
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is a sufficient condition for B, to be a uniform and robust preconditioner for the
minimum residual (MinRes) iteration.
Let the block diagonal preconditioner By, be defined as

A, 0
0 I

B = (11)

where I}, is the identity on W, and Ay, : V), — V7 is given by (Apun, vi) = Aa(up, vi),
see (2).

Then condition (10) reduces to |[Ap|z(v, v;) and ||A;:1||£(V;,Vh) being uniformly
bounded in h and «, see [1].

Hence the crucial step is to construct a robust and uniformly convergent iterative
method for solving systems with A = Aj,. The method of fictitious space precondi-
tioning, first proposed in [7], and later refined in [9], provides the framework. Let B
denote the auxiliary space two-grid preconditioner, which is implicitly defined by

B U= +(I-MTAC(I-AM™Y) (12)

where C is a fictitious (auxiliary) space preconditioner approximating A. Here the
operator M denotes an A-convergent smoother, and M = M(M + MT — A)~1MT

the symmetrized smoother. Further, let V' = RY and V = R" where N > N. Then
a surjective mapping IT : V' — V can be defined such that the preconditioner (12) can
be written in the form -1 -

B™'=M " +r'nA'tn’ (13)
where A is a certain domain decomposition auxiliary matrix and the value of the
scaling parameter 7 can be chosen such that the two-grid method with iteration
matrix I — B~ 1A is convergent.

The proposed auxiliary space two-grid method differs from the classical two-grid meth-
ods in replacing coarse-grid correction by a subspace correction with iteration matrix
I-C 1A

The following theorem provides a bound for the relative condition number x(B~1A).

Theorem 1. ([5]) Let B be defined according to (13) and assume that M satisfies
the smoothing property

v, v) < pa(M 'v,v) <Elv,v) and |AM~Tv|? < Liv|}
PA

where pa = Amax(A) denotes the spectral radius of A and the constant n is non-
negative. Further, let Il : V. — V be energy-stable, i.e., ||1_I\7||124 < cn||\7||12Z for all

vev. Then the extremal ezgem}alues of B LA satzsf max(B1A) < ¢+ < and
Amin(B71A) > +1/§, and thus kK(B~1A) < (¢ + en/7) (1/7' + T]/c
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3 Auxiliary space multigrid method

Let k=0,1,...,¢—1 be the index of mesh refinement where & = 0 corresponds to the
finest mesh, i.e., A®) := Aj, = A denotes the fine-grid matrix. Consider the sequence
of domain decomposition auxiliary matrices A%, in two-by-two block factorized form

(A=t = (LENT DO K, (14)

where

N I N (g(k))—l
L™ = ~(k) , *(k } , DW= 1 (15)
_Ag1)(Ag1))71 I

QW 1 '

The construction is such that the Schur complement Q*) = Z;’;) —Z;’i) (Zg’i))*lﬁg? of
A®) is sparse and defines an (additive) approximation of the dense Schur complement

—1
Sk = AR _ AR 4R 4B Then Q) serves as the next coarser-level matrix, i.e.,
ABHD = QW) (16)

and the two-level block factorization can be applied recursively. The algebraic mul-
tilevel iteration (AMLI)-cycle auxiliary space multigrid (ASMG) preconditioner B*)
of A®) is defined on all levels k < ¢ via the following relation

BO ™ =TT (1= MW AW IO (EW) TR EO 0T (1 - 40 307
(17)
where o Ak)y—1
D(k) = ( 11 ) (18)

gl !

and BY¥*Y is the coarse-level preconditioner of A®+1D ie. BFD ™" x AG+DT! ang
B®) .= A®, (19)

-1 _
In the linear AMLI-cycle method B£k+1) is a polynomial approximation of A(*+1) !
whereas the nonlinear AMLI-cycle ASMG method uses a nonlinear mapping

-1 -1
By = gl [-] whose action on a vector d is realized by v iterations of a

preconditioned Krylov subspace method. For further details on the construction and
analysis of ASMG preconditioners for weighted H (div)-norm see [6].
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A Computational Approach for the Seismic Damage
Response of Adjacent Tall RC Structures
Environmentally Degradated and Strengthened by
Ties

Angelos Liolios, George Hatzigeorgiou, Konstantinos Liolios,
Stefan Radev, Krassimir Georgiev, Ivan Georgiev

Dedicated to Professor Svetozar Margenov’s 60th anniversary.

In Civil Engineering, pounding is one of the non-usual extremal actions (seismic,
environmental etc.), which can cause significant strength degradation and damages
on existing structures [1]. Pounding concerns the seismic interaction between ad-
jacent structures, e.g. neighboring buildings in city centers constructed in contact.
On the common contact interface, during an earthquake excitation, appear at each
time-moment either compressive stresses or relative removal displacements (separat-
ing gaps) only. These requirements result to inequality conditions in the mathematical
problem formulation. To overcome strength degradation effects, various repairing and
strengthening procedures can be used for the seismic upgrading of existing buildings
[1]. Among them, cable-like members (ties) can be used as a first strengthening and
repairing procedure. These cable-members can undertake tension, but buckle and
become slack and structurally ineffective when subjected to a sufficient compressive
force. So, in the mathematical problem formulation, the constitutive relations for
cable-members are also inequality conditions. Due to above considerations, the full
problem of the earthquake response of pounding adjacent structures strengthened
by cable-elements bracings has as governing conditions both, equalities as well as
inequalities. Thus the problem becomes a high nonlinear one. For the strict mathe-
matical treatment of the problem, the concept of variational and/or hemivariational
inequalities can be used and has been successfully applied [2]. As concerns the numer-
ical treatment, non-convex optimization algorithms are generally required [3]. The
present study deals with two numerical approaches for the earthquake analysis of ex-
isting adjacent reinforced concrete (RC) building frames, which can come in unilateral
contact and have to be strengthened by cable elements. The unilateral behaviours of
both, the cable-elements and the interfaces contact-constraints, are taken strictly into
account and result to inequality constitutive conditions. The finite element method is
used for space discretization in combination with a time discretization scheme. First,
the structural system of the two adjacent RC frames (A) and (B) is discretized in
space by using finite elements. The usual frame elements are used for the reinforced
concrete frames. As concerns the interfaces of unilateral contact, where pounding is
expected to take place, unilateral constrained elements are used. On the other hand,
for the cable strengthening system, pin-jointed bar elements are used. The behaviour
of both, the cable elements and unilateral contact elements, includes loosening, elasto-
plastic or/and elastoplastic-softening-fracturing and unloading - reloading effects. All
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these characteristics concerning both constitutive laws, on the one hand of the cable
elements and on the other hand of the unilateral contact elements, can be expressed
mathematically by non-convex relations of the the general form:

Here s; and d; are generalized stress and deformation quantities, respectively, d is
the generalized gradient and S; is the superpotential function, see Panagiotopoulos
[2]. In specializing details, for the cables, s; is the tensile force (in [kN]) and d; the
deformation (elongation) (in [m]), of the é-th cable element. Similarly, concerning
the unilateral contact simulation, s; is the compressive force p; (in [kN]) and d;the
deformation (shortening) (in [m]), of the i-th unilateral constraint element. By defini-
tion -see [2] - the relation (1) is equivalent to the following hemivariational inequality,
expressing the Virtual Work Principle:

S] (diye; — di) si (dy) - (e; — d) (2)

where SJ denotes the subderivative of S; and e;, d; are kinematically admissible
(virtual) deformations.

Next, incremental dynamic equilibrium for the two frames (A) and (B) of the struc-
tural system, considered as uncoupled and unstrengthened, i.e. without pounding and
without cables, is expressed by the usual matrix relations of Structural Dynamics:

Maiia + Ca(ta) + Ka(ua) =fa

Mgiig + Cp (i) + Kg(ug) = fs (3)

Here u and f are the displacement and the loading forces time dependent vectors,
respectively. The damping and stiffness terms, C(u1) and K(u), respectively, concern
the general non-linear case. Dots over symbols denote derivatives with respect to time.
For the case of ground seismic excitation xg, the loading history term f becomes

f = —Mrx, (4)

where r is the vector of stereostatic displacements. When both, cable-elements and
pounding are taken into account, equations (3) for the assembled system of the two
frames (A) and (B), considered as coupled and strengthened, become

Maiia +Ca(ta) +Ka(ua) =fa + Tasa +Bp
Mgug + CB(l'lB) + KB(HB) =fg + Tesp + Bp (5)

p=pn~ + Pr.
Here sa and sp are the cable elements stress vectors for frames (A) and (B), respec-
tively; p is the contact elements stress vector and T A, Tg , B are transformation

matrices. The pounding stress vector p is decomposed to the vectors pn, of the nor-
mal, and pr of the tangential interaction forces between frames (A) and (B). The
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system of the above relations (1)-(5), combined with the initial conditions, provide
the problem formulation, where, for given f and/or Xg, the vectors ua, ug, p and
sA , sB have to be computed.

The relevant computational approach is described in [3, 4]. A piecewise linearization
of the above constitutive relations as in elastoplasticity (see Figure 1) is used. By
applying a time-integration scheme, in each time-step At a relevant non-convex linear
complementarity problem of the following matrix form is eventually solved :

v>0, Av+a<0, v' (Av+a)=0. (6)

Here v is the vector of unknown unilateral quantities at the time AASmoment ¢, v7T
is the transpose of v, a is a known vector dependent on excitation and results from
previous time moments (t — At), and A is a transformation matrix. An alternative
approach for treating numerically the problem is the incremental one. Now, relations
(5), taking into account also second-order geometric effects (P-Delta effects), are
written in incremental form:

MaAiia + CaAUA + (Ka + Ga)AUp = —Ma Aiig + TpoAsa +BAp

. 7
MgAiig + CgAug + (Kg + Gg)AUp = —MgAii; + TgAsg + BAp M

Here Ga and Gp are the geometric stiffness matrices, by which P-Delta effects are
taken into account. On such incremental approaches is based the structural analy-
sis software Ruaumoko [5]. Ruaumoko software uses the finite element method and
permits an extensive parametric study on the inelastic response of structures. Con-
cerning the time-discretization, implicit or explicit approaches can be used. Here the
Newmark implicit scheme is chosen and Ruaumoko is used to provide results which
are related to the following critical parameters: local or global structural damage,
maximum displacements, interstorey drift ratios, development of plastic hinges. The
decision about a possible strengthening for an existing structural system of interact-
ing structures, damaged by a seismic event, can be taken after a relevant evaluation
of suitable damage indices. After Park/Ang [7], the global damage is obtained as a
weighted average of the local damage at the section ends of each structural element or
at each cable element. First the local damage index DIL is computed by the following
relation:

P p
DIy, T + Fydy Er (8)
where: pi,, is the maximum ductility attained during the load history, p, the ulti-
mate ductility capacity of the section or element, § a strength degrading parameter,
F, the yield force of the section or element, Er the dissipated hysteretic energy, and
d, the ultimate deformation. Next, the dissipated energy Er is chosen as the weight-
ing function and the global damage index DIg is computed by using the following

relation: S pILE
Dilg = ==~ 9)
Zi:l E;

where: DIy, is the local damage index after Park/Ang at location ¢, F; is the energy
dissipated at location ¢ and n is the number of locations at which the local damage
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is computed. The applicability of the proposed methods is verified in numerical
examples, where a system of two tall reinforced concrete frames (A) and (B) under
pounding is considered for cable-strengthening. The constitutive law of cable-elements
is shown in Figure 1. Other details, concerning the seismic response of cable-braced
RC systems subjected to multiple earthquakes, are described in [6].

S[kN
A
O (B A PI' B
: Q
— - : vC 12
U 0] Pd, R d du = 4 [m]

Figure 1: The constitutive law of cable-elements.
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Robust Balanced Semi-Coarsening Multilevel
Preconditioning for Bicubic FEM Discretizations

Maria Lymbery
Let
Ahuh = Fh (1)

be the linear system of algebraic equations derived from the application of finite
element method for the discretization of the elliptic boundary value problem

=V - (a(z)Vu(z)) = f(z) in Q, (2a)
u= 0 on I'p, (2b)
(a(x)Vu(z)) - m= 0 on Ty. (2c)

where conforming bicubic elements have been utilized.
The notations used in (1) and (2) are as follows:

e A; is the global stiffness matrix;
Fy, is the given right hand side;
h is the mesh parameter of the underlying partition 7 of £2;
Q C R? is a polygonal complex domain with a boundary I' = I'p UT'y;
f(x) is a given function in Lo (9);
a(z) = (a;(x)), i = 1,2 is a diagonal positive definite coefficient matrix that is
uniformly bounded in £;

e n is the outward unit vector normal to I'.
An initial mesh 7j has been set in € in such a way that the coefficients a;;, i = 1,2 are
constants over each element of 7y. A recursive balanced semi-coarsening refinement
procedure has been applied to it resulting in the sequence of nested meshes 7o C 73 C
... C Ty =Ty, where ¢ is an even number. The solution of (1) is sought over the finest
mesh 7, = 7;, which best approximates (2a)-(2c).
The Algebraic Multilevel Iteration (AMLI) preconditioner B = B() has the following
recursive definition, e.g [2, 3, 7],

B = 4O

k
A 0

k)"t 2k
af oA Ay
Ag1) plk=1)

0 1

Bk — jT JOT k=10 (3)

where
PUEDT = (1 py, (BT AGD) 4G

Here (3,1 denotes the degree of the stabilization Chebyshev polynomial pg, ,. When
it is cyclicly varied the resulting AMLI algorithm is called hybrid V-cycle, cf. [6].

Theorem 1. The AMLI method is of optimal order under the following conditions,
see [3, 6]:
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e the properly scaled approzimation Cﬂcﬂ) satisfies the estimate
E+1)71 (k41
st AlY) = o();

e solving systems with Cﬂﬁ—l)

requires O(Ng+1 — Ny) arithmetic operations;

1

— <<
T e Br < Pro

Here py, is the mesh refinement ratio of ko consecutive mesh refinement steps, Ny
is the number of degrees of freedom belonging to T, and v*°) is the constant in
the strengthened Cauchy-Bunyakowski-Schwarz(CBS) inequality that is related to the
nested finite element spaces Vi 1)k, and Vjg,.

Br =1 if (k mod ko) # 0, if (k mod ko) = 0.

Lemma 1. Consider the balanced semi-coarsening AMLI algorithm with parameter
p=2. The CBS constant v?) corresponding to bicubic conforming finite elements is
uniformly bounded with respect to the anisotropy ratio and it holds that

203 + 51/46
(v@)2 < ;788\/_ ~ 0.823, 0=2. (4)

Solving (1) with an AMLI algorithm results in a sequence of smaller subproblems

with the pivot block matrices Aﬁﬂ). In the general setting of anisotropic problems

/i(AﬁH)) is not uniformly bounded with respect to the related number of degrees of
freedom and special robust preconditioning techniques have to be developed for the
pivot blocks systems, e.g. [4].

When using balanced semi-coarsening mesh refinement, however, the degrees of free-
dom can be ordered in such way that the blocks AﬁH) to be block diagonal with
uniformly bounded semi-bandwidth, [5]. Therefore, any direct solver for banded ma-
trices has computational complexity of optimal order, i.e.

N(Agﬁ'i'l)ilv) _ O(N(kJrl) _ N(k))

The last result combined with the uniform estimates (4) and the optimality conditions
from Theorem 1 leads to the main result.

Theorem 2. The balanced semi-coarsening AMLI preconditioner (3) with even k and
p=3,3 <0 <8 has an optimal order of computational complexity and the estimate
is uniform with respect to mesh and coefficient anisotropy.
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Large amplitude vibrations of heated Timoshenko
beams with delamination

Emil Manoach and Jerzy Warminski

Abstract

In this work, the large amplitude vibration of a heated Timoshenko compos-
ite beam having delamination is studied. The model of delamination takes into
account contact interaction between sublaminates including normal forces, shear
forces and additional damping due to the sublaminate interaction. Numerical
calculations are performed in order to estimate the influence of the delamination,
the geometrically nonlinear terms and elevated temperature on the response of
the beam.

1 Introduction

Delamination is a major problem in multilayer composite structures. Due to this
reason the development of adequate models describing the phenomena arising in the
delaminated part of the structure is a very important topic in real engineering appli-
cations. Models which describe the dynamic behaviour of the delaminated structures
could be very useful in the development of the vibration based methods for delami-
nation detection. In most of the models for the dynamic behavior of the beam with
delamination the shear forces during the sublaminate interaction and the additional
damping arising due to sliding between sublaminates are neglected. A model of the
dynamic response of a composite Timoshenko beam which takes into account the
above mentioned phenomena was recently developed in [1]. Most of the models de-
scribing the dynamic behavior of beam with delamination use the Bernoulli-Euler or
the Timoshenko beam theories considering the small deflections only. As a rule, the
environmental conditions and especially the temperature influence are not taken into
account in these models. In the present work the model of a Timoshenko beam with
delamination developed in [1] and [2] is extended considering the large deflections of
the beams at elevated temperature environment.

2 Theoretical consideration and numerical modelling

The composite laminated beam was conditionally considered to consist of four sections
(Fig. 1). Section 1 and section 4 are without defects. The cross section between these
two parts contains a delamination. Sections 2 and 3 denote the parts of the beami£js
cross section divided by the delamination.

By h; (i = 2, 3) the thicknesses of the delaminated parts of the cross-section are
denoted and zg4 is the z-coordinate of the delamination. The governing equations for
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Figure 1: Geometry of the beam. z; and z2 denote the beginning and the end of
delaminated area.

the large amplitude thermoelastic vibration of the beam could be written as follow:

0%u,; ow; 0%w; oyr
Elbhlw = —Elbhl% 81‘2 + ElbalTW,
h/2 s (1)
XT :/ T (x,z,t)zdz, ~r = / T(z,z,t)dz
—h/2
—h/2
%; %Y; 0Y; Ow; oxr
szl 8t2 —EzIz 8.232 — C2; 8t _kGZF’L < 81‘ _d}l) +OélTbEl%
X 0
+ (~1)'KSy [%(hzué — haws) — (hatp2 — h:ﬂbs)] (2)
— (-1)'K5y (hz% - hs%)
%w; Pw; i dw;
pan gt =hGam (G5 - ) - gt
ou; 1 [0w;\? O*w; (3)
- Bibhi | B T 5( ax> ‘“mTl 27

+ (1) KNy (wz — ws) + (—1)' KN y(t —ws) — q(z,1)

Here u; and w; denote the longitudinal and transverse displacement of i-th beam
section, v; is the angle of rotation of the normal of the cross-section to the beam
mid-axes, F; and G; are the Youngifjs and shear modulus, a;7 is the coefficient of
thermal expansion, I; is the geometrical inertia moment of the i*" cross-section, 7" is
the temperature.

KN, K9, KN and KS are constants depending on the material parameters of the
sublaminates. They are different from zero only when the sublaminates are in contact.
The parameter v has been introduced to take into account the fact, that for section 1
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and 4 the terms containing KV, K%, KN and K*° disappear i.e. v =1 for i = 2 and
3 and v =0 for s = 1 and 4. The equations (1) are solved for the case of clamped -
clamped boundary conditions and corresponding continuity conditions which equalize
the displacements, angular rotations, bending moments and shear forces in sections 1
with these in section 2 and 3 and in section 4 with the ones in sections 2 and 3 (see

[1])-

3 Solution of the problem

A numerical approach and algorithm are proposed to solve the above formulated
problem. It is based on the assumptions that the longitudinal inertia effect can
be neglected, that the beam gets the elevated temperature instantly, and that the
temperature is uniformly distributed along the beam length and thickness. In order to
consider the longitudinal displacements in delaminated beam the model is considered
to consist of two parallel beams - I and II. Beam I consists of section 1,2 and 4 and
beam II consists of sections 1, 3 and 4. The Eq. (2) and Eq. (3) are discretized by
the finite difference method and the obtained system ordinary differential equations
in time is solved by an implicit method using the backward differentiation formulas
and an iteration procedure.

4 Numerical results and conclusions

Numerical results of the large amplitude vibration of intact and damaged beams were
provided and comparisons with the case of result obtained by the small deflection
beam theory (SDBT) were performed. The influence of the elevated temperature on
the response of the damaged beam was also studied. Selected results are presented
in Fig. 2 and 3. The elevated temperature can lead to complex nonlinear behavior of
delaminated beam as buckling and non-periodic motion (see Fig. 3).
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Data-Driven Signal Processing:
A Low-Rank Approximations Approach

Ivan Markovsky

State-of-the-art signal processing and control methods are model based and require a
model identification step prior to solving the actual data processing problem. Starting
with a review of classical system identification, this talk presents a model-free data
processing approach, in which model parameters need not be explicitly estimated.
The underlying computational tool in the new setting is low-rank approximation of a
structured matrix constructed from the data. Preserving the structure in the approx-
imation leads to statistically optimal estimators and fast computational methods.

1 Structured low-rank approximation

Structured low-rank approximation is the problem of approximating a given matrix D
by another matrix D, which is as close as possible to D, has the same structure as D,
and reduced rank. An example where a rank deficient structured matrix arises is

when a sequence p = (p1,...,pn,) satisfies a difference equation with lag ¢ < [n,/2]
Ropt+R1pt+1+"'+Rgpt+g :0, for t = 1,...,np—€. (DE)
The system (DE) is linear in the vector of parameters R := [RO Ry - Rg],

so that it can be written as RH¢i1n,-¢(p) = 0, where Hey1,5,¢(p) is a Hankel
matriz constructed from p. Therefore, for R # 0, the fact that p satisfies a difference
equation (DE) is equivalent to rank deficiency of Hyy1,n,—¢(p). With noisy data p,
the matrix Hyy1,n,—¢(p) is generically full rank and the model identification problem
becomes a Hankel strutured low-rank approximation problem.

Formally the strutured low-rank approximation problem is defined as follows [4, 5].
Given: structure specification S, vector of structure parameters p € R"», and desired
rank r, find a structure parameter vector p, such that the corresponding matrix S(p)
has rank at most r, and is as close as possible to p in the sense of a semi-norm || - ||

minimize over p € R™ |p—p||

: . (SLRA)
subject to rank(S(p)) < -

2 Solution methods

In general, the structured low-rank approximation problem (SLRA) is NP-hard.

There are three fundamentally different solution approaches: heuristics based on con-
vex relaxations [1] and subspace methods [7], local optimization methods, and global
optimization methods [6]. The approach used in the subspace type methods is to relax
the structure constraint and solve the resulting unstructured low-rank approximation
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problem via the singular value decomposition. The subspace methods are found to
be very effective in model reduction, system identification, and signal processing.
The methods based on local optimization split into two main categories: alternating
projections [3] and wvariable projections [2] type algorithms. Both alternating projec-
tions and variable projections exploit the bilinear structure of the low-rank approxi-
mation problems. In the statistical literature, the alternating projections algorithm
is given the interpretation of expectation mazximization.
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Fuzzy Logic Nonlinear Control of an Inverted
Pendulum on a Chart

Aydin Ozbey, Erol Uzal, Askin Mutlu, Hiiseyin Yildiz

Abstract

Stabilization at the top vertical position of an inverted pendulum on a cart by
applying a force to the cart is considered. This is an underactuated mechanical
system for which the main nonlinear control scheme, feedback linearization,
fails. A single control law producing the force on the cart using cart velocity,
and position and velocity of the pendulum is developed and shown to stabilize
the pendulum at the top position while bringing the cart to its origin. In order
to avoid the singularity problems faced in feedback linearization process, fuzzy
logic has used.

1 Introduction

Inverted pendulums are widely studied mechanical systems since their dynamics is
simple enough to allow detailed studies, and also complicated enough to serve as test
problems for various control strategies. In this study, we propose a single control law
(meaning that it does not consist of pieces valid at different pendulum angles) and
verify by numerical experiments.

2 Governing Equations and fuzzy logic nonlinear Con-
trol Strategy
A schematic of the system is shown in Fig. 1 The masses of the cart and the pendulum

are M and m, respectively. The aim is to hold the pendulum angle at zero while driving
the cart to its origin x = 0. When the non-dimensional variables chosen as follows

Tt =7 t*z\/?t u*:mig
The governing equations are
(14 k)Z +60cosh — 6?sinf = u
icosf+60—sind =0
where

k=—
m

Solving for second derivatives in results in

6= 11(6,0) + f2(0)u
&= f3(0,0) + f12(0)u
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Figure 1: Inverted Pendulum on a Chart

The control law proposed is

1

= F(—Kla — Kyf — f1) + Ksz + Kyi
2

u

= Cogl
Cos'®

1 1 | 1 1 1
0 a0 100 150 200 250 300 350 400

8 (degree)

Figure 2: comparison of the real cosine and the values produced by fuzzy logic
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Figure 4: Simulation Results
where

362 sinf cos§ — 3(1 + k) sinf
3cos? 0 —4(1+ k)

_ 3cosf

© 3cos26 —4(1+ k)

fl(e’é) =

fa(0)
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3sin 6 cosf — 462 sin 0

12(0,0) = 3cos?f —4(1 + k)
—4
J40) = 3cos20 —4(1+ k)
£(0) = 3cos* 0

3(cos* 0)2 —4(1+ k)

The K coefficients in the control law are calculated by using the actual cosine values.
But the cos* 8 values used in the control law are calculated by fuzzy logic and then
substituted for cosf . The cosine values calculated by fuzzy logic have close values to
the real cosine values, but never become zero. By doing that, the singularity problem
due to the cosine becoming zero is avoided. A comparison of the real cosine and the
values produced by fuzzy logic is shown in Fig. 2.

3 Results and Discussion
As seen from the phase plane graphs of the variables Fig. 3, the system is stable.

Simulation results show Fig. 4 that the proposed control law can stabilize the system
in a reasonable time.
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Control of a Robot Arm Using Magnetic Forces
Aydin Ozbey, Erol Uzal, Hiiseyin Yildiz, Askin Mutlu

Abstract

In this study, a single d.o.f. robot arm made of permanent magnet (Figure 1)
is intended to follow the known reference angle 6 (t). The magnetic properties
of the arm are modeled by a magnetic dipole. Mathematical model of the
system has been developed and a PID controller is applied to the system that
uses feedback linearization. The success of the control law has been examined
against disturbance effects by means of simulation programs and the results were
interpreted.

1 Introduction

One of the difficulties of controlling micro-electromechanical systems (MEMS) is the
dimensional limitations. In the motor driven circular motion systems, the size of
the electric motor is important. In this study, an alternative approach for driving the
robot arm by using its magnetic properties instead of an electric motor is presented. In
place of an electric motor, use of a magnetic field generated by passing an alternating
current through the wires placed at specific distances from the robot arm is proposed.
In this way, manufacture of a micro scale electric motor can be avoided and also the
system is simplified.

A H

b, b,

Figure 1: Single DOF robot arm

As seen in Figure 1, the robot arm with length 2L and mass M has a magnetic
dipole strength of m, and can be freely rotated around the origin. The wires placed
perpendicular to xy plane at the points (—a1, b1) and (az, b2) carry electric currents I
and I,. It is proposed that the robot arm moves on the desired trajectory by changing
the currents. To simplify the analysis, magnetic properties of the arm is modeled by
a magnetic dipole, placed in the middle. Direction of the dipole is in the direction of
the arm.
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2 Mathematical Model of the System

Moment of inertia of the magnetic rod is

1
I=-ML?
2

Equation of the motion of the system is

. 3 3
0 =—gsinf+ ——
a0t @
where Q is the resultant of the external forces (weight and the force due to the
currents) on the centre of gravity.

3 Defining the Control Law

PID control in which the coefficients are calculated by applying pole placement to
the feedback linearized system has been used. Then the control law can be defined as
follows

Q= || < |I2]; I (C1cosf — Casinb)
L] = s I (C3cos6 — Cysin6)

After applying feedback linearization to the system, the mathematical model of the
system can be written as
when |I1| < |I2|

. d
0 =kie(t) + ka—e(t) + ks

T e(¢)d¢

o—_ .

when |I1| Z |I2|

0 = kqe(t) + l%%e(t) + kg/@(()d{
0

4 Robustness of the Controller

In order to see the success of feedback linearization, robustness of the controller to
external disturbances is examined. Thus, without making any change in the control
law of the idealized system, a constant external torque of 10~7 Nm was applied and
dipole moment of the magnet is assumed to be given inaccurately by 5%.
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Figure 2: Angular position-time graph

5 Simulations and Results
The simulation results show that, under various disturbing effects (constant external

torque and unknown dipole moment), the proposed methodology and the control law
is successful.
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Libraries for treatment of electrostatic interactions
for Intel Xeon Phi

Peicho Petkov, Elena Lilkova, Damyan Grancharov, Stoyan
Markov, Nevena Ilieva, Leandar Litov

Computer applications for determining and analysing molecular properties are in
abundance nowadays but with most of them the scope of current improvements is more
and more focused on efficiency. It is a common practice not only to try to improve
the algorithms, but to write architecture dependent implementations that take full
advantage of the intrinsic characteristics of a particular machine or technologie. With
the emerging diversity of new technologies many already existing codes need to be
revised or rewritten in order to be suitable for the promising new architectures and
machines.

Here, we present implementations of two libraries, optimized for Intel Xeon Phi co-
processor native execution based on previously developed codes [1, 2]. One of them
implements the AGBNP2 (Analytical Generalized Born plus Nonpolar model 2) im-
plicit solvent model [3] and the other — a grid-based Poisson solver.

Molecular Dynamics (MD) simulations are mostly performed in the presence of water,
since it is the most common solvent for most biological reactions and determines the
structure and dynamics of proteins. There are two options to take into account the
interactions of the investigated biological system with the solvent: by treating the
latter either explicitly or implicitly, each approach having its strong sides. In the
implicit treatment, the solvent is considered as a continuum with the dielectric and
“hydrophobic” properties of water, thus avoiding the disadvantage of having a big
number of local “noise” minima that arise from the small vibrations of the solvent
molecules [4].

The AGBNP2 is based on a parameter-free conformational-dependent algorithm that
is used to calculate hydration free energies and contributions to the forces acting on
each atom in the system. It estimates the pairwise descreening scaling coefficients
in the evaluation of the Born radii and adds a nonpolar part, consisting of a cavity
formation term, proportional to surface area and an attractive dispersion energy term,
describing Van der Waals interactions.

The second aforementioned library solves Poisson’s equation on a grid, giving the
electrostatic potential, created by a set of charges. The solution is obtained itera-
tively, with a stabilized biconjugated gradient method with a 27-stencil approximation
scheme being used [5].

Both libraries are written in the C programming language with OpenMP paralleliza-
tion utilizing the rather big amount of processing units with shared memory on the
Intel Xeon Phi. Special efforts were devoted to vectorization of the codes, since
vector instrunctions are hardwarely embedded in the Xeon Phi. In addition, data
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was aligned to 64B, according to Intel MIC programming guidelines [6] and the fast
memset/memcpy library from Intel was used.

Despite all optimizations efforts on computational site, the implicit solvent library
didn’t bring in the expected speed-up. As it turned out, it is not calculations them-
selves but data access that determines to the largest extent the execution time. Thus,
in the case of the Poissson-solver library, an improved scalability was gained only after
introducing a special variable with the only function of supplying a parallel vectorized
loop with better structured data. Still both libraries remain behind the performance
of the standard CPU execution.
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Electronic Transport in Generalized Fibonacci
Lattices: A Real-Space Renormalization Approach to
the Kubo-Greenwood Formula

Vicenta Sanchez, Fernando Sanchez, Chumin Wang

1 Introduction

The electronic transport in macroscopic aperiodic lattices is an interesting but not
widely addressed subject, since the transport of quantum particles and large aperiodic
systems both per se are not easy topics. Nowadays, the study of electronic states in
artificial structures is of great importance in the condensed matter physics, because
they introduce many new physical properties essential for industrial applications of
atomic-scale devices. These structures can be multilayers, quantum wires, rings,
or dots, etc. In particular, quasiperiodic and aperiodic systems become a subject
of remarkable interest since the discovery of quasicrystals [1] and the fabrication of
high-quality superlattices. Much attention has been devoted to the Fibonacci lattice,
because it provides a prototype structure for studying quasiperiodic systems and
possesses critically localized electronic states. The corresponding energy spectrum
is neither absolutely continuous nor pure point, but singular continuous [2]. Hence,
the transport properties of these critically localized states are a fascinating and still
unclear theme. There is a generalization of the Fibonacci sequence and in this work we
present an analysis of the electronic transport in macroscopic generalized Fibonacci
systems by using the Kubo-Greenwood formalism and the real-space renormalization
method [3].

2 Formalism

Let us consider the bond problem on a generalized Fibonacci chain (GFC), which can
be constructed by using a unique type of atom and alternating two sorts of bonds, A
and B, following the substitution rules A—A™B" and B—A, being m and n positive
integer numbers. For example, the generation £k = 5 of GFC with m =1 and n =1
has the sequence of Fy 1(5) = ABAABABA. The electrical conductivity within the
linear response theory can be analyzed by means of the Kubo-Greenwood formula [4]

o(p,w,T) Tr[p ImGT (E + hw)p. ImGT (E)] (1)

2
2e“h / dE —f (E + hw)
7Qm?

where 2 is the system volume, p, = (im/h)[H, z] is the projection of the momentum
operator along the applied electrical field with frequency w, G is the one-particle re-
tarded Green’s function, and f(E) = [exp( £)+1]! is the Fermi-Dirac distribution
with the Fermi energy p and temperature T In order to isolate the quasicrystalline
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effects on the conductivity, we consider a simple s-band tight-binding Hamiltonian
given by H =3 t; 41 |j) (j+ 1] +t;,-1j) (4 — 1|, where ¢; ; = ta or {5 being the
hopping integral between nearest-neighbor atoms ¢ and j. For an periodic linear chain
with null self-energies and hopping integral ¢, the dc conductivity at zero temperature
is given by [3] op = e772—,‘;(N — 1), where N is the number of atoms.

On the other hand, the Landauer formalism [5] expresses conductance (g) in terms
of scattering properties. The impurities present in conductors leads to scattering
of incident electrons resulting in a fraction of transmitted incident electrons. This
transmitted fraction is called transmission coefficient 7'(E) and it is related to g by

o(B) = 2 M (B) (2)

where M is the number of transverse channels and T'(E) can be obtained as follows.
H ) = E[Y) = tiit1¢i41 + tiji—1cio1 = Ee; (3)
. E _tia . .

N Ci+1 Y Tt (&) _ E Ci (4)

¢ 1 0 Ci—1 Ci—1
= <CN+1) = TWTN_1... T} <01> _ <7'11 7’12) (Cl> (5)

CN Co T21 T22 Co
41— (E/1)?

= T(E) = [T21 — T12 + (122 — T11) E/(21)]2 + (722 + m11)%[1 — E?/(4t?)] (©6)

3 Results

In Figure 1, the dc electrical conductivity at zero temperature o(u,0,0) obtained from
Equation (1) is shown for GFC with ¢4 = 7tp and (a) m =n =1 and k = 42, (b)
m=2,n=1and k=22 (c)m=1,n=2and k =28, and (d) m =n = 2 and
k = 20, where 7 = (v/5 — 1)/2. The imaginary part of the energy is 10~'3|¢|. Notice
that the GFC with n = 1 possess selfsimilar spectra, but the other two with n = 2
have a wide high-conductivity band around £ = 0.

Magnifications of Figures 1 are presented in Figure 2. Observe that at £ = 0 the
conductivity o = op for the cases (a), (b) and (d). In order to ensure the existence of
transparent states, an analytical analysis is developed within the Landauer formalism.
Evaluating Equation (6) at £ = 0 we have

4
TE=0= [T21 — T12)% + [T22 + T11]? @

For the case of m =1 and n = 1, the resulting matrix elements are

7y = =1 (i + HPE)OR)ATOD 1 f )y O) — (= 1)ok) (1 - (%1)79(“”_“7 (8)
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Figure 1: (Color online) DC conductivity spectra o(u,0,0) of GFC with t4 = 7t and (a)
433494438, (b) 131836324, (c) 178956972 and (d) 268377089 atoms.

where v = ta/tp, f(r) =
g=(k—2)mod4€l0,3],r

T(0) = A[f(r)(y +771)% + (1= (=1)7)(y 00 7 (H00D)2 o) (9)

[+ (DT1/2, p(r) = [(=1)" = 1]/2, s = 1 —2[q/2],
= (k—2) mod 3 € [0,2] and (i) = —(—1)". Hence,

determines the existence of a transparent state for k = 6,12, 18, ... regardless the value
of v. For the case of m =2 and n =1,

(p(k)(=1)") ifi =34 4
Tij = 7 AR T(0) = o) T a=p (T2 (10)
0, if i # j [yPt) 4 =2 0]

which leads to a transparent state at £ = 0 for k = 2,4, 6, .... Finally, for the case of
m=2and n =2,

IV
:{é s, (1)

i.e., there is always a transparent state at £ = 0.
4 Conclusions

We have presented a detailed study of the dc conductivity spectra of macroscopic GFC
with bond disorder by using a previously developed renormalization method for the
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Figure 2: (Color online) Magnifications of Figure 1 around E = 0.

Kubo-Greenwood formula. The results show qualitatively different spectra between
n =1 and n = 2. In particular, magnifications of these spectra suggest the possible
existence of transparent states at £ = 0. Hence, we further investigate analytically
such existence by means of the Landauer formalism. The results ensure that we have
transparent states at £ = 0 every 6 generations for the Fibonacci chains, every 2
generations in GFC with m = 2 and n = 1, always in GFC with m = 2 and n = 2,
and never for GFC with m = 1 and n = 2. This study of transparent states could be
useful for the design of new electronic heterostructural filters.

Acknowledgements

This work has been partially supported by UNAM-IN113813, UNAM-IN113714 and
CONACyT-131596. Computations were performed at Miztli of DGTIC, UNAM.

References

[1] D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).
[2] A. Suto, J. Stat. Phys. 56, 525 (1989).
[3] V. Sanchez, and C. Wang, Phys. Rev. B 70 144207 (2004).

[4] E.N. Economou, Green's functions in quantum physics, 3rd ed. (Springer, Berlin, 2006)
pp 184.

[5] Y. Imry and R. Landauer, Rev. Mod. Phys. 71, S306 (1999).

98



Acceleration of iterative algorithm for calculation of
unsteady, viscous, compressible and heat-conductive
gas flows on GPU

Kiril S. Shterev

1 Introduction

The Navier-Stokes-Fourier (NSF) continuum model is widely used in many areas of
present day science and industry to study different microfluidic phenomena and de-
velop and improve various microfluidic devices. Some applications of these equations
are related to aerodynamics of jets, jet engines, micro-nozzles of jet printers, micro-
nozzles of nano- and micro-satellites and many others.

In this paper, extrapolation technique is introduced in the SIMPLE-TS finite volume
iterative algorithm for calculation of compressible Navier-Stokes-Fourier equations
subject of slip and jump boundary conditions. While in the last few decades sig-
nificant effort has been put in developing effective preconditioning techniques that
minimize the condition number of the matrix A and maximize its sparsity (see [1]),
very little work has been published on attempts to obtain a good initial state to
initialize the iterative solver. The common practice is to use for the initial guess of
iterative solver the solution from previous time step ¢". An approximate solution
for ¢" ! can be obtained using various techniques. Depending on the method and
smoothness of ¢(t), ¢°? can be significantly closer to ¢" "' than ¢", which leading
to significantly reduction of the number of iterations.

The case of linear systems with a symmetric positive definite matrix and a series of
right hand sides is considered in [2], [3]. Markovinovi¢ and Jansen [6] employed Proper
Orthogonal Decomposition (POD) to accelerate convergence of iterative solvers, and
tested it in simulations of two-phase flow through heterogeneous porous media. They
reported 67% reduction in the computing time. Tromeur-Dervout and Vassilevski
[9] suggested the method of fully implicit time stepping, the algorithm INB-POD, a
choice of initial guess for series of linear systems with different unsymmetric matrices
and right hand sides, based on a model reduction. The idea is that solution of a
reduced model provides much better initial guess than that from the previous time
step. A ~ (2-6)-fold acceleration of a incompressible solver on a test case 2D cavity
flow and ~ 1.5-fold actual speedup of a compressible solver on a test case 3D flow past
a circular cylinder are reported. Grinberg and Karniadakis [4] presented POD-based
extrapolation and initial guess approximation by polynomial extrapolation of values
from previous time steps for each node. The test cases are incompressible turbulent
flow in a stenosed carotid artery, and incompressible flow in the intracranial arterial
tree. The reported acceleration, for both approaches, is (2.6-2.7)-fold. However, the
polynomial extrapolation of initial guess is not related to calculated equations and is
independent of neighbour nodes. This, in turn, do not requires any additional work
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for model reduction and parallel implementation.

In this paper, the polynomial extrapolation of initial guess is applied to GPU imple-
mentation of algorithm SIMPLE-TS [5]. The acceleration is investigated on microflu-
idic problems calculated on GPU.

2 Extrapolation approach
The primary dependent variables (u, v, p and T) are extrapolated at each node in

computational domain using values of previous time step of the same node (see Fig.
1).

o(xi.yit) 1

n
ij oij ‘ap
-2 Dij
oij
Extrapolation
polynomial
T T T |
tn-2 tn-1 tn tn+7 time

At At At

Figure 1: Extrapolation of primary dependent variable.

3 Results and Considerations

The discretization of the compressible Navier-Stokes-Fourier equations is accom-
plished by using a backward staggered velocity grid, in which all dependent field vari-
ables (pressure, temperature and density) are calculated at a cell centre and all flow
variables (velocity components) are calculated at the surfaces of a cell. For interpo-
lation between two neighbour points a piecewise-linear profile is used to approximate
the derivations of second order [7]. A first order upwind scheme is used for interpola-
tion of convective terms. More details about algorithm SIMPLE-TS can be found in
paper [8].

In this paper are presented results consider acceleration of GPU algorithm SIMPLE-
TS [5]. The results are obtained on the fine mesh (14100x300) and first order upwind
scheme for approximation of convective terms and density in middle points, so that
they can be used to validate the algorithm SIMPLE-TS, when the convection terms
and density in middle points are approximated by the second order schemes. As a
example, we consider a 2D steady-state laminar flow around a small square particle
confined in a plane microchannel as shown in Fig. 2. The Knudsen number is Kn =
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0.0103, the Mach number is M = 0.4. The time step is At = 0.001. The initial
guess is extrapolated using Lagrange polynomial of first order (linear extrapolation).
Acceleration of 2.4-fold is obtained, when a Karman vortex street appears, Fig. 2.
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Figure 2: Fields of horizontal component of velocity (upper part) and temperature
(lower part), Kn = 0.0103, M = 0.4 and corresponding Re ~ 63, obtained extrapolate
initial guess using Lagrange polynomial of order 1.
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4 Conclusion

The extrapolation of initial guess using Lagrange polynomials is simple, fast and easy
for implementation in serial and parallel codes. GPU implementation of algorithm
SIMPLE-TS is accelerated 2.4-fold in the case under consideration flow pas a square
in a microchannel.
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The influence of geometrical nonlinearity on the
dynamics of elastic structures

Stanislav Stoykov

1 Introduction

The dynamical behavior of nonlinear mechanical systems is becoming increasingly
popular among researchers, in the recent decades. The interest of the scientists is due
to the fact that linearity is just a first order approximation to reality, but also due to
the fact that the nonlinear terms at the equation of motion, can change the behavior
of the system significantly. The nonlinearity can introduce into the system multiple
solutions, jumps, sub-harmonic, super-harmonic, combination or internal resonances,
symmetry-breaking and period multiplying bifurcations, chaotic or quasi periodic mo-
tions. These phenomena do not occur in linear systems. The aim of the current paper
is to summarize the most popular numerical techniques used in the nonlinear dynam-
ical analysis of elastic structures.

Fundamental properties of linear vibrating systems are the linear modes of vibration
and the linear natural frequencies. They determine the dynamical behavior of the
linear systems. They also have useful mathematical properties: they can be used to
decouple the equations of motion; they can be used for reduction of the degrees of
freedom of the system; free and forced vibrations can be expressed as linear combi-
nation of the linear normal modes. Nevertheless, linearity is a rude approximation
to the reality and nonlinearity occurs frequently in real life engineering problems.
Typical nonlinearities of mechanical systems include: material type of nonlinear-
ity, which occurs when the stresses are nonlinear functions of strains; geometrical
nonlinearity, which is associated with large displacements of solids and results into
nonlinear strain-displacement relations; nonlinearity due to inertia forces, Coriolis or
centripetal accelerations can introduce in the system nonlinearity; nonlinearity due to
body forces, mainly due to magnetic and electric forces; nonlinearity due to friction,
it occurs because the friction force is a nonlinear function of the displacement and
the velocity like Coulomb friction or hysteretic damping.

Since nonlinear models are essential for better and more accurate modeling of the me-
chanical systems, there is need of tools for analyzing the resulting systems of nonlinear
differential equations. For continuous systems, the equation of motion is nonlinear
partial differential equation. After application of space discretization method, such
as finite element method, a nonlinear system of second order ordinary differential
equations is obtained. Probably the most common and comprehensive technique for
analyzing systems of nonlinear ordinary differential equations is based on the con-
cept of nonlinear normal modes (NNM) and nonlinear frequency response functions
(NFRF). There are two main definitions of NNM in the literature. Rosenberg [1]
defined a nonlinear normal mode of conservative system as a vibration in unison, i.e.
the system performs synchronous oscillation in which all material points vibrate with
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the same period and achieve simultaneously their extreme values and static equilib-
rium positions. Shaw and Pierre [2] defined a nonlinear normal mode as a motion
which takes place on a two-dimensional invariant manifold in the phase space. Ker-
schen et al. [3], extended the RosenbergaAZs definition for NNM, to a non-necessarily
synchronous but periodic motion. This definition is appropriate in the presence of
internal resonances and it is used in the current work. The NFRFs are closely re-
lated to NNMs. Forced oscillations occur in the neighborhood of the free oscillations,
the shape of vibration of the forced response is analogous to that of the neighboring
free response, appearance of bifurcation point in free vibration, indicates that similar
bifurcation can appear in forced vibration. Finally, the NNMs and the NFRFs have
conceptual relation to the linear normal modes and to the linear frequency response
functions. Lyapunov showed that, for n degree of freedom (DOF) conservative sys-
tem, there are at least n different families of periodic solutions. These n families of
periodic solutions, which define n NNMs, can be considered as the nonlinear exten-
sions of the n linear normal modes of the linear conservative system. However, in the
presence of internal resonance, the nonlinear system can possess more than n NNMs,
while the linear systems cannot. The concepts of NNM and NFRF can be considered
as the natural continuation of the linear normal modes and the linear frequency re-
sponse functions.

In the next section, the most common methods, used for computation of the NNM
and NFRF, are presented, without attempting to provide a complete list of these
methods. In the third section of the paper are given typical examples of NNM and
NFRF of elastic structures, considering geometrical type of nonlinearity.

2 Computation of NNM and NFRF

The elastic structures, such as beams, plates, shells or three-dimensional structures,
are continuous systems and they are represented by partial differential equations.
There are several methods for treating the PDEs, such as variational, weighted-
residual or analytical. One of the most common methods is the finite element method
(FEM), which was initially based on variational principles. After application of the
FEM for space discretization of elastic structure, considering geometrical type of non-
linearity, the equation of motion is obtained in the following form:

Mq(t) + Cq(t) + K(a(t))a(t) = F(t) (1)

with initial conditions q(0) = qo and q(0) = qo, where M is the mass matrix, K(q(t))
is the stiffness matrix, which depends on the vector of generalized coordinates q(t),
C is the damping matrix, which is usually mass and/or stiffness proportional, and
F(t) is the generalized vector of external forces.

The computational techniques of the NNM and the NFRF can be divided into an-
alytical and numerical. The analytical methods are applicable to a limited number
of cases and they are appropriate to small systems. The most common ones are the
multiple scales method, the invariant manifold approach and the method of normal
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forms. The numerical methods, used to compute the NNM and the NFRF, are em-
ployed in two steps: (i) computation of the periodic response, and (ii) continuation
of the periodic solution.

The initial value problem (1) is converted into a two point boundary value problem by
employing the periodicity condition q(7') = qo and q(T") = qo, where T is the period
of vibration. Some of the common methods used to solve the boundary value problem
are the finite difference method or the shooting method. The shooting method finds
iteratively the initial conditions qg and qg which perform a periodic motion. The
collocation method and the PoincarAl map method can also be used to construct
the periodic solutions. Another popular approach, is to express the solution by finite
Fourier series, this method is known as harmonic balance method and it is considered
to be semi-analytical. Finally, the brute force approach is also listed here. It inte-
grates the system of ODE for a long time interval. Eventually, the systems converges
to an attractor.

Once a periodic solution is obtained, a scheme which computes the continuum of the
periodic response is required. Usually, the additional parameter used in the struc-
tural vibration problems, is the frequency of vibration. There are three commonly
used continuation schemes. The sequential continuation method uses the frequency of
vibration for continuation parameter. This method is not able to pass turning points
(also known as folds or saddle nodes), but it is simple for implementation. The arc-
length continuation and the pseudo arc-length continuation methods are able to pass
turning points. The former method uses the arc-length as a continuation parameter
and the additional constraint is the length of the arc. The last method imposes as a
constraint an orthogonality condition, i.e. the solution is forced to be orthogonal to
the predictor step.

3 Numerical examples

An aluminum beam (E = 70 GPa, v = 0.3, p = 2778 kg m~3) with dimensions 0.02 m
x 0.002 m x 0.58 m, and with clamped-clamped boundary conditions is considered for
the numerical example. A harmonic point force, F(¢) = A cos(wt), is applied on the
middle of the beam. The equation of motion is derived by the principle of virtual work
and it is discretized by the p-FEM. The vector of generalized coordinates is expressed
in Fourier series by assuming harmonics up to third order and the harmonic balance
method is applied. The resulting nonlinear algebraic system is solved by the arc-
length continuation method [4]. The NFRFs, for different amplitudes of the external
force, and the NNM, that starts from the fundamental linear frequency, are presented
in Figure 1. It can be seen that the beam has hardening nonlinear effect, which is
due to the geometrical nonlinear terms. The results show that the force vibrations,
occur in the neighborhood of the free oscillations. The example also demonstrates
that the amplitude of vibration depends not only on the amplitude of the external
force, but also on the frequency of vibration, in contrast to the linear models, where
the frequency of vibration does not depend on the amplitude.

Further examples will demonstrate the effect of the geometrical nonlinear terms on
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Figure 1: - - - - NNM and —— NFRFs of elastic beam for different force amplitudes.

F(t) = A cos(wt), A = 0.005, 0.01, 0.02 and 0.03 N. W; and W3 - amplitudes of first
and third harmonics, h - thickness, w - excitation frequency, w; - first linear frequency.

the stability of the solution. Bifurcation points and the resulting secondary branches
with the shapes of vibration will be shown for plate and shell structures.
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A Multiscale Multigrid Algorithm Applied to Bone
Tissue Modeling

Rosangela Sviercoski and Svetozar Margenov

There are two types of osseous tissue that form bones, the cortical and the trabecular
bone. The trabecular tissue is an example of deformable medium that has complex
hierarchical morphology in the sense that essential features are needed to consider
from nanometer to millimeter scales. These features modeled at various scales deter-
mine how well the bone tissue meets conflicting mechanical and mass-transport needs.
However, the modeling to predict the flow and mechanical behavior in such systems
with hierarchical structures and multiple, often poorly separated length-scales, is very
computationally demanding, thus making everyday mechanical and flow simulations
of bone tissue impractical.

The goal of this study is to propose an efficient numerical tool that reduces signif-
icantly the computational resources applicable to this class of problems, which will
enable such predictive simulations as an integral part of osteoporosis treatment. To
achieve that, highly heterogeneous media are considered that share similarities with
trabecular bone tissue’s characteristics. The contribution of the fluid phase is in-
terpreted in terms of almost incompressible material. The related linear elasticity
problem has coefficients with high contrast and high frequency. The multiple scale
system is set up using the displacement decomposition (DD) method, and solved by
using a preconditioner given by an upscaled block diagonal form.

The new feature is that a multilevel technique is applied that incorporates an analyt-
ical effective tensor of the respective heterogeneous bulk modulus into the upscaled
block diagonal, together with the averaging of the spatially variable Poisson ratio at
values approaching the incompressibility limit » — 0.5. This averaging relates to the
approximation of the effective tensor presented in previous work of the author [2].
The efficiency and reliability of the solver will be demonstrated numerically near the
incompressibility limit, when compared with other well known upscaled forms, such
as the arithmetic and harmonic averages.

Without loss of generality, the problem at the fine-scale is posed in Q C R2, as a
bounded domain, with boundary I" = 9Q and u = (uq, us), is the displacement in .
The pure displacement deformation of a body under the influence of applied forces,
f, (and considering only first order terms in the displacement) is described by:

—V-o(x)=f z€Q
{ u(w) =0 €00 (1)

where o(x) is the stress tensor, and the notation (z) here and elsewhere, is to identify
the variable’s spatial variablity, which is the main interest here. The stress tensor has
components, o;;(z), given by Hooke’s law:

0ij(x) = 53 1= Cijri () (u),  1<14,5,<2. (2)
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The components of the strain-displacement tensor are given by:
1 8u7‘ (9U,j ..
si(u) = = ' . 1<i,j,<2, 3

and cj;pi(x) are the spatially dependent properties describing the behavior of the
material. These properties are related to Lamé’s coefficients (A(z), pu(x)) :

_ 3K(z)v(z) DA (2 2) = 3K (z)(1 —2v(x))
Az) = Tt = K(z)A(z), plz)= 20+ ()

= K(z)s(z)  (4)

where it has been used the relationship for the Young’s module E(z) = 3K (z)(1 —
2v(z)), as a function of spatially dependent, bulk modulus K (z), and of the Poisson

ratio v(z) € [0,%). The case when the spatially variable v(z) = 3 —6 (6 > 0 is a
small parameter) leads to the notion of almost incompressible material. We observe
that (1) becomes ill-posed at the incompressibility limit, when v(z) — 3.

For f = (f1,f2)7 € (L2(9))?, the weak formulation of (1) reads as finding u €
(H(2))? = {u e (H(Q))?|usqn = 0} such that for all v € (H}(Q))?:

Alu,v) = /Q Miv(w)div(v) + 2152 _ye55(w)es; (v) = /Q £ vdz. (5)

The bilinear form A(u,v) can be written as:

A(u,v) = /Q < C(z)d(u),d(v) > dx (6)
Where,
(A(x) +2k(z)) O 0 A(x)
C=K@| 5 T g
A(z) 0 0 (Ax)+ 2k(x))
and d(u) = %, g'—z;, g—;f, g—“;z] In the 2-D case, K(x) is a 4 x 4 isotropic diagonal

tensor. Note also that the formulation of the compliance matrix C(z) is used in
a general setting, unlike the work in [3] where a modified C(z) was used for the
particular case of pure displacement.

In the literature, there are estimates relating the number of V-cycle iterations for
resolving the DD system, Npp, with the number of V-cycle iterations for the scalar
elliptic equation, Ng. For instance, the inequality Npp < C(1 — 2v)~ /2Ny holds
true. This result follows from the second Korn’s inequality, which concerns the case
of isotropic homogeneous media (see, e.g., [1]). However, our results will illustrate
that when the coefficients are heterogeneous, the estimate seemed not to be uniform
with respect to the coefficient jumps, particularly for contrast higher than one or-
der of magnitude. The numerical results will also demonstrate the reliability of the
procedure across geometries and contrast ratios at the incompressibility limit.
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Estimation of WRF-CMAQ Modeling System
Performance Using
AQMEII Infrastructure

D. Syrakov, M. Prodanova, E. Georgieva, K. Slavov

1 Introduction

The Air Quality Model Evaluation International Initiative (AQMEII) aims to build a
common strategy on model development and establish methodologies for model eval-
uation as to increase knowledge on processes and to support the use of models for
policy development [6]. Long-term air quality simulations for North America and Eu-
rope performed by different models used worldwide and the evaluation of results, both
individually and as an ensemble, are the basis to achieve these objectives. The EN-
SEMBLE system, a web-based platform for model inter-comparison and multi-model
ensemble analysis, developed by the Joint Research Centre (JRC) [3, 4], has been
used to archive and analyze both qualitatively and quantitatively the meteorological
and air quality (AQ) modeling results obtained. Bulgarian National Institute of Me-
teorology and Hydrology (NIMH) took part in this Initiative performing simulations
over Europe for 2010.

2 HIMH task settings

2.1 Models used

HIMH AQ modeling group exploits US EPA Models-3 System, consisting of
CMAQ (Chemical Transport Model, [1], WRF (Meteorological pre-processor,[7] ) and
SMOKE (Emission pre-processor, [2] ) linked by a set of Linux-scripts and FORTRAN
modules in a system.

2.2 Calculation domain

A grid of 201x201 points with resolution of 25 km is set over Europe using Lambert
conformal projection with true latitudes 30N and 60N, mean meridian 13E, and center
at (13E,53N).

2.3 Emission data and emission processing.

Yearly inventory data for anthropogenic emission prepared by Netherlands’s TNO
[5] was interpolated to NIMH’s grid and processed by AEmis and PEmis routines,
which over-posed monthly, weekly and daily profiles on the yearly data producing
Area source (AS) and Point source (PS) emission files for each day of 2010 on hourly
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basis, profiles provided by TNO as well. The wild fire emissions were downloaded
from the Finnish Meteorological Institute database. Respective processing routine
was created and the resulting 3D emissions were added to the PEmis output. The
biogenic emissions (VOC from vegetation and NO from soil) are prepared by SMOKE
on the base of gridded LU data and current meteorology. In addition SMOKE was
used to merge the three emission files (AS, PS and BgS) in a common CMAQ emission
input. The sea salt and the dust emissions were calculated by modules built in CMAQ
v.4.6.

2.4 Chemical boundary conditions

The CMAQ chemical boundary conditions (BC) are prepared from ECMWF MACC-
IT project data. After re-mapping of MACC pollutants to CMAQ ones, horizontal,
vertical and time interpolation, BC-files for each day of 2010 on hourly basis were
created.

2.5 Calculations, data archiving, post-processing

The WRF-CMAQ modeling system was run on a 32-core server day by day, initial
condition for each day being last hour of the previous day. Simultaneous archiving
of the needed by AQMEII parameters took place extracting them from the CMAQ
output. Intensive post-processing was necessary as to convert this data to a format
perceivable for ENSEMBLE.

3 Results and Discussion

In this study we focused on the surface values of Europe’s most problematic pollutants
- 03, NO2, PM10 and PM2.5. The observation sites included in the analysis belong
to an EuropeanaASwide rectangular domain. Due to the coarse model grid resolution
only background stations were used, classified as rural, urban and suburban ones.
On the Figure 3, examples of different estimates for ozone are presented, charts pro-
duced by ENSEMBLE. These are: Box-Whisker plots (a), Taylor diagrams (b), mean
diurnal variations (c) and yearly variations of monthly means (d) for rural (left col-
umn), urban (centre) and suburban (right) stations. Analyzing model performance
based on comparison of modeling results to surface observations in European wide
domain the following main conclusions can be drawn:

e The model performs better at rural than at urban stations. The model system
hardy sees differences between urban and rural type of stations, predicting very
similar results at both types. This is not surprisingly in view of the coarse model
grid resolution and lack of particular urban parameterizations in the model;

o Ozone concentrations are in general overestimated while concentrations of ni-
trogen dioxide and particulate matter are underestimated. Best statistical in-
dicators refer to ozone during summer, and annual NO2 and particulate matter
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at rural sites. Ozone overestimation is especially pronounced during nighttime.
Preliminary analysis points out that some deficiency in NOx emission might
have contributed to this;

e PM performance is rather poor, with large negative bias. Also the spread of
modeled data is much smaller than the spread of observed values;

e The statistical indicators have values within the limits, proposed in the recent

literature as performance criteria, which take observation uncertainty into ac-
count.

As the shown model performance is related only to operational model evaluation, fur-

ther investigation including diagnostic evaluations and model inter-comparison could
reveal advantages and shortcomings of the NIMH air quality modeling system.
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A Numerical Procedure for Computation of the
Upper Bound of the Throughput of a Crossbar
Switch Node

Tasho D. Tashev, Vladimir V. Monov

1. Introduction. Crossbar switch node is a device which maximizes the speed
of data transfer using parallel existing flows between the nodes of a communication
network. In the ideal case the switch sends packets with a speed corresponding to the
speed with which nodes produce these packets, without delay and without losses [1].
This is obtained by means of a non-conflict commutation schedule calculated by the
control block of the switch node.
From a mathematical point of view the calculation of such a schedule is NP-complete
[2]. The existing solutions partly solve the problem, using different formalisms [3].
Constantly increasing volumes of the communication traffic requires new more effec-
tive algorithms, which have to be checked for efficiency. The efficiency of the switch
performance is firstly evaluated by the throughput (THR) provided by the node. The
next important characteristic is the average time for waiting (average cell delay),
before the packet is send for commutation.
At the stages of design of switches, it is firstly assessed the THR of algorithms for
non-conflict schedule. For a given algorithm, its THR will depend on the type of
incoming traffic. The incoming traffic in real conditions is greatly variable. In order
to evaluate the properties of the suggested algorithms, they should be compared by
using strictly defined properties of the incoming traffic [3]. For a chosen traffic model,
THR of a switch depends on the load intensity p of its input lines.
For a chosen algorithm, traffic model and load intensity p of the input lines, THR
depends on the dimension of its commutation field n x n (n input lines, n output
lines) and the dimension of the input buffer i. In our computer simulations of THR,
we shall denote this dependence by a function f i.e.:

0<THR(n,i) = f(n,i) <1, wheren=2,3,... i=1,2,...
Here, THR with value 1 corresponds to 100% - normalized throughput with respect
to the maximum throughput of the output lines of the switch.
During the simulations as well as in analytic investigations we shall look for an answer
of the questions:

lim f(n,i)=? lim f(n,i) ="

i—00, i—00,
n=const n—oo

where ¢ — oo means infinitely large input buffer and n — oo means infinitely large
commutation field.

In the present paper, a numerical procedure for computation of the upper bound of
the THR is described, which allows for a calculation of the first limit mentioned above.
If it exists then the solution is unique. In this procedure we use the results from a
computer simulation of the THR performed on the grid-structure BGO1-IPP of the
Institute of information and communication technologies IICT-BAS. Our modeling
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of the THR utilizes PIM-algorithm [4], Chao-model for “hotspot” load traffic [5] and
p = 100% load intensity of each input (i.i.d. Bernoulli). The obtained results give an
upper bound of the THR for n € [3,100] which enables us to estimate the limit of the
THR for n — oo. This estimate is obtained to be 0.775.
2. Numerical procedure for computation of upper bound. We shall perform
simulations for a specific algorithm for non-conflict schedule, a model for incoming
traffic and a load intensity. We choose the interval for values of n and i, where ¢ will de-
fine the increase in the size of the input buffer. As a result, we will have a set of curves
for selected values of n € [n1,n2], and i € [1,1000]. Let us chose values AANaANfor i :
it =1,m1,ma,ms,...,my, where 1 =mg <m; <mg <mz <--- < my.
We shall perform p 4+ 1 simulations in order to obtain p + 1 curves for THR. The
obtained curves will be denoted as follows:
fl(nvi) = f(na mO)v fQ(nvi) = f(na ml)v s 7fp+1(na 7’) = f(nvmp)

Denote the difference between two consecutive curves f; and f;41 by res;:

resi(n,i) = fa(n,i) — fi(n,i) = f(n,m1) — f(n,mo)

Tes?(nvi) = f3(n7i) - fQ(na 7’) = f(nva) - f(nvml)

resp(n, i) = fp+1(v i) })( i) = f(n,myp) f(n,mp_1)
Denote the ratio of the values AANAAN f two successive curves res; and resjii
through d;:

01(n, i) = resy(n,i)/resi(n, i) = (f(n, ma) = f(n,m1))/(f(n, m1) — f(n,mo))
d2(n, i) = ress(n,i)/resa(n,i) = (f( m3) — f(n,m2))/(f(n,m2) — f(n,m1))
5p,1(n,i) =
= resp(n,i)/resp—1(n,i) = (f(n,mp) — f(n,mp—1))/(f(n,mp—1) — f(n,mp—2))
Simulation data allow us to calculate d1,62,...,0,-1. If we can find a dependency
dj+1 = ¢(9;) for 61,02,...,0p—1 in the case j — oo, then we can determine the

expected upper bound.
From the last formula we obtain:

fp+1(n7 i) = f(n, mpfl) + 51071(”7 i).(f(n, mpfl) = f(n, mp*Q))
and for a known dependency ;41 = ¢(d;), we can write

fora(n, i) = f(n,mp1) + [L+ ¢(p-1(n, 1))]-0p-1(n, 1).(f (0, mp—1) = f(1,mp—2))

Fora(md) = F(mmp1) + [1+ @61 (m,1)) + 6(8p1 (1, 1)) 68y (1, 1)) + ...
L 001 (1, )).0(0p (1, 1))- . - ST g5, D)]-Bp1 (7). (F (1 1) — F (1, 0p—2)

When ¢ — oo then f(,44—00)(n,7) is the necessary bound lim ;o f(n,7).

If there is an upper bound of the throughput of a switch noﬁ%foﬁgtis clear that the
dependency 641 = ¢(J;) exists. Then the sum
[1+ &(6p—1(n, i) + - + 3(6p—1(n, 1)).0(Jp (1, 7). . . . §(Optg—3(n,7))]

for ¢ — oo is convergent and has a boundary.

3. Finding dependencies ¢;11 = ¢(J;). We have found one such relation for
our model of PIM-algorithm, specified by means of Generalized nets [6], with Chao-
model for “hotspot” load traffic, for which we defined the family of patterns C'hao;
for traffic matrices [7]. For a simulation with this family of patterns we have chosen
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the sequences for i : i = 1,m',m2,m3,...,mP,.... Here, we present the result for

simulations with m = 2. This is the minimal value of m in its definition area m &€
(2,3,4,...).

When m = 2, then i = 1,2,4,8,16,32,64,...,2P,.... The initial evaluation of the
required number of curves for THR is at least 4 (from Pattern Chaoy). In our example,
we have seven curves (patterns). In the figures below, Chao; is denoted as Ci for
1 =1,2,... We get results for C1,C2,C4,C8,C16,C32,C64 - which are shown in
Figure 1a. The dimension n varies from 3 x 3 to 100 x 100 and 10 000 simulations for
each pattern. Then we calculate the difference between throughput for neighboring
patterns. The obtained curves for the differences are shown in Figure 1b.

08 THR 0.04 res
C64
l,—r’_______,,__...-—— |
0.7 e 0.02
_-"""‘_’-'_’.
06 . n 5 resﬁl 4
0 50 100 0 50 100

Figure 1: a) Throughput for Chaoy, . ..,Chaogs b) Differences between throughput

Then we calculate the convergence parameter §; which is the ratio of the differences
and the obtained curves are shown in Figure 2a. The values of §; tend to (1,41 +
0,05)~ %

From our simulations in the case m = 2, we have drawn the following conclusion:
Conclusion: The dependence ;11 = ¢(J;) is a constant, i.e. dj41 = 6; = 27
with an accuracy depending on the error of simulations. Thus, d;(n,) = const when
i€[1,00), n€[nl,n2], m=const (i=1,m! ...,mP,...), with an accuracy within
the error of simulations.

As a consequence, the upper boundary in case m = const can be calculated as:

fora(nyi) = f(n,mP™Y) + 6(m).(f(n,mP~1) — f(n,mP~2))
fora(n,i) = f(n,mP=Y) + (6(m) + 6%(m)).(f (n,mP~") — f(n,mP~2))

Fpoo (1) = F(n, mP=1)4[8(m) 462 (m)+- - 87 (m)-+. ..} (f (m,mP )~ f (m, mP=2)) =
= f(n,mP= )+ P (m T P2 (2P L (f (n,mP ) = f(n,mP ) =
= Fln,m=Y) 4 Y2 4 [(m 2 = 1)U, mPY) — fln, mP2)
In this simulation m = 2 and we calculate the boundary by

fomoo(n,i) = f(n,64) +[(2'/2 = 1)7'].(f(n, 64) — f(n, 32))
The result is shown in Figure 2b. Thus we conclude that lim;—.., f(n,7) = 0,775 £
0,001. e
The differences between the values of §; obtained in the simulations and the value
5(m) = m~/? are equal to the absolute error of the simulations.

1/2
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Figure 2: a) Ratio 1/41, 1/65 between differences b) Upper boundary of throughput

4. Conclusion. Our computer simulation confirms applicability of the suggested
numerical procedure. The obtained results give an upper bound of the THR for
n € [3,100] which enables us to estimate the limit of the THR for n — oo. This
estimate is obtained to be 0.775.

In a future study, the suggested procedure will be tested using other models of the
incoming traffic, for example uniform and unbalanced traffic models.
Acknowledgments. The research work reported in the paper is partly supported
by the project AComlIn “Advanced Computing for Innovation”, grant 316087, funded
by the FP7 Capacity Programme (Research Potential of Convergence Regions).
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Renormalization Plus Convolution Method Applied
to the Analysis of AC Resonant States in Aperiodic
Nanowires

Chumin Wang, Vicenta Sanchez

1 Introduction

Nanowires with axial and/or core-shell heterostructures possess fascinating structure-
property relationships derived from quantum confinement and interface effects. For
example, their unique density of states in the limit of small diameters, can manifest in
many electronic and optical properties such as diameter dependent thermal conduc-
tivity [1], that are quite different from their macroscopic solid. Nanowires can also act
as sensing probes for chemical and biochemical substances as they can offer smaller,
more sensitive, less power consuming, and faster reacting sensors. Their sensor op-
eration involves the reversible change in the conductance of the nano-structure upon
absorption of the agent to be detected. As nanowires have large surface to volume
ratio and small cross-section available for conduction channels, they show increased
sensitivity and faster response time. Traditionally, the nanowires with diameters of
few nanometers and high aspect ratio are studied by using the supercell model in the
reciprocal space. However, their axial heterostructures as well as their zigzag geome-
try are frequently non-periodic and then, the reciprocal-space approach is inadequate
or useless. In this paper, we study the ac conductivity of aperiodic nanowires by using
the Kubo-Greenwood formalism and taking the advantage of a previously developed
renormalization plus convolution method [2].

2 Formalism

Core-shell nanowire heterostructures have been widely studied in the last years [3].
One example of them is shown in Figure 1, where two types of blocks with 89 hopping
integrals, t4 or tp, are alternated following periodic or Fibonacci sequences along the
nanowire. On each cross-section plane there are 25 core atoms with site energy e,
(blue balls) and 24 shell ones with €, (red balls).

In the linear response theory, the electrical conductivity (o) can be analyzed by using
the Kubo-Greenwood formula given by [4]

Tr(pImGT (E + hw)p, ImG* (E))
(1)

where 2 is the system volume, p, = (im/h)[H, z] is the projection of the momentum
operator along the applied electrical field with frequency w, GT is the one-particle re-

2¢2h — f(E + hw)
olpw T) = —=—73 / el o
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Figure 1: (Color online) Schematic representation of a core-shell heterostructure nanowire
with 25 core and 24 shell atoms on each plane.

tarded Green's function, and f(E) = [exp( £)+1]7! is the Fermi-Dirac distribution
with the Fermi energy p and temperature T

In order to isolate quasicrystalline effects on the conductivity, we consider a simple
s-band tight-binding Hamiltonian given by H = >_.{e;[4) (j| + t;j41[7) (G + 1| +
tji—17) (j — 1|}, where e; = €. or €5 and t; ; = t4 or tp between nearest-neighbor
atoms. To study nanowires, the real-space renormalization method is combined with
the convolution theorem, which leads to [2]

o (1,0, T) Za 4 Ep,w,T) (2)

where g are eigenenergies of the perpendlcular subspace Hamiltonian for the cross-
section planes and oll(E,w, T) is calculated by using the one-dimensional renormal-
ization method. The electrical conductance (g) of nanowires are calculated by means
of g(p,w,T) = o(p,w, T)21 /), where Q and €| are the cross-section area and the
nanowire length along the applied electric field, respectively.

3 Results

In Figure 2, the dc electrical conductance g(p, 0,0) of (a) periodic, (b) periodic core-
shell with Ae = e, — e; = 2|¢|, (c¢) periodic core-shell with Ae = 10[¢| nanowire
heterostructures of 832040 A-type blocks and 832040 B-type ones are shown for
ta = tp (gray lines) and t4 = 0.9¢p (pink lines). These nanowires are connected
to two semi-infinite periodic leads with null site energies and hopping integrals .
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The calculation includes an imaginary part of the energy of 10713¢|. Notice that for
the single-type-block periodic nanowires, t4 = tp, there are perfect quantum steps
in units of go = 2e2?/h and g diminishes in two-type-block heterostructures. When
Ae = 10]t|, two separated conducting bands are observed. Each of these bands are
centered on the site energies of £5(¢|. In Figures 2(a’-c’) the corresponding dc elec-
trical conductance of heterostructures with 832040 A-type and 514229 B-type blocks
ordered following the Fibonacci sequence are illustrated (violet lines). Note the highly
oscillating spectra originated from a densely distributed band-gap structure.
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Figure 2: (Color online) Electrical conductance (g) of (a-c) periodic and (a’-c’) quasiperiodic
core-shell nanowire heterostructures.

The ac conductance spectra g(u,w,0) are presented in Figure 3 for (a) a periodic
nanowire and (b) a core-shell quasiperiodic nanowire as in Figure 2(b’) with 21 A-
type and 13 B-type blocks. Observe in (a) the Drude-decay behavior of g(u,w,0) as
w increases for the periodic case. However, for the quasiperiodic core-shell nanowire
g(1,w,0) can significantly improve the ballistic conductance given in Figure 3(a) at
the conducting band edges. This phenomenon is due to the resonant scattering process
in quasiperiodic heterostructures. The spectrum averaged values of g(u,w,0) (open
circles), as well as their maximum and minimum values (error bars) are summarized
in Figure 3 for quasiperiodic nanowires as in Figure 2(b’) with the numbers of A-type
and B-type blocks of (2,1), (3,2), (5,3), (8,5), (13,8) and (21,13), respectively.
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Figure 3: (Color online) AC conductance spectra g(p,w, 0) of (a) periodic and (b) quasiperi-
odic core-shell nanowire heterostructures. The spectrum averaged ac conductance (open
circles), as well as the corresponding maximum and minimum values (error bars) are shown
for the quasiperiodic case.

4 Conclusions

The real-space renormalization method seems to be a very efficient manner to address
aperiodic systems, such as interfaces in electronic devices. Moreover, combining with
the convolution theorem, the Kubo-Greenwood formula can be evaluated in an exact
way for multidimensional lattices. The results show ac resonance peaks significantly
larger than the ballistic ones for several u and Aiw. The resonance frequencies (fiw) are
determined by the difference of eigenenergies, which can be explained by the Fermii£js
golden rule [5]. On the other hand, the core-shell and segmented heterostructures
diminish the dc conductivity, but can cause truly high resonant ac conduction at the
band edges.

Acknowledgements This work has been partially supported by UNAM-IN113813,
UNAM-IN113714 and CONACyT-131596. Computations were performed at Miztli
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Multicriteria Analysis of Ontologically Represented
Information

Katarzyna Wasielewska, Maria Ganzha, Marcin Paprzycki,
Ivan Lirkov

The presented work is another attempt to achieve and extend goals presented in [4, 1],
i.e. to design a decision support system for the software selection problem. The main
idea is to utilize expert knowledge, to help the user in selecting the best method /
software / computer resource to solve a computational problem, e.g. from the domain
of numerical linear algebra. To achieve that: (1) expert knowledge has to be captured
and represented, and (2) an efficient method for utilization of this knowledge has to
be proposed. In [4] author suggested that domain experts could express functional
relations between properties of the mathematical problem and the performance of the
software. Moreover, he considered the problem of knowledge acquisition, i.e. how to
construct a knowledge base that can be easily extended and handled. Practical aspects
of software selection were discussed in [1]. There, authors proposed a problem solving
environment (named EPODE), focused on the initial value problems for ordinary
differential equations. Matchmaking in EPODE is based on decision trees, while
an expert system with a knowledge base is prepared by the domain experts. Other
software selection systems, in the area of differential equations (described in [11, 2]),
include decision mechanisms based on decision trees or data mining of the performance
history. Unfortunately, neither of these systems is “continued” today.

In this context, we hope that application of modern tools, such as ontological represen-
tation of domain knowledge and semantic data processing supported by multicriterial
analysis will allows us to develop a system that will efficiently support users. Here,
note that, the crucial aspect of designing a knowledge representation scheme is its
transparency and ease of use. We believe that expressiveness of ontological languages
will allow to capture and represent expert knowledge in an intuitive and user-friendly
way.

The context of the work is provided by the Agents in Grid project (AiG [8]), which
aims at development of an agent-semantic infrastructure for efficient resource manage-
ment in the Grid. Decision support within the system should help the user to choose
an optimal algorithm and/or resource to solve a problem from a given domain, and
later to choose the best contract defining terms of collaboration with the provider
of computer resource. The system should assist users with no in-depth knowledge
of “computing” by selecting the method and the resource that (together) best fit the
problem to be solved (and then find the needed resources). The best contract to be
selected is a result of autonomous multi-round negotiations. As a starting point, the
domain of linear algebra was modeled. While the decision to use ontologies through-
out the system was made (e.g. for storage of expert knowledge / opinions), another
crucial step is to select and apply multicriterial decision making method. To choose
the best method, the following premises have to be considered:
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1. knowledge is captured from multiple experts (decision-makers) and can have
different weights (priorities), depending on how a given expert is confident in
the selected domain,

2. multiple criteria can have different priorities, e.g. the price may be regarded as
more important than time of completion when specifying terms of collaboration,

3. criteria are multi-dimensional, both quantitative and qualitative,

4. advantageous would be the possibility to model the decision problem as a tree,
where the root is the problem and subsequent levels represent criteria, further
decomposed into subcriteria,

5. another advantage would be to be able to check consistency of data provided
by the user.

Here, note that during method and/or resource selection the system should consider
aggregated recommendation of many experts, i.e. the system should “develop” one
opinion from the set of expert opinions that is “closest” to all of them with regard to
a given topic.

The first method evaluated in the context of the AiG project was the Analytical
Hierarchy Process (AHP; [6]). This is a well known and widely applied method to
approach complex problems, taking into account subjective assessment by multiple
decision-makers. The AHP allows to perform aggregation on two levels: (i) preferences
regarding criteria, (ii) assessment of alternatives. Moreover, the decision problem can
be structured as a tree with root being the problem itself. The importance of a
given criteria is assessed with respect to the parent criteria. Crucial for calculating
priorities of the criteria is the construction of the comparison matrices, in which the
user (or the expert) expresses preferences regarding pairs of criteria from a given
level. These preferences are later weighted to obtain global priorities. There is also
a possibility to check the consistency of specified preferences and thus to validate
user’s input. This approach is more user-friendly and transparent than analyzing
and assigning weights directly to all criteria. In the AiG, both the requirements
and the alternatives are represented with ontology class expressions and ontology
instances. Since ontology can be depicted as a directed graph (in our case, acyclic),
requirements and alternatives can be easily transformed into problem trees, where
the root is the class expression or the instance, edges are properties and children are
values of properties. Detailed descripiton of AHP utilization in the AiG can be found
in [9, 10].

Besides the AHP, other decision making methods were researched in order to assess
them in the context of the AiG scenario and use with ontologies. We have considered
an extension of the AiG decision support module with the implementation of the
TOPSIS method (Technique for order preference by similarity to ideal solution; [7])
supported by the ontological matchmaking [5]. The TOPSIS method is based on the
idea of ideal and megative ideal alternatives that represent best and worst possible
“offers.” The goal is to choose an alternative that is the closest to the ideal and the
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furthest from the negative ideal. In case of the AiG, construction of ideal and neg-
ative ideal is quite intuitive for the contract selection (with one expert), since the
alternatives are composed of respectively best and worst values received in offers. In
the case of expert recommendations, the ideal alternative for an expert is the one
that she specified, while negative ideal should be provided separately by each expert.
In our case mutltiple decision-makers have to be considered, so the global ideal and
the negative ideal can be estimated as an average of experts preferences. The next
step is to determine the separation from the ideal and the negative ideal. Here, onto-
logical matchmaking can be utilized. It allows to measure semantic distance between
ontology instances, where the ontology is represented as a graph. Additionally, this
method seamlessly fits multiple experts recommendations and user requirements. The
calculation of the distance is divided into two phases: (i) semantic distance between
concepts in the conceptual model, and (ii) semantic relevance between instances. The
first phase is prepared by experts who assign distances between concepts, that are
later aggregated (corresponds to preparation of expert opinions and comparison ma-
trices in the AHP). The second phase is analogous to scaling expert distances by
priorities assigned by the user. It should be noted that this approach nicely fits with
ontologies. However, to handle multiple experts it requires additional step of the spec-
ification of a negative ideal alternative, and analyzing the whole conceptual model to
assign distances.

Moreover, we inspected the PROMETHEE method [3] that does not in any way
take advantage of ontological representation of data. However, it was designed as a
group decision support method, i.e. it supports multiple decision-makers, and involves
sensitivity analysis and conflict resolution. Here, the first step is the selection of the
evaluation criteria (common and individual to the expert) as well as the preference
functions. In the AiG this can be done by analyzing the ontology class expression, with
requirements provided by the user and expert opinions. Afterwards, each decision-
maker evaluates alternatives (all registered opinions, or contract offers) and obtains
alternative ranking, by calculating the net flow value for each of them. The last step
is to find the global consensus solution, by analyzing the global evaluation matrix,
where the alternative net flows are aggregated and scaled by the expert weight. Even
though, the PROMETHEE is designed for group decision making, it does not allow
to structure the problem hierarchically and each expert has to select the preference
functions for all criteria directly, which is not as intuitive as pairwise comparisons
with the verbal scale.

While, above, we have described three methods, during the presentation we will briefly
analyze also other possible methods, e.g. linear additive model, multi-attribute utility
theory.
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Non-linear systems of PDEs arising in large-scale
environmental models

Zahari Zlatev, Krassimir Georgiev, Ivan Dimov

1 Introduction of the systems of PDEs arising in
large-scale environmental models

We shall restrict ourselves to the topic of long-range transport of air pollution and
to a particular model (UNI-DEM, the Unified Danish Eulerian Model, [11, 13]), but
most of the results can easily be extended to other environmental models. UNI-DEM
is described mathematically by the following system of partial differential equations
(PDEs):

Oc; dc; Oc; .
En = —u 9z —vay horizontal transport
—1—1 <Kw%> + 2 <KU%) horizontal diffusion
or ox Jy 70y
+Qi (t,z,y,2,¢1,¢2,...,¢q) + Ei(t, 2,9, 2) chemical reactions +
emissions (1)
+(k1i + k2i)ci dry and wet
depositions
—wgczi % <KZ%) , vertical transport
i=1,...,q, number of equations (chemical species).

The different quantities for the chemical species 7 at point (z, y, z) of the space domain
and at time ¢ of the time-interval involved in (1) are briefly described below:

¢i = ¢i(t,z,y, z) is the concentration ,

u=u(t,z,y,z),v="v(tz,vy,z) and w = w(t, z,y,z) are wind velocities (along
the Oy, Oy and O, directions respectively),

o K, = Ky(t,x,y,2), K, = Ky(t,2,y,2) and K, = K,(t,z,y,2) are diffusivity
coefficients (it is often assumed that K, and K, are non-negative constants,
while the calculation of K, is normally rather complicated),

o kit = kii(t,x,y,2) and ko; = ko;(t,x,y, z) are deposition coefficients (dry and
wet deposition respectively).

e E;, = Ei(t,z,y,2) is an emission source.
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2 Applying splitting techniques

The system of partial differential equations (1) can be split ([13]) into the following
three sub-systems:

oct o) o oct!
o~ Yo Ta (e ) @
oct? ac? a9 oct? 9 dct?
7 - _ i ) — K’I‘ i — K1 i
ot “or T Oy * oz \ " Oz + oy \ 7Y oy 3)
e’ 3 (3 (3)
— = Qi(taxayvzvcl 562 a7623))+E1(t5x5yvz)+(k17+k21) ci . (4)

ot

The vertical exchange is described by the first of these three sub-systems. The hori-
zontal transport (the advection) and the horizontal diffusion is described by the second
sub-system. The last sub-system describes the combination of the chemical reactions,
the emission sources and the deposition.

The three sub-systems are fully defined by (2)-(4), but not the splitting procedure,
which will be determined only when it is explained how these sub-systems are com-
bined. The simple sequential splitting procedure, which is obtained as explained
below, is applied in UNI-DEM. Let us assume that the space domain is discretized
by using a grid with Ng,. = N, X N, x N, grid-points, where N, N, and IV, are
the numbers of the grid-points along the grid-lines parallel to the O,.,O, and O,
axes. Assume also that the number of chemical species involved in the model is
N, = q. Finally, assume that approximate values of the concentrations (for all species
and at all spatial grid-points) have already been found for ¢ — ¢,,. These values can
be considered as components of a vector-function c(t,, ;,y;, 2x) € RNeXNyXNaxNe
The next time-step, time-step n + 1 (t,4+1 = ¢, + At where At is some increment),
can be performed by solving successively the three sub-systems. The approximations
¢(tn, i, Y5, 2) are used as initial conditions in the solution of (2). The solution of
(2) is used as an initial condition of (3). Finally, the solution of (3) is accepted as an
initial condition of (4). Then the solution of (4) is considered as an approximation to
c(tn+1, i, Y5, 2k).- When these calculations are completed, everything is prepared for
the calculations in the next time-step, step n + 2.

The great advantage of any splitting procedure that is based on the above three sub-
systems is due to the fact that no extra boundary conditions are needed when (2)-(4)
are used. This is true not only for the sequential splitting procedure sketched above,
but also for any other splitting procedure based on the sub-systems defined by (2)-(4).

3 Selection of numerical methods

First and foremost it must be mentioned here that different numerical algorithms
can be applied in the different sub-systems and this is one of the big advantages of
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using splitting techniques. This means that for each sub-system one can select the
most suitable of the available algorithms. Assume that the spatial derivatives are
discretized by the selected numerical algorithm. Then the three systems of PDEs
represented by (2) - (4) will be transformed into three systems of ODEs (ordinary
differential equations):

dz_;l) — (t,gu)), g _ @ (t,g@)), dfz—(:) — ® (t’gw)). (5)

Each component of the functions ¢(™)(t) € RN=v=*Ns m = 1,2, 3 is an approximation
at time ¢ of the concentration at one of spatial grid-points and for one of the chemical
species. The components of right-hand-side functions f(")(t) € RN=v=*Ns m =1,2.3
depend both on quantities involved in the right-hand-side of (1) and on the particular
numerical algorithms that are used in the discretization of the spatial derivatives.

A linear finite element method is used to discretize the spatial derivatives in (2)
and (3). The spatial derivatives can also be discretized by selecting other numerical
methods as, for example, finite differences, a pseudo-spectral discretization, a semi-
Lagrangian discretization, etc, see .g. [13].

The first system of ODEs in (5) can be solved by using many classical time-integration
methods. The well-known ©— method with © = 0.75 is currently used in UNI-DEM.
Several predictor-corrector (PC) methods with several different correctors, which are
discussed in [10], are used in the solution of the second system of ODEs in (5). The
correctors are carefully chosen so that the absolute stability properties of the method
are considerably improved. More details can be found in [10, 13, 12].

The treatment of the third system in (5) is more complicated, because it is both
time-consuming and very stiff. Often the QSSA (Quasi-Steady-State-Approximation)
method, which is very simple and relatively stable but not very accurate (and has to be
run with a small time-stepsize), is selected for the solution of this system. An improved
version of the QSSA method was implemented in UNI-DEM. Classical numerical
methods for stiff systems of ODEs (the Backward Euler Method, the Trapezoidal Rule
and Runge-Kutta algorithms) lead to the solution of non-linear systems of algebraic
equations (which have to be handled by some quasi-Newton iterative method) and,
therefore, they are normally more expensive. On the other hand, these methods
can be incorporated with an error control and normally with considerably larger
time-steps. Partitioning can also be used. Some convergence problems related to
the implementation of partitioning have been studied in [12]. For more details see
[1, 2, 10, 11, 12, 13].

4 Parallelization techniques

The greatest advantage of using splitting procedures is the appearance in a quite
natural way of many parallel tasks. It is easy to see that (a) the first system of ODEs
in (5) contains N, x N, x N, independent tasks (for each chemical compound, each
system along a vertical grid-line can be treated independently), (b) the second system
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of ODEs in (5) contains N, x N independent tasks (for each chemical compound the
system along a horizontal grid-plane can be treated independently) and (c) the third
system of ODEs in (5) contains N,,. independent tasks (the chemical compounds
at each grid-point can be treated independently of the chemical compounds at the
other grid-points). Standard parallel tools, OpenNP and MPI, are used in parallel
version of UNI-DEM. More details in [1, 11, 13]. Results from many tests indicate that
the algorithm based on the MPI technique is performing better than the algorithm
exploiting the OpenMP tools when UNI-DEM is run on parallel computers (see e.g.
[1, 13].

5 Some important applications

UNI-DEM has been used in many different studies (many of them are reported in
[3,4,5,6,7, 8,9, 12, 14, 15]. Investigations of the influence of the climate changes
on pollution levels in (a) Europe [5, 9], () Denmark [16], (¢) the Balkan Peninsula
[14][15] and (d) Hungary with its surroundings ([15] have recently been carried out.

6 Concluding remarks

If we assume that N, = N, = 480, N, = 10, N; = 480 are used (as in [5, 6, 9, 14,
15, 16]), then the total number of equations is 80 640 000 and 213 120 time-steps
are needed to perform calculations with meteorological and emission data covering
a whole year. Moreover, calculations over a long time-period (sixteen years) were
needed in [5, 6, 9, 14, 15, 16]. It is clear that it was possible to resolve the enormous
computational problems only if (a) efficient splitting procedures are used, (b) suitable
numerical methods are selected for each sub-model and (¢) parallel computations
are applied. It should nevertheless be emphasized that further improvements in
connection with the tasks related to (a)—(c¢) are highly desirable.
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