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PREFACE 

 

The International Workshop on Numerical Solution of Fractional Differential Equations and 

Applications (NSFDE&A’22) is organized by the Institute of Information and Communication 

Technologies, Bulgarian Academy of Sciences, in cooperation with the Bulgarian Section of 

SIAM and the Center of Excellence in Informatics and Information and Communication 

Technologies (CoE in Informatics and ICT).  

The CoE in Informatics and ICT, Grant No BG05M2OP001-1.001-0003, is financed by the 

Science and Education for Smart Growth Operational Program (2014-2020) and co-financed by 

the EU through the European Structural and Investment Funds. 

The workshop follows the great success of the first workshop NSFDE&A’20 

(http://parallel.bas.bg/Conferences/NSFDE&A_2020-Sozopol.pdf), and the Special Sessions 

“Fractional Diffusion Problems: Numerical Methods, Algorithms and Applications” organized 

within the scientific program of the 12th and 13th LSSC Conferences 

(http://parallel.bas.bg/Conferences/SciCom21/). The workshop is aimed to continue the new 

chain of NSFDE&A events to be organized biannually, every even year, complementary to the 

well-established LSSC conferences every odd year. 

The major specific topics of NSFDE&A’22 include:  (i) fractional in space diffusion problems; 

(ii) fractional in time diffusion problems; (iii) models of phenomena with memory; (iv) optimal 

control involving fractional diffusion; (v) analytical and semi-analytical solution methods; (vi) 

multigrid solvers; (vii) coupled problems; (viii) phase separation and image segmentation; (ix) 

parallel algorithms and HPC and big data tools; (x) applications in science and engineering.  

List of keynote speakers and lectures: 

- Lidia Aceto (University of Eastern Piedmont, Alessandria, Italy) 

Numerical approximations of fractional powers of operators 

- Natalia Kopteva (University of Limerick, Ireland) 

Pointwise-in-time a-priori and a-posteriori error control for time-fractional parabolic 

equations 

- Vaughan Voller (University of Minnesota, Minneapolis, USA) 

Enthalpy solution of a two-dimensional fractional Stefan problem 

 

The purpose of the workshop is to bring together scientists in the field of numerical methods 

working with fractional differential equations models in natural sciences and environmental and 

industrial applications, as well as developers of algorithms for modern high-performance 

computers. The keynote lectures review some of the most advanced achievements in the field of 

numerical solution of fractional differential equations and their applications. The workshop talks 

are presented by scientists from diverse research institutions including applied mathematicians, 

numerical analysts, and computer experts. 

http://parallel.bas.bg/Conferences/SciCom21/


Scientists from all over the world (America, Asia, and Europe) contributed to the success of the 

workshop, representing some of the strongest research groups in the field of the event. 

 

This volume contains 29 short communications by authors from 12 countries. 

  

The next International Workshop on NSFDE&A will be organized in June 2024. 

 

          Stanislav Harizanov 

          Raytcho Lazarov 

          Ivan Lirkov 

          Svetozar Margenov 
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Numerical approximations of

fractional powers of operators

Lidia Aceto
Università del Piemonte Orientale

viale Teresa Michel, 11
15121 - Alessandria, Italy

In this talk we present numerical approximations of L−α, α ∈ (0, 1). Here L is a self-
adjoint positive operator acting in an Hilbert spaceH in which the eigenfunctions of L form
an orthonormal basis of H, so that L−α can be written through the spectral decomposition
of L. In other words, for a given g ∈ H, we have

L−αg =
+∞∑
j=1

µ−α
j 〈g, ϕj〉ϕj (1)

where µj and ϕj are the eigenvalues and the eigenfunctions of L, respectively, and 〈·, ·〉
denotes the H-inner product.

Applications of (1) include the numerical solution of fractional equations involving the
anomalous diffusion, in which L is related to the standard Laplace operator.

In recent years, this problem has been studied by many authors. In the continuous
setting of unbounded operators, methods based on the best uniform rational approximation
(BURA) of functions closely related to λ−α have been considered, for example, in [8, 9, 10,
11] by using a modified version of the Remez algorithm. Another class of methods relies
on quadrature rules for the integral representation of λ−α [1, 3, 4, 5, 6, 7, 12, 13].

Starting from the integral representation given in [6, Eq. (4)]

L−α =
2 sin(απ)

π

∫
+∞

0

t2α−1(I + t2L)−1dt, α ∈ (0, 1), (2)

where I is the identity operator in H, after appropriate changes of variables we consider
approximations based on truncated quadrature rules. We present practical error estimates
that can be used to select a-priori the number of quadrature points necessary to obtain a
given accuracy. Some numerical experiments are also shown to demonstrate the reliability
of the proposed approach.
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Second order approximations of the Caputo
derivative with variable parameters

Stoyan Apostolov1, Yuri Dimitrov2,3,Venelin Todorov3,4
1Faculty of Mathematics and Informatics, Sofia University

2 Department of Mathematics, Physics and Informatics,
University of Forestry

3Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences

4Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences

The present paper is a continuation of the work in [1,2]. We construct second order
approximations of the Caputo derivative whose parameters have variable values, which
depend on the numbern of the nodes of a uniform mesh on the interval of fractional dif-
ferentiation[x0,x]. Let h = (x− x0)/n. The L1 approximation of the Caputo derivative
has an asymptotic formula [3]

Ln[y] =
1

Γ(2−α)hα

n−1

∑
k=0

σ (α)
k yn−k = y(α)

n +
ζ (α −1)
Γ(2−α)

y′′nh2−α +O
(
h2) , (1)

σ (α)
0 = 1, σ (α)

k = (k−1)1−α −2k1−α +(k+1)1−α , σ (α)
n = (n−1)1−α −n1−α .

In [4] we construct second order shifted approximations of the first derivative. In [1,2]
we apply the method from [4] for construction of approximations of the second deriva-
tive. We derive the approximation of the second derivative

C
B
n [y] =

1
h2

m

∑
k=0

wk(B)ym−k = y′′m + γ1(B)y
′′′
m h+ γ2(B)y

(4)
m h2+ γ3(B)y

(5)
m h3+O

(
h4B4) ,

(2)
where the functiony satisfies the conditiony(x0) = y′(x0) = 0 and

w0(B) =
2

B2 (B− ln(1+B)) , w1(B) =−
2

1+B
, wk(B) =

2
B2k

(
B

1+B

)k

, (k ≥ 2),
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γ1(B) = −
1
3
(2B+3),

γ2(B) =
1
12

(6B2+12B+7),

γ3(B) = −
1
60

(2B3+60B2+50B+15).

By substituting the second derivative in (1) with approximation (2) we find

L n[y] =
1

Γ(2−α)hα

n−1

∑
k=0

δ (α)
k yn−k = y(α)

n +O
(
h2) , (3)

whereδ (α)
k = σ (α)

k − ζ (α −1)wk(B). WhenB is a fixed number approximation (2) of
the Caputo derivative has a second order accuracy [1,2].

1 Approximation of the second derivative

In this section we construct an approximation of the second derivative as a weighted
average of approximations (2) which have parametersB,2B,3B. Let c1,c2,c3 be the
solutions of the following system of equations

c1+ c2+ c3 = 1
γ1(B)c1+ γ1(2B)c2+ γ1(3B)c3 = 0
γ2(B)c1+ γ2(2B)c2+ γ2(3B)c3= 0.

Consider the approximationDB
n = c1C

B
n + c2C

2B
n + c3C

3B
n of the second derivative.

D
B
n [y] =

1
h2

n

∑
k=0

Wkyn−k = y′′n + γy(5)n h3+O
(
h4B4) , (4)

γ = c1γ3(B)+ c2γ3(2B)+ c3γ3(3B) =−
1
60

(12B3+33B2+22B+50),

Wk = c1wk(B)+ c2wk(2B)+ c3wk(3B), (0≤ k ≤ n).

Approximation (4) has weights

W0 =
1

108B4

(
6B(66B2+54B+11)−18(3B+1)(12B+11) ln(1+B)

+9(18B2+36B+11) ln(1+2B)−2(12B2+27B+11) ln(1+3B)
)
,

W1 =
2(33B2+45B+13)

3(B+1)(2B+1)(3B+1)
,

Wk =
Bk−4

k

(
(3B+1)(12B+11)

6(B+1)k −
(18B2+36B+11)2k

12(2B+1)k +
(12B2+27B+11)3k

54(3B+1)k

)
.
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Table 1: Error and order of approximationsC B
n andDB

n for the function sinx.

h =
1
n

Cn, B =
√

n Dn, B =
√

n Dn, B = 3
√

n
Error Order Error Order Error Order

0.000625 0.00961535 0.5238 2.2485×10−5 1.4101 5.6194×10−7 2.2473
0.0003125 0.00660463 0.5418 8.2392×10−6 1.4484 1.3563×10−7 2.0507
0.00015625 0.00465389 0.5050 2.8687×10−6 1.5221 3.4836×10−8 1.9610

When y(x0) = y′(x0) = 0 andB is a large number, approximations (2) and (4) have
accuracyO(Bh) andO(B3h3) respectively. WhenB = ⌊

√
n⌋ approximations (2) and

(4) have orders 1/2 and 3/4. WhenB = ⌊ 3
√

n⌋ the orders of (2) and (4) are 2/3 and 2
respectively. The experimental results for the error and the order of approximations (2)
and (4) for the functiony = sinx are given in Table 1.

2 Second order approximation of the Caputo derivative

By approximating the second derivative in the expansion formula (1) of the L1 approx-
imation with (4) we obtain the approximation of the Caputo derivative

L̃m[y] =
1

Γ(2−α)hα

m−1

∑
k=0

λ (α)
k ym−k = y(α)

m +O
(
h2) , (5)

whereλ (α)
k = σ (α)

k −ζ (α −1)Wk. Approximation (5) has a second order wheny(x0) =
y′(x0) = y′′(x0) = 0. Approximation (5) holds for all functions inC3[x0,xm] when

L̃m[1] = 0, L̃m[x] =
1

Γ(2−α)
x1−α , L̃m[x

2] =
2

Γ(3−α)
x2−α , (6)

Let

s1 =−
m−1

∑
k=0

λ (α)
k , s2 =

m−1

∑
k=0

kλ (α)
k , s3 =−

m−1

∑
k=0

k2λ (α)
k ,

S1 = s1, S2 = m1−α +ms1+ s2, S3 =
2m2−α

2−α
+m2s1+2ms2+ s3.

The numberssi andSi are computed withO(n) operations. By solving (6) with respect

to the last three weightsλ (α)
m−2,λ

(α)
m−1 andλ (α)

m of approximation (5) we find

λ (α)
m−2 =

1
2
(S3−S2) , λ (α)

m−1 = 2S2−S3, λ (α)
m =

1
2
(2S1−3S2+S3) .

Example The two term ordinary fractional differential equation

y(α)(t)+Ly(t) = F(t), y(0) = y0 (7)

6



Table 2: Error and order of numerical solution (8) andB = ⌊
√

n⌋.

h =
1
n

α = 0.25, L = 1 α = 0.5, L = 2 α = 0.75, L = 3
Error Order Error Order Error Order

0.000625 9.5230×10−8 1.9613 2.4524×10−7 1.9662 4.6078×10−7 1.9837
0.0003125 2.4370×10−8 1.9662 6.2365×10−8 1.9754 1.1598×10−7 1.9901
0.00015625 6.2170×10−9 1.9708 1.5784×10−8 1.9822 2.9116×10−8 1.9940

has a numerical solution [1,2]

um =
1

λ (α)
0 +LΓ(2−α)hα

(
hαΓ(2−α)Fn −

m

∑
k=1

λ (α)
k um−k

)
, (3≤ m ≤ n). (8)

Numerical solution (8) has initial conditionsu0 = y0 and

u1 =
y0+hαΓ(2−α)F(h)

1+LhαΓ(2−α)
, u2 =

y0+(2h)αΓ(2−α)F(2h)
1+L(2h)αΓ(2−α)

.

The values ofu1 andu2 are computed from the approximations (1)

y(α)(h) =
y(h)− y(0)
Γ(2−α)hα +O(h2−α), y(α)(2h) =

y(2h)− y(0)
Γ(2−α)hα +O(h2−α).

WhenF(t) = xαE1,2−α(x)+Lex equation (7) has a solutiony(t) = ex. The experimental
results for the error and order of numerical solution (8) of equation (7) withB = ⌊

√
n⌋

are given in Table 2.

3 Conclusions

In this paper we construct second order approximations of the Caputo derivative whose
parameters have variable values. In future work we will apply the approximations for
construction of finite difference schemes for numerical solution of ordinary and partial
differential equations and and we will analyze the convergence of the numerical meth-
ods. We will also use the approximations for performing sensitivity analysis of complex
models for smart information service networks [5].
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Numerical approximation and Bayesian inference of

fractional SPDEs

David Bolin
Computer, Electrical and Mathematical Science

and Engineering Division,
King Abdullah University of Science and Technology,

Saudi Arabia

Some of the most popular models for Gaussian random fields in statistics and machine
learning can be formulated as solutions to fractional stochastic partial equations (SPDEs).
In this talk, we show how one can obtain accurate numerical approximations of such models
by a combination of finite elements and rational approximations of the covariance operator
of the Gaussian field.

The proposed method has been implemented in an R package with an interface to the
popular R-INLA software for computationally efficient inference of latent Gaussian models.
As an illustration of the power of the method, we present an inverse problem application
in environmental statistics, where the parameters of a fractional SPDE, observed under
Gamma distributed observations, are estimated. The estimated model is then used to
estimate precipitation at unobserved locations.

This is joint work with Alexandre B. Simas and Zhen Xiong from KAUST.
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High order collocation methods for fractional

differential equations

Angelamaria Cardone
Department of Mathematics, University of Salerno,

via Giovanni Paolo II, n.132, I-84084 Fisciano (Sa), Italy

The numerical treatment of fractional differential equations raises a challenging issue
regarding the accuracy. As a matter of fact, due to the lack of smoothness of the solution
near the origin, several numerical methods exhibit low order of convergence. Spline col-
location methods are able to overcome this problem, when applied on a suitable graded
mesh [1, 2, 3, 4]. Within this class, we pay special attention to two-step collocation meth-
ods, which doubles the order of convergence at the same computational cost of one-step
collocation methods. In this talk, we illustrate both one and two-step spline collocation
methods, analyze their convergence and stability properties. In addition, we discuss their
efficient MATLAB implementation and show some numerical examples. The presented
results have been obtained in collaboration with Dajana Conte and Beatrice Paternoster,
from University of Salerno.
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A conservative numerical method for a time fractional

diffusion equation

A. Cardone G. Frasca-Caccia
Department of Mathematics, University of Salerno

Fisciano, Via Giovanni Paolo II 132, Italy

Geometric numerical integration, the branch of numerical analysis with the goal of
finding approximate solutions of differential equations that preserve some structure of the
continuous problem, is a well established field of research [5].

In particular, requiring that invariants or conservation laws are preserved, on one hand,
applies on the approximations some constraints that are satisfied also by the exact so-
lutions. On the other hand, it guarantees a better propagation of the error over long
integration times [3].

In the last two decades, new techniques for finding conservation laws of fractional
differential equations have been derived by suitably generalising methods for PDEs [4, 6].
However, the numerical preservation of conservation laws of time fractional differential
equations is a research topic still at an embryonic state.

This talk deals with the numerical solution of diffusion equations in the form

Dα
t u = D2

xK(u), α ∈ R,

where Dx is the partial derivative in space, K is an arbitrary regular function, and Dα
t

denotes the Riemann-Liouville fractional derivative of order α.
The proposed numerical method combines a finite difference scheme in space with a

spectral time integrator and preserves discrete versions of the conservation laws of the
original differential equation [1, 2].

The conservative and convergence properties of the proposed method are verified by
the computational solution of some numerical experiments.
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Cyclotides are small peptides (28-37 amino acid residues) isolated from some plants and
characterized by a cyclic peptide backbone and three interconnected stabilizing disulfide
bonds – the cyclic cystine knot (CCK) motif [1]. They exhibit a wide range of biological ac-
tivities, including anti-HIV, insecticidal, antitumor, antifouling, antimicrobial, hemolytic,
neurotensin antagonisms, trypsin inhibition and uterotonic activities. The cyclic nature
and the knotted topology of cylotides explain their conformational stability, temperature
resistance, as well as their resistance to proteolytic degradation which allows them to sur-
vive when heated, as well as in the gastrointestinal tract. This helps them to maintain
their activity when taken orally – a property almost unique in the world of peptides and
proteins.

The range of potential applications of cyclotides is further expanded with the possibility
of using them as a stabilizing skeletal construct of other biologically active epitopes [2]. An
inspiring example is the engineered bioactive cyclotide MCoCP4, obtained by grafting a
linearized derivative from the cyclic peptide CP4 (SLATWAVG) in loop 6 of the cyclotide
MCoTI-II (PDB ID 1IB9), which was shown to reduce the α-synuclein toxicity in yeast and
animal models [3, 5], accounting for characteristic aspects of the pathogenesis of Parkinson’s
disease. This makes MCoCP4 a promising reference point in the process of drug design.
However, there is a controversy about the dynamic consequences of the grafting procedure.
In particular, crystallographic data indicates reduced dynamics in loop 1, which engages the
trypsin active site, upon trypsin binding, in odds with the NMR data, and a computational
study suggests the emergence of a new intermediate conformation, which facilitates this
binding [4].

In the present study, we take a systematic approach in analyzing the implications on
the geometry and dynamics of topologically non-trivial biomolecules undergoing a grafting

*xubiaopeng@bit.edu.cn
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Figure 1: The primary structure of MCoCI-II (PDB ID 1IB9).

procedure by engineering virtual mimics of the investigated Parkinson inhibitor MCoCP4,
with different grafting topologies: in addition to the original one, with a replacement at
position 4 in loop 6, we probe grafting topologies with replacements at positions 10, 18,
and 22, respectively in loops 1, 2, and 3 (Fig.1). These three representative topologies
were chosen to cover charge and position variability, and to avoid possible steric clashes.
The grafting in loop 1 confers a decrease in the net charge of the molecule by +1 unit, the
grafting in loop 2, similarly to the original scheme in loop 6, confers a net charge increase
by +1 unit, and the grafting in loop 3 does not affect the overall electric charge.

Synthetic data was generated by long-scale molecular-dynamics (MD) simulations of 1
µs for each system, using the software package GROMACS 5.1.1 [6]. For analysing the
local geometry of the investigated grafting topologies, the Discrete Frenet Frame (DFF)
formalism (see [7] and the references therein) was applied, in which an adequate description
of the protein chain is provided in terms of a complete set of variables — the generalised
bond and torsion angles (κ, τ). The folding indices for the protein backbone and side
chains were computed following the definitions in [8]. In studying the protein dynamics,
the quality of the synthetic data was controled by a lagged RMSD analysis [9]. The
conformational ensembles of the CP4 segment in the investigated grafting topologies were
classified based on their geometrical specifics (Fig. 2).

Figure 2: CP4 conformational ensembles projected onto the
regular secondary-structure conformations in the investigated
grafting topologies 1, 2, 3, and 6.

We observe substantial
differences in the volatility
and conformational plas-
ticity of different parts of
the engineered mimics de-
pending on the grafting
position, charge distribu-
tion, and initial conforma-
tion specifics. These ob-
servations, together with
those from studying the
binding dynamics between
the CP4 fragments and the
oligomeric α-synuclein in
the above grafting topolo-
gies can be used as a guid-
ance in engineering of ther-
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apeutics against Parkinson
disease, combining the efficacy of the small-molecule CP4 inhibitor with the stability and
application ease of a cyclic macromolecular scaffolding.
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1 Problem Formulation

Let H be a Hilbert space with a scalar product (u, v) for u, v ∈ H. Then the L2 norm is
defined as ‖u‖ = (u, u)1/2.

Let A be a self-adjoint positive definite operator

A : H → H, A = A∗, A ≥ cI, c > 0,

where I is the identity operator. Next we define a fractional power of this operator Aα

with a fractional parameter 0 < α < 1. This definition can be done in a non-unique way
and we use the spectral approach. Let us solve the standard eigen-problem

Aψj = λjψj, j = 1, 2, . . . .

All eigenvalues are positive. A nonlocal operator Aα with fractional parameter 0 < α < 1
is defined as Aαu =

∑∞
j=1 λ

α
j (u, ψj)ψj.

We solve the following Cauchy problem:

∂u

∂t
+ Aαu = F, 0 < t ≤ T, u(0) = u0, u0 ∈ H. (1)

This presentation is a continuation of analysis started in [1, 2]. The construction of discrete
schemes, the stability and convergence analysis are done in four steps. They define a general
framework of our theoretical analysis.

In the first step we approximate operator Aα by considering a finite-dimensional
Hilbert space Hh. For simplicity we denote a scalar product in Hh again as (U, V ), for
U, V ∈ Hh. By taking into account the spectral definition of the nonlocal operator Aα,
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we approximate the local operator A by applying the finite-volume or the finite-element
methods. It is required to guarantee that Ah is again a self-adjoint positive definite operator

Ah : Hh → Hh, Ah = A∗h, Ah ≥ cIh, c > 0,

where Ih is the discrete identity operator. The accuracy of approximation of nonlocal
operator Aα by Aαh can’t be estimated in a classical and popular way when the Taylor
series technique is used. It is recommended to base this analysis on the approximation
accuracy of the discrete eigenvalue problem

Ahψhj = µjψhj, j = 1, . . . , J.

In the second step, the semi-discrete problem is approximated by some classical dis-
crete scheme, e.g. the Backward Euler (BE) scheme

Un − Un−1

τ
+ AαhU

n = F n, n = 1, . . . , N, U0 = U0. (2)

Lemma 1. If a solution of the problem (1) is sufficiently smooth, then the approximation
error of BE scheme (2) is of order O(τ).

The proof is standard and it is based on Taylor series technique. The stability analysis
of scheme (2) is also simple and it can be done by using the Fourier or energy techniques.

Lemma 2. The BE scheme (2) is unconditionally stable.

‖Un‖ ≤ ‖U0‖+ τ
n∑
k=1

‖F k‖.

In the third step, we construct fully discrete schemes, they are based on rational
approximations. We can write the BE scheme (2) in the following form

Un = (Ih + τAαh)−1(Un−1 + τF n).

The next step is general, when we approximate the nonlocal operator (Ih + τAαh)−1 by
some local rational operator (Ih + τAαh)−1 ≈ rm(Ah). As example, we use BURA-BRASIL
scheme, where the approximation of the best uniform rational approximation is constructed
by using the BRASIL algorithm [3]. Then the following scheme is constructed

V n = rm(Ah)
(
V n−1 + τF n

)
, n = 1, 2, . . . , N, V 0 = U0. (3)

First we investigate the stability of scheme (3). Note, that

‖Ih + τAαh)−1‖ ≤ 1

1 + τµα1
≤ 1− τµα1 .
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Let m is sufficiently large in order to satisfy the estimate∣∣(1 + τzα)−1 − rm(z)
∣∣ ≤ τµα1 , ∀z ∈ [µ1, µJ ],

Then we get the required stability inequality.
The approximation error of the third step is computed directly by using the spectral

accuracy of rational operator rm(Ah). As a second example we use URA-BRASIL type
scheme.

In the last, fourth step parallel algorithms are used to solve the obtained systems of
elliptic equations efficiently.
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Abstract

In this work, we present numerical treatment and analysis for a class of multi-

term time-fractional Burgers-type equations involving the Caputo derivative. The

proposed method consists of temporal discretization using the L2 formula and spatial

discretization using the exponential B-splines. The semi-implicit approach is applied

to discretize the nonlinear term. The Von-Neumann method is utilized for stability

analysis. We also present the convergence analysis. Numerical examples are solved to

validate the capability of the proposed method. Comparisons with the recent works

confirm the efficiency and robustness of the proposed method.
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S. Harizanov, I. Lirkov, S. Margenov
Institute of Information and Communication Technologies

Bulgarian Academy of Sciences

1 Introduction

Processes in porous media with inclusions are vital for various natural and artificial mate-
rials. In the context of this study, the flow in fractured porous media is a typical example
of a non-local process, which naturally connects the problems under consideration with
fractional diffusion operators. Here we use some recent advances in numerical methods
for fractional diffusion problems [2]. The presented results are in the spirit of [3], general-
izing the idea of using rational approximations in robust preconditioning of multiphysics
problems. The application of the BURA method for fractional diffusion-reaction problems
developed in [4], allows us to extend the theory from [3] to a wider class of block-diagonal
preconditioners for the related coupled saddle-point systems. It may be surprising that,
for α ∈ (0, 1), q ≥ 0, the matrix-vector multiplication by A

α + qI is a more difficult task
to solve than solving the linear system (Aα + qI)u = f .

2 Block-diagonal preconditioning of saddle-point

problems

Examples of multiphysics and multiscale problems that involve interface coupling through
manifolds of lower dimensions are considered in [1, 5], see also the references therein. After
a proper discretization (e.g., by the method of finite elements) such models lead to systems
of linear equations with saddle-point matrices. We consider two kinds of block-diagonal
preconditioners depending on the sign of the fractional powers α ∈ (0, 1) and β ∈ (−1, 0):

Cq,α = Diag [A1,A2, · · · ,Anα
, (A∆,Γ + qIΓ)

α] ,

Cq,β = Diag
[
B1,B2, · · · ,Bnβ

, (B∆,Γ + qIΓ)
β
]
.

We assume that in both cases optimal condition number estimates hold. The first nα blocks
of Cq,α, respectively the first nβ blocks of Cq,β, are sparse, symmetric and positive definite.
The last blocks are fractional. thus nonlocal. They act on the sub-vectors corresponding
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to the mesh points from the interface Γ, where in particular A∆,Γ and B∆,Γ stand for the
related discrete Laplacians. Therefore, the challenging problem in implementation of the
introduced block-diagonal preconditioners concerns the last blocks only.

3 BURA based preconditioners

Let us denote by rq,α,k the best uniform rational approximation (BURA) of degree k of
zα/(1 + qzα), z ∈ [0, 1], and let Eq,α,k be the corresponding sup-error. Following [2, 4], we
generalize the definitions of BURA based preconditioners introduced in [3] from q = 0 to
the case q 6= 0 in the form:

(
C

BURA
α,k (A∆,Γ + qIΓ)

)
−1

= λ−α
1,hrq,α,k(λ1,hA

−1
∆,Γ), α ∈ (0, 1);(

C
BURA
β,k (B∆,Γ + qIΓ)

)
−1

= Bλ
−(1+β)
1,h rq,1+β,k(λ1,hB

−1
∆,Γ), β ∈ (−1, 0).

In this way we obtain the block-diagonal preconditioners:

C
BURA
q,α = Diag

[
A1,A2, · · · ,Anα

,CBURA
α,k (A∆,Γ + qIΓ)

]
,

C
BURA
q,β = Diag

[
B1,B2, · · · ,Bnβ

,CBURA
β,k (B∆,Γ + qIΓ)

]
.

4 Condition number estimates

The next lemmas characterize the convergence of proposed preconditioners.
Lemma 1. Assume that the BURA degree k is large enough so that κα(A∆,Γ + qIΓ) <

E−1
0,α,k. Then, the following condition number estimate for the preconditioner CBURA

α,k , α ∈
(0, 1), holds true

κ
((

C
BURA
α,k (A∆,Γ + qIΓ)

)
−1

(A∆,Γ + qIΓ)
α
)
≤

1 + Eq,α,k κα(A∆,Γ + qIΓ)

1− Eq,α,k κα(A∆,Γ + qIΓ)
.

Lemma 2. Assume that the BURA degree k is large enough so that κ1+β(B∆,Γ+qIΓ) <
E−1

0,1+β,k. Then, the following condition number estimate for the preconditioner CBURA
β,k ,

β ∈ (−1, 0), holds true

κ
((

C
BURA
β,k (B∆,Γ + qIΓ)

)
−1

(B∆,Γ + qIΓ)
β
)
≤

1 + Eq,1+β,k κ1+β(B∆,Γ + qIΓ)

1− Eq,1+β,k κ1+β(B∆,Γ + qIΓ)
.

The proves of both lemmas are based on arguments similar to those, used in [3, Lemmas
1 – 2].
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5 Concluding remarks

The block-diagonal preconditioners CBURA
q,α and C

BURA
q,β have optimal computational com-

plexity. This follows from the asymptotic estimates of Lemmas 1 and 2. The numerical

study of κ
((

C
BURA
α,k (A∆,Γ + qIΓ)

)
−1

(A∆,Γ + qIΓ)
α

)
and κ

((
C

BURA
β,k (B∆,Γ + qIΓ)

)
−1

(B∆,Γ + qIΓ)
β
)
for smaller k is also very important. We show that degrees of rational

approximation like k ∈ {4, 5, 6} are practically sufficient to ensure high quality BURA
preconditioning.
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Rational approximation methods with arbitrary

degrees of numerator and denominator

Clemens Hofreither (RICAM)

It is by now well understood that rational approximation methods are a powerful tool
for the numerical solution of spectral fractional diffusion equations, both for fractional-in-
space and fractional-in-time settings. In particular, best uniform rational approximations
of functions such as x−α often lead to best-in-class numerical methods in various situations.

Within this class, most efforts have been focused on “diagonal” rational approximations
where the degree of the numerator and the denominator are equal. When applying such
rational approximations to a discretization of a fractional problem, the number of poles
(that is, the denominator degree) corresponds to the number of applications of the inverse
matrix that are required. These inversions are generally more expensive than the applica-
tion of the sparse forward operator, even in the presence of optimal solvers. Therefore, it
may be of interest to study rational approximations where the degree of the numerator is
higher than that of the denominator, which essentially corresponds to the application of
an additional matrix polynomial to the right-hand side, which is relatively cheap.

Best rational approximations of diagonal type have been very successfully computed
using the BRASIL algorithm, which was also presented at the previous instalment of this
workshop. However, this algorithm rapidly loses robustness as we depart from the diagonal
case. Therefore, in this presentation we discuss a new Newton’s method for best uniform
rational approximation which can deal with arbitrary degrees.

The new algorithm is based on a formulation of the problem as a nonlinear system
of equations and barycentric interpolation. We derive a closed form for the Jacobian of
the system of equations and formulate a Newton’s method for its solution. The resulting
method for best uniform rational approximation typically converges globally and exhibits
superlinear convergence in a neighborhood of the solution. Interesting auxiliary results
include formulae for the derivatives of barycentric rational interpolants with respect to the
interpolation nodes, and for the derivative of the nullspace of a full-rank matrix.

Using this new algorithm as a tool, we then explore best approximation errors of func-
tions of interest in the nondiagonal rational setting and ramifications for the numerical
solution of spectral fractional diffusion equations.
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In this work we develop an atomistic kinetic Monte-Carlo model describing carbon
diffusion in the non-homogeneous stress field created by a 1/2[111] screw dislocation in
bcc-iron, where the behaviour of individual atoms is explicitly taken into account. This
kMC model allows us to study both the diffusing carbon residing in the dislocation core,
and carbon atoms which move through the interstitial sites in dislocation surroundings.

In the present study we use carbon migration energy barriers in the vicinity of a 1/2[111]
screw dislocation in bcc iron calculated in [1]. The energetic profile of a carbon atom around
a screw dislocation was determined by employing the EAM potential [2] and the nudged
elastic band (NEB) technique [3]. The NEB method allows to determine the MEP of a
carbon atom jumping from one binding site in the vicinity of the dislocation to another
one in the neighbourhood of the original site. We employ the present kMC model to
simulate carbon diffusion, trapping and detrapping in the stress field generated by a screw
dislocation.

By performing long-scale carbon diffusion simulations we study the formation of car-
bon Cottrell atmospheres [4] around screw dislocations at different temperatures and back-
ground carbon concentrations. The kMC simulations allow us to predict the rate of forma-
tion and strength of carbon atmospheres which control the dislocations behaviour resulting
in dynamic strain ageing in steel. Snapshots of the spatial distribution of carbon atoms
in 10 × 10 × 1 nm3 volume during formation of the Cottrell atmosphere around screw
dislocation are shown in Fig. 1.

The kMC approach, which explicitly accounts for the behaviour of individual carbon
atoms, offers an atomistic view of carbon drag mechanism by which mobile dislocations
can collect and transport carbon within their cores. Due to the strong attractive carbon

∗email: ivaylo.katsarov@kcl.ac.uk
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(a) (b)

(c)

Figure 1: The formation of a carbon Cottrell atmosphere illustrated by a series of snapshots.
The kMC simulations are carried out at a background carbon concentration of 0.85% and
temperature 300K. The simulation cell is oriented as X=[112], Y=[110] and Z=[111]. The
red coloured iron atoms designate the core region.
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(a)

(b)

(c)

Figure 2: The motion of a screw dislocation dragging carbon ilustrated by a series of
snapshots. KMC simulations are carried out at dislocation velocity vdis = 0.1 nm/s and
temperature 400 K.

binding region in the core it is in principle possible for screw dislocations to collect carbon
atoms and to redistribute them. In order to be able to follow the dislocation, the carbon
atoms trapped in the core need to diffuse at least as fast as the dislocation moves. Here
we estimate the velocity with which a carbon atmosphere can follow a moving dislocation.
Within our kMC model, we are able to simulate the migration behaviour at experimentally
relevant time scales. The kMC treatment of the carbon drag mechanism presented in
this work considers the evolution of the carbon cloud dragged by a mobile straight screw
dislocation inside a fixed volume parallelepipedal region 60× 10× 10 nm3. At the starting
time t = 0, the carbon atoms segregated to form an atmosphere around the 1/2[111] screw
dislocation are at equilibrium with the background carbon concentration. We employ the
kMC model to simulate the redistribution of carbon atoms when dislocation migrates in
the [110] glide plane with constant velocity vdis. We simulate the carbon drag mechanism
at different temperatures, background carbon concentrations and dislocation velocities and
estimate the maximal dislocation velocity at which the atmosphere of carbon atoms can
follow a moving screw dislocation. Carbon atoms trapped in the core can follow the
dislocation if it glides slowly and viscously via a Peierls mechanism, namely the process
of kink pair creation followed by kink migration. In particular we estimate the maximal
dislocation velocity vmax at which the atmosphere of carbon atoms can follow a moving
screw dislocation. At lower dislocation velocities the carbon atoms have sufficient time
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to follow the dislocation even at lower temperatures. At higher temperatures carbon has
a sufficiently high mobility to keep up with faster dislocations (Fig. 2). We consider
vmax(T, cC) as a limit above which screw dislocations break away from the carbon clouds
and can not glide slowly and viscously. The average velocities of the dislocations gliding
via a high-temperature Peierls mechanism, experimentally observed in [5], are in the range
(0, vmax(T, cC)) predicted by our kMC model.

Acknowledgements

This research was supported in part by the Bulgarian Science Fund under the National
Scientific Program “Petar Beron i NIE” (Project UMeLaMP) and under Grant KP-06-
N27/19/2018, and by the European Regional Development Fund, within the Operational
Programme “Science and Education for Smart Growth 2014–2020” under the Project CoE
“National centre of mechatronics and clean technologies” BG05M20P001-1.001-0008-C01.
Computational resources were provided by the Centre for Advanced Computing and Data
Processing, supported under Grant BG05M2OP001-1.001-0003 by the Science and Educa-
tion for Smart Growth Operational Program (2014-2020) and co-financed by the European
Union through the European structural and investment funds.

References

[1] Gh. Ali Nematollahi, Blazej Grabowski, Dierk Raabe, Joerg Neugebauer, Multiscale
description of carbon-supersaturated ferrite in severely drawn pearlitic wires, Acta
Materialia 111 (2016) 321–334.

[2] C. S. Becquart, J. M. Raulot, G. Bencteux, C. Domain, M. Perez, S. Garruchet, H.
Nguyen, Atomistic modeling of an Fe system with a small concentration of C, Comput.
Mater. Sci. 40 (2007) 119–129.

[3] G. Henkelman, and H. Jónsson, Improved tangent estimate in the nudged elastic band
method for finding minimum energy paths and saddle points. J. Chem. Phys. 113
(2000) 9978–9985.

[4] A.H. Cottrell, B.A. Bilby, Dislocation theory of yielding and strain ageing of iron, Proc.
Phys. Soc. Sect. A 62 (1949) 49–62.

[5] D. Caillard, Dynamic strain ageing in iron alloys: The shielding effect of carbon, Acta
Mater. 112 (2016) 273–284.

28



Images of special functions under generalized fractional

calculus’ integrals and derivatives

Virginia Kiryakova
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Many events and phenomena in the physical and social world happen to be better
modelled by equations and systems involving operators of Fractional Calculus (FC), that is
integral and differential operators of fractional order. In the cases when such problems can
be resolved analytically, their explicit solutions appear as the so-called Special Functions
(SF) of FC. Under this notion, we mean generally the Fox H-functions and the Wright
generalized hypergeometric functions pΨq, although the most popular ones are the Mittag-

Leffler function Eα,β and its multi-indices extensions E
(γ1,...,γm)

(α1,...,αm),(β1,...,βm)
. In cases of higher

integer order models, we have the simpler Meijer G-funcions, the pFq-functions and all
their particular cases known as SF of Mathematical Physics, or “Named” SF. More details
about these classes of SF can be found in the recent survey [12], and previous works as [2],
[3], [4], [5].

The analyical resolution of fractional order equations is essentially based on use of
integral transforms as of the Mellin- (see in [10]) and Laplace-type (see in [1]), and on
the knowledge for the images of the mentioned special functions under the operators of
classical FC and also of Generalized FC (GFC), in the sense of [1] and [9].

This topic, evaluation of images of special functions under operators of FC, became
very hot with hundreds of recently published papers, their number growing daily. There
is a flood of results for various operators of fractional order integration and differentiation
and their generalizations of different special (and elementary) functions. This is natural
because there is a great variety of special functions and also of operators of (classical and
generalized) fractional calculus. Aside from missing an unified approach, most of these
publications use same formal and standard procedures, and often the results sound not
of practical use, because the final results are either in terms of different kind of special
function, or are not recognized as known special functions, or have not enough visible
form.

In a series of older and very recent works (mentioned in the list below) we have presented
an unified approach to do the mentioned task at once and in well visible form, for both
operators of generalized fractional calculus and all generalized hypergeometric functions

pΨq and pFq, thus incorporating most of the special (and elementary) functions. In this
way, great part of the results in the mentioned publications are well predicted and appear
as very particular cases, [6].
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For example, we provide clear and shortly written results for operators of GFC (in-
volving compositions of Riemann–Liouville, Erdélyi-Kober, Saigo, Marichev-Saigo-Maeda,
hyper-Bessel and generalized Gel’fond-Leont’ev operators, etc.) of the H-functions and

pΨq-functions in general (including the variety of mentioned SF of FC and “clasical” SF
and elementary functions).

The proposed general scheme is based on some few basic classical results, combined
and extended with ideas and developments from the author’s research, surveyed recently
in Kiryakova [6], [7], [8], [11], [12].
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Usually in the real-world simulation of the atmospheric pollution the basic feature of
the phenomena could be explained by the non-stationary advection-diffusion equation [2]

∂αc

∂tα
+ v

∂c

∂y
− w

∂c

∂z
−

∂

∂y

(
Ky

∂c

∂y

)
−

∂

∂z

(
Kz

∂c

∂z

)
− qc = f(y, z, t), (1)

where c = c(y, z, t) is the average concentration, ∂αu

∂tα
represents the Caputo fractional

derivative ( Γ(·) is Gamma function)

∂α

∂tα
=

1

Γ(1− α)

t∫

0

∂u(y, z, ξ)

∂ξ
(t− ξ)−αdξ, 0 < α < 1 and

∂u(y, z, t)

∂t
, α = 1. (2)

The horizontal dimension y, 0 < y < Y is from hundred to several kilometers, while
for the vertical direction 0 < z < Z, the typical is the diffusion degeneration Kz(y, 0, t) =
Kz(y, Z, t) = 0. For example, according to the Monin-Obukhov theory of the atmospheric
layers Kz(y, 0, t) = ϕ(t)zβ(Z − z)γ(1 − 22) z

L
, where L < 0 is the Monin-Obukhov length,

ϕ(t) is the measured friction function and β, γ > 0 are constants.
The main goal of the present study is the analysis of the influence of the vertical

diffusion degeneration on the propagation of the concentration c(y, z, t). It is sufficient to
investigate the one-dimensional model equation with ends degenerations.

Dα
0 u = k(x, t)

∂2u

∂x2
+ p(x, t)

∂u

∂x
+ q(x, t)u+ f(x, t), (x, t) ∈ QT = Ω× (0, T ), (3)

u(x, 0) = u0(x), x ∈ Ω, k(0, t) = 0, k(l, t) = 0, k(x, t) ≥ k̃ > 0, x ∈ Ω = (0, l). (4)
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In the first part, the analytical study discussed the maximum principle (MP) and the
energy correctness of the problem (3)-(4). For time-fractional equations without degen-
eration, the weak maximum principle was proved by Luchko (2009) assuming negative
coefficient q and this restriction on the reaction coefficient on the sign was removed by
Luchko and Yamamoto (2017) and Kopteva [3]. In our case we cannot remove the restric-
tion because of the boundary degeneration.

Lemma 1 (Maximum principle). Assume the formulation (3)-(4) holds and −q(x, t) ≥ q̃ >

0, u(x, t) ∈ C2,1(QT ) ∩ C(QT ). If Lu = Dα
0 u − k(x, t)∂

2u

∂x2 − p(x, t)∂u
∂x

− q(x, t)u ≤ 0, then
u(x, t) can only attain the positive maximum at the non-degenerate parabolic boundary.

Corollary 1. Suppose that the assumptions of Lemma 1 hold, but Lu ≥ 0, then u(x, t)
only attains its negative minimum at the non-degenerate parabolic boundary.

Theorem 2. Suppose that the assumptions of Lemma 1 hold without of the sign of Lu

defined. Then, for u(x, t) we have the following estimate

max
QT

u ≤ max

{
1

q̃
sup
QT

|f |, sup
Ω

|u0|

}
.

We rewrite the equation (3) in the semidivergent form

Dα
0 u = Lu+ f(x, t), Lu =

∂

∂x

(
k(x, t)

∂u

∂x

)
+

(
p(x, t)−

∂k(x, t)

∂x

)
∂u

∂x
+ q(x, t)u. (5)

The coefficient at ∂u

∂x
plays a crucial role at the discretization of the boundary conditions.

Namely, if

p(0, t)−
∂k(0, t)

∂x
≥ 0 and p(1, t)−

∂k(1, t)

∂x
≤ 0 for t ∈ [0, T ], (6)

no boundary conditions can be imposed. If p(0, t)− ∂k(0,t)
∂x

< 0 for t ∈ [0, T ], a boundary
conditions at x = 0, such as u(0, t) = ϕl(t) for t ∈ [0, T ], must be imposed in order

to have unique solution. If p(1, t) − ∂k(1,t)
∂x

> 0 for t ∈ [0, T ], a boundary conditions at
x = l, such as u(l, t) = ϕr(t) for t ∈ [0, T ], must be imposed. This discussion provides
the well-posedness of the initial-boundary value problems, such defined.

Theorem 3. Let k(x, t) ∈ C1,0(QT ), p(x, t), q(x, t), f(x, t) ∈ C(QT ), k(x, t) is defined in
(4) and q(x, t) ≤ 0 everywhere in QT . If the solution as defined above exists in C2,1(QT ),
then it is unique and stable with respect to the initial value u0(x) and right-hand side f(x, t)
and the boundary values of φl(t) and ϕr(t). Also, the following estimate holds

‖u‖2L2
(t) ≤ ‖u0‖

2
L2Eα(C1 + α) + Γ(α)Eα,α(C1t

α)D−α
0 C2(t),

where C1 = 1 + c1 + c2 + 2c3 and C2(t) =
l∫
0

f 2(x, t)dx+ c4(t)ϕ
2
l (t) + c5(t)ϕ

2
r(t),

c1 = max
(x,t)∈QT

∣∣∣∂2k(x,t)
∂x2

∣∣∣ , c2 = max
(x,t)∈QT

∣∣∣∂p(x,t)
∂x

∣∣∣ , c3 = max
(x,t)∈QT

|q(x, t)| ,

c4 = −min
{
0, p(0, t)− ∂k(0,t)

∂x

}
, c5 = max

{
0, p(l, t)− ∂k(l,t)

∂x

}
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and Eα(·), Eα,α(·) are Mittag-Leffler functions.

Further, on the base of (6), we construct positivity preserving numerical scheme for (5).
For the discretization of the time fractional derivative we use L1 formula on non-uniform
time grid [4]. To obtain the spatial discretization we unfold the monotonic method proposed
in [1]. We extend the idea for the case, when no boundary conditions are imposed.

We introduce non-uniform spatial and temporal meshes with N and M grid nodes,
respectively. Denote the numerical solution at point (xi, t

n) by Un
i and write the discrete

equations in the form

LhU
n+1
i = 0, i = 0, 1, . . . ,M, n = 0, 1, . . . ,M. (7)

Theorem 4. Suppose that the assumptions of Lemma 1 holds. If LhU
n
i ≤ 0, i = 0, 1, . . . , N ,

n = 0, 1, . . . ,M , then the solution Un
i , i = 0, 1, . . . , N , n = 0, 1, . . . ,M of (7) attains its

positive maximum only at the non-degenerate parabolic boundary.

Corollary 2. If u0(x) ≥ 0 and ϕl(t) ≥ 0, ϕr(t) ≥ 0 (in the case p(0, t) − ∂k

∂x
(0, t) < 0,

p(l, t)− ∂k

∂x
(l, t) > 0), then Un

i ≥ 0, i = 0, 1, . . . ,M , n = 0, 1, . . . ,M .

Acknowledgements This research is supported by the Bulgarian National Science Fund
under the Bilateral Project KP/Russia 06/12 “Numerical methods and algorithms in the
theory and applications of classical hydrodynamics and multiphase fluids in porous media”
from 2020.

References

[1] E. I. Golant, Conjugate families of difference schemes for equations of parabolic type
with lowest terms, Zh. Vychisl. Mat. Mat. Fiz. 18(5), 1162–1169 (1978).

[2] A.G.O. Goulart, M.J. Lazo, J.M.S. Suarez, D.M. Moreira,Fractional derivative mod-
els for atmospheric dispersion of pollutants, Physica A:Statistical Mechanics and its
Applications 477, 9–19 (2017).

[3] N. Kopteva, Maximum principle for time-fractional parabolic equations with reaction
coefficient of arbitrary sign, arXiv:2202.10220v1, Feb. 2022.

[4] M. Stynes, E. O’Riordan, J.L. Gracia, Error analysis of a finite difference method on
graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal. 55(2),
1057–1079 (2017).

34



Pointwise-in-time a-priori and a-posteriori error control

for time-fractional parabolic equations

Natalia Kopteva
Department of Mathematics and Statistics, University of Limerick

Ireland
Web page: https://staff.ul.ie/natalia/

An initial-boundary value problem with a Caputo time derivative of fractional order
α ∈ (0, 1) is considered, solutions of which typically exhibit a singular behaviour at an
initial time. For this problem, building on some ideas from [1], we give a simple and
general numerical-stability analysis using barrier functions, which yields sharp pointwise-
in-time error bounds on quasi-graded temporal meshes with arbitrary degree of grading.
This approach is employed in the error analysis of the L1 and Alikhanov L2-1σ fractional-
derivative operators [2], as well as an L2-type discretization of order 3 − α in time [3].
This methodology is also generalized for semilinear fractional parabolic equations [4]. In
particular, our error bounds accurately predict that milder (compared to the optimal)
grading yields optimal convergence rates in positive time. The theoretical findings are
illustrated by numerical experiments.

Furthermore, pointwise-in-time a posteriori error bounds will be given in the spatial
L2 and L∞ norms. Hence, an adaptive mesh construction algorithm is applied for the L1
method, which yields optimal convergence rates 2−α in the presence of solution singular-
ities [5, 6].
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1 Non-overlapping domain decomposition

We consider the Poisson equation −∆u = f in the polygonal domain Ω ∈ R
2, equipped

with appropriate boundary conditions on Γ = ∂Ω. Assume that the Finite Element Method
(FEM) is applied for numerical solution of the problem using linear elements on a quasi-
uniform triangulation Th, thus obtaining the linear system Au = f .

We now assume that {Ωi}
m
i=1 is a non-overlapping partitioning of Ω with interface γ.

The stiffness matrix A is written in the form

A =

(
AD ADγ

AγD Aγ

)
, AD = blockdiag (A1, A2, · · · , Am) ,

where the blocks Ai correspond to the subdomains Ωi, i = 1, 2, · · · ,m, and Aγ - to the
interface. The studied multiplicative non-overlapping domain decomposition (DD) precon-
ditioner reads as [3, 4]

CDD =

(
AD

AγD Λ1/2

)(
I A−1

D ADγ

I

)
,

where Λ is the discrete Laplacian corresponding to Th ∩ γ. It is known that κ
(
C−1

DDA
)
=

O(1), that is the DD preconditioner provides an optimal convergence rate. For the model
problem on a regular mesh with an interface along a single mesh line, Λ = tridiag(−1, 2,−1),
and when in the PCG method FFT is used to solve the systems with Λ1/2, the DD pre-
conditioner has almost optimal complexity O(N), N is the number of FEM unknowns;
see, for example, the pioneering work [3] and its generalization [4]. Until recently, the
implementation of the preconditioner CDD in the case of general geometry of the manifold
γ was a challenging problem.

2 BURA based preconditioner

Let us denote by r1/2,k the best uniform rational approximation of degree k of z1/2, z ∈ [0, 1],
and let E1/2,k be the corresponding error [1]. It is known that E1/2,k decreases exponentially
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with increasing k. Following [2], we consider the preconditioner CBURA
1/2,k

(Λ) of Λ1/2 defined
by its inverse (

CBURA
1/2,k (Λ)

)
−1

= λ
−1/2

1,h r1/2,k(λ1,hΛ
−1),

where λ1,h > 0 is the minimal eigenvalue of Λ. Then assuming that the degree k is large
enough so that E1/2,k κ1/2(Λ) < 1, the following condition number estimate holds

κ
((

CBURA
1/2,k (Λ)

)
−1

Λ1/2
)
≤

1 + E1/2,k κ1/2(Λ)

1− E1/2,k κ1/2(Λ)
.

Now the proposed BURA based DD preconditioner has the form

CBURA
DD,k =

(
AD

AγD σCBURA
1/2,k,σ

(Λ)

)(
I A−1

D ADγ

I

)
,

where σ > 0 is a parameter, independent of the mesh size h. CBURA
DD,k is an asymptotically

optimal preconditioner, i.e. it’s computational complexity is O(N). The estimates from
[4] show that small degree k (say 3 or 4) is enough for efficient application of the method.
From a practical point of view it is important that for larger N the degree k (that is the
number of auxiliary linear systems with matrices which are positive diagonal perturbations
of Λ) has little effect on the overall computational complexity.

3 Numerical tests

The numerical results are for a test problem in Ω = (0, 1) × (0, 1), m = 4, and Ω1 =
(0, 0.5)× (0, 0.5), Ω2 = (0.5, 1)× (0, 0.5), Ω3 = (0, 0.5)× (0.5, 1) and Ω4 = (0.5, 1)× (0.5, 1),
assuming homogeneous Dirichlet boundary conditions. The right-hand side is f(x, y) =
sin(πx) sin(πy), corresponding to the solution u(x, y) = sin(πx) sin(πy)/(2π2). All matrices
are obtained by linear FEM discretization on uniform mesh with a mesh parameter h.
The number of Preconditioned Conjugate Gradient (PCG) iterations with the domain
decomposition preconditioner CBURA

DD,k,σ are examined, where k = 12 and σ = 2.

Table 1: Number of finite elements Ne, number of unknowns N , and number of PCG
iterations Nit with preconditioner CBURA

DD,12,2: stopping criteria ǫ = 10−6

Ne N Nit

8 388 608 4 190 209 9
2 097 152 1 046 529 8
524 288 261 121 8
131 072 65 025 8
32 768 16 129 7

The reported results illustrate the optimal convergence rate of the proposed non-
overlapping domain decomposition method.
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Fractional operators in coupled multiphysics problems

with implicit coupling *

Miroslav Kuchta
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Abstract

Construction of parameter robust solution algorithms for coupled multiphysics

problems is challenging due to the interaction between the system components and

practical applications require that the solvers perform uniformly across parameter

regimes. For model formulations where the coupling is realized in terms of La-

grange multipliers, robust monolithic preconditioners are known to rely on operators

in weighted fractional Sobolev spaces over the interface. In this contribution, we

show that fractional order operators are crucial for robustness even in multiphysics

formulations where the coupling is implicit and where no auxiliary interface variables

are present.

Keywords: Robust solvers, parameter-robust preconditioning, fractional order op-

erators

1 Introduction

In order to distinguish between the formulations with explicit/implicit coupling let us
introduce an abstract multiphysics problem posed on non-overlapping domains Ω1, Ω2

with a common interface Γ = Ω1 ∩ Ω2. The physics in the respective subdomains is
assumed to be described by operators Ai : Vi → V ′i , i = 1, 2 while the coupling between
the systems is stated in terms of the restriction operators Ti : Vi → Q′. Here Vi = Vi(Ωi)
and Q = Q(Γ) are Hilbert spaces. Alternatively, the interaction between the subsystems
can be represented by the coupling operator C : V1 → V ′2 . Finally, letting ui ∈ Vi be
the unknowns in the bulk domains and λ ∈ Q be the Lagrange multiplier enforcing the
interface coupling, we formally de�ne two formulations of the multiphysics problem: Given
fE, respectively f I , �nd uE := (u1, u2, λ), respectively uI := (u1, u2), such that

AEuE :=

A1 0 T ′1
0 A2 T ′2
T1 T2

u1

u2

λ

 = fE, AIuI :=

[
A1 C ′

C −A2

] [
u1

u2

]
= f I . (1)
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Due to presence of the explicit interface variable we refer to the formulation induced by
operatorAE as having explicit coupling whileAI leads to the implicit coupling formulation.

We remark that the operators Ai in AE, AI in (1), as well as the bulk variables ui in the
two formulations, are not identical in general since they typically stem from di�erent strong
formulations. For example, the (explicitly) coupled Stokes-Darcy problem [12] utilizes the
Darcy formulation in terms of pressure p and �ux u := −K∇p so that u2 := (u, p) ∈ V2 :=
H(div,Ω2)× L2(Ω2) and

〈A2(u, p), (v, q)〉 :=

∫
Ω2

(
K−1u · v − p∇ · v − q∇ · u

)
dx ∀(v, q) ∈ V2.

Moreover, Ti corresponds to the normal trace operator Tiui = ui ·ν with ν being the normal
to the interface and

〈A1(u1, p1), (v1, q1)〉 :=

∫
Ω1

2µε(u1) : ε(v1) dx+

∫
Γ

αBJS

√
µ
K
Pνu1 · Pνv1 ds

−
∫

Ω1

(p1∇ · v1 + q1∇ · u1) dx ∀(v1, q1) ∈ V1 := H1(Ω1)× L2(Ω1).

Here, Pν = Id − ν ⊗ ν, ε = sym∇ and αBJS, µ, K are positive coe�cients. On the other
hand, while using the same operator A1, the (implicitly coupled) Stokes-Darcy problem [6]
is based on the primal Darcy formulation, and in turn u2 := p ∈ V2 := H1(Ω2) and

〈A2p, q〉 :=

∫
Ω2

K∇p · ∇q dx ∀q ∈ V2.

The coupling operator is then 〈Cu1, q〉 :=
∫

Γ
qu1 · ν ds, (u1, q) ∈ V1 ×Q.

The formulations due to AE, AI lead to numerical methods which di�er by approxi-
mation properties or properties of the discrete solution, e.g. mass conservation. Given the
same triangulation of the domains Ωi the operators also di�er in their computational cost;
the approaches lead to linear systems having di�erent number of degrees of freedom which
may also be more amenable to a particular solution approach. For example, parameter
robust domain decomposition approaches are known for the explicit Stokes-Darcy problem
[3, 7] while for the implicit formulation, robustness is limited to certain parameter regimes
or requires tuning of algorithmic parameters [5]. In the following, we shall construct robust
monolithic solvers for (1) in the form of preconditioned Krylov methods.

2 Monolithic preconditioners

Assuming operators Ai in (1) are self-adjoint and coercive on spaces Vi, preconditioners
for the implicit/explicit formulations can be derived as Schur complement preconditioners
[14]. Then, however, spectrally equivalent approximation to the Schur complement must be
available and for parameter robustness the equivalence bounds must be independent of the
parameters. Such approximations can be constructed by establishing well-posedness of (1)
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(see [13, 9]), as the operators inducing the inner product on spaces Q for AE, respectively
V2 for AI .

For the explicit formulation the Schur complement T1A
−1
1 T ′1 + T2A

−1
2 T ′2 is de�ned over

the interface and from considerations about the mapping properties of the restriction op-
erators it is natural to consider its approximations in the form (−α1∆Γ)s1 + (−α2∆Γ)s2 .
Here, −∆Γ is the Laplace operator on the interface, the coe�cients αi > 0 are related to
model parameters while the exponents si ∈ R are speci�c to Ti, Ai and Vi, Q. Indeed,
the construction in terms of the fractional Laplacian has been used to construct robust
preconditioners in coupled di�usion problems [11] (therein, si = −1

2
), coupled reduced

order problems [10] (therein, s1 = −1
2
, s2 = −1) or explicit Stokes-Darcy problem [8]

(therein, s1 = −1
2
, s2 = 1

2
). In these cases the fractional operators arise from the Lagrange

multipliers being posed in intersection spaces α
1/2
1 Hs1(Γ) ∩ α1/2

2 Hs2(Γ).
The issue with the implicit formulation AI is that the Schur complement A2 +CA−1

1 C ′

now constitutes an operator in the bulk and not on the interface. Clearly, the latter
summand represents a contribution due to the coupling. However, how to construct its
approximation as an operator over Ω2 is far from evident. For example, the weighted
identity operator (leading to scaled mass matrix) considered in [4] does not yield robust
preconditioning. In order to obtain robustness, we propose here the construction

A2 +R′(−α1∆Γ)s1R, (2)

R being a suitable restriction operator, which attempts to re�ect the role of CA−1
1 C in the

coupling.

3 Results

In our recent work [1, 2] we utilize the ansatz (2) to construct parameter robust precondi-
tioners for coupled Stokes-Darcy and Stokes-Biot system. In particular, the construction
is rigorously justi�ed by analysis of the continuous problems where we show well-posedness
with the Darcy1 pressure controlled in the norm

‖p‖2
V2

:= K‖∇p‖2
L2(Ω2) + (2µ)−1‖p‖2

H−1/2(Γ). (3)

Note the presence of the fractional norm on the interface. The complete preconditioner for
Stokes-Darcy formulation AI is then a diagonal operator

BI =

−∇ · (2µε) + αBJSPν
′ Pν

(1/(2µ))I
−K∆Ω2 + (− 1

2µ
∆Γ)−1/2

−1

. (4)

We observe that the �rst two blocks form the classical Riesz map preconditioner for the
Stokes subproblem, which can be easily discretized and for which e�cient solvers are avail-
able. However, the Darcy pressure block is non-standard, combining the bulk Laplacian

1The pressure norm in the Stokes-Biot problem is analogous, see [1].
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Figure 1: Number of preconditioned MinRes iterations for Stokes-Darcy problem with im-
plicit coupling and di�erent mesh resolution (increases along x-axis in each subplot) and
values of Stokes viscosity µ (increases along main horizontal axis), Darcy permeability
K (color encoded) and Beavers-Joseph-Sa�man parameter (increases along main verti-
cal axis). The system is discretized by lowest order Taylor-Hood elements for the Stokes
subproblem and quadratic continuous Lagrange elements for the Darcy pressure. Frac-
tional preconditioner (4) with blocks inverted by LU decomposition is used. Iterations are
bounded in mesh size and the parameters.

(leading to a sparse matrix representation) with a dense block due to the fractional Lapla-
cian. Scalable solvers for operators of this form, which are also robust in parameters (K,
µ in (4)) are currently lacking.

To demonstrate robustness of (4) we utilize the de�nition of the fractional Laplacian
based on spectral decomposition, assemble the exact matrix representation of the operator
inducing the norm (3) and consider the exact realization of the preconditioner. In 1 we
then �nally present results of the sensitivity study for the Stokes-Darcy system [6]. It can
be seen that the proposed fractional preconditioner yields iterations bounded in mesh size
and the problem parameters.
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Human interferon-gamma (hIFNγ) is a crucial immunomodulating cytokine, whose
biological effects may range from proliferation to apoptosis. It mediates its pleiotropic
action on cells by binding to the cell-surface domain of a high-affinity receptor hIFNγR1
to form a symmetric complex. On each side of the molecule there is a complex receptor-
binding interface for each receptor that encompasses the N-terminal part of one monomer,
and the C-terminal helix of the other monomer. The C-terminal domain of the cytokine
does not appear to directly form a contact interface with the receptor. This part of the
cytokine is a highly positively charged, solvent exposed tail, lacking a rigid conformation
and is highly susceptible to proteolytic processing. The length of the C-tails plays a
modulating role in the affinity of hIFNγ towards its receptor. In particular, the tetrapeptide
Arg129-Lys-Arg-Ser132, greatly contributes to the high affinity interaction with hIFNγR1.
Partial cleavage of the C-terminus (up to the 138 amino acid residue) does even lead to
an increase in hIFNγ-hIFNγR1 binding affinity, whereas the removal of the complete tail
causes inactivation of the cytokine.

IFNγ is known to bind to the glycosaminoglycans heparin and heparan sulfate (HS).
These are linear negatively charged polymers of repeating disaccharide units, containing
glucosamine and uronic acid, that can bear multiple N-sulfate, N-acetyl, and O-sulfate
substitutions. The binding of hIFNγ to HS and heparin modulates the blood clearance,
the subsequent tissue targeting, the local accumulation of the cytokine and the proteolytic
processing of its C-terminal domain.

Here, we report molecular dynamics (MD) simulations studies of the interaction of a
peptide, encompassing the last 21 C-terminal amino acid residues (AAKTGKRKRSQML-
FRGRRASQ) of hIFNγ and a heparin-derived octasaccharide (dp8). The monosaccha-
ride sequence of the carbohydrate was α-L-GlcA(1 → 4)β-D-GlcNS(6S)(1 → 4)α-L-
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IdoA(2S)(1 → 4)β-D-GlcNS(6S)(1 → 4)α-L-IdoA(2S)(1 → 4)β-D-GlcNS(1 → 4)β-D-
IdoA(1 → 4)β-D-GlcNAc and is presented schematically in Fig. 1.

Figure 1: Octasaccharide sequence with monomer positions indicated in red.

The IFNγ C-terminal peptide was constructed in a completely extended conformation
and was subjected to three independent folding simulations, amounting to a total of 1.5µs
of simulation time. The dp8 structure was generated using the CHARMM-GUI server and
was simulated for 100 ns. Cluster analysis was applied to identify the most visited confor-
mations and the centroids of the five largest conformational clusters from both the hIFNγ
C-terminal peptide and the octasaccharide were selected as input structures. Five indepen-
dent 1µs simulations were performed, starting from randomly chosen input conformations
and random mutual orientations of the two binding partners.

The interaction of the two molecules is dominated by strong electrostatic attraction,
as the C-terminal peptide has a net charge of +8, and the dp8 has a net charge of -11.
Binding of the two partners occurs almost immediately in the first few hundred picosec-
onds. Nonetheless, the binding residues differ due to the different initial orientations of
the charged monosaccharides and peptide amino acid residues. To avoid possible initial-
conditions bias, only the last 250ns of the five MD trajectories, combined into a single
ensemble of conformations, were used to construct a contact map of the interaction of the
peptide and the carbohydrate chains. The result is presented in Fig. 2.

The contact map reveals the existence of preferential positions for close contacts be-
tween the octasaccharide and the hIFNγ C-terminal peptide. With the exception of the
first one, all carbohydrate monomers are negatively charged, the 4–7 segment having the
highest negative charge density with a net negative charge of -2 for each monomer. As
seen in Fig. 2, this part of the carbohydrate chain is responsible for the majority of the
contacts with the peptide. On the other hand, the hIFNγ C-terminal peptide has two dis-
tinct basic domains – D1 (3KTGKRKR9 with a +5 charge) and D2 (14RGRR17, carrying a
+3 charge). Indeed, the highest contact occupancy is observed within these domains, but
in particular at residues 3, 6–9, 14 and 17.

The computational approach advocated above appears to be both guiding and conclu-
sive in scrutinizing the interaction of the C-terminal peptide of hIFNγ and heparin-derived
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Figure 2: Contact map, averaged over the last 250 ns of the 5 independent simulations.

oligosaccharides for optimisation of the net charge and the positions of the sulfate groups
of the carbohydrate chains in the process of drug design.
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Multiple nonlinear models for characterizing dynamics of COVID-19 outbreak have
been recently established and discussed in literature. In view of such models, we endeavour
in this work to detect the role of fractional calculus in addressing the COVID-19 dynamics
turned more recently up in Jordan over 63 days; from 10 Dec 2021 to 10 Feb. 2022.

This mission will be accomplished by a mathematical model based on the Caputo
fractional-order differential operator as opposed to the traditional integer-order one. One
of SEIR models proposed recently will be employed to achieve this objective.

Numerical simulations will be carried out by implementing the Generalized Euler
Method (GEM). For these purposes, the stability analysis of the presented fractional-
order model will be examined in light of outlining its equilibrium points and identifying its
reproduction number. Through performing some numerical comparisons, it will be proved
that the results generated by using the fractional-order model is significantly closer to the
aforesaid collected real data than that of the integer-order model. This would undoubtedly
clarify the role of fractional calculus in facing epidemiological hazards.
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Recently, the global analysis of the antibody repertoire has been used as a source of
biomarkers for diverse processes involving immune and inflammatory activity [1, 2]. It is
now part of the multiomics paradigm of systems biology. The repertoire studies develop in
two directions – repertoire sequencing (RepSeq) and functional probing of the repertoire
(igome) using arrays of diverse structures (e.g., peptides or glycans). The igome technique
uses high throughput probing of the repertoire with a phage display random peptide library
followed by next generation sequencing [3]. It yields 105–106 different sequences, each a
target for at least one antibody in the repertoire. These peptide ligands approximate the
nominal epitope for a given antibody, hence they are referred to as mimotopes.

Previously, sequence graphs were successfully used to extract system level biological
information from repertoire sequencing data [4]. We applied a similar approach to integrate
igome data. In both applications of graphs, a suitable metric for sequence similarity is used
– Levenshtein distance in repertoire sequencing and longest common subsequence for the
igome graph. Both systemic views of the repertoire yield small world type of networks
evolving through random attachment (Fig. 1). This consistency of the network topology
is intriguing because in the genetic signatures it is due to sequence evolution, while in
the igome it is reflection of antibody cross-reactivity, hence – immunological co-selection.
The two processes are ultimately related biologically and this is what the graph topology
invariance reflects. In our first analysis, a graph of the IgM igomes in antiphospholipid
syndrome showed existence of clusters of mimotopes reflecting mostly underexpressed and
fewer overexpressed reactivities when compared to healthy controls. A key feature of the
IgM igome proved to be mirroring sequences from the binding site (paratope) of other
antibodies. Together these results of graph analysis are consistent with a disturbance
creating a hole in the autoimmune IgM repertoire. Interestingly, a third view of the
repertoire – probing it by a binding assay using a large array of peptides, yielded a graph
of reactivities with the same topology as the repertoire sequencing graph and the igome
graph. In this case each peptides IgM reactivity was tested in 21 patients and the resulting
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Figure 1: Degree distribution (A) and clustering coefficient dependence on degree (B) of
the graph of mimotope sequences in the IgM igome. The degree distribution follows an
exponential law while the local clustering coefficient is much higher than expected for a
random graph and falls with the increase of the degree – both features of graphs with
random attachment.

profiles were compared using F-test. Thus, the graph analysis of the antibody repertoire
yields biologically interpretable characteristics which are found invariant of the technical
approach to the repertoire study.
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Antimicrobial peptides (AMPs) are a diverse class of short proteins (typically between 6
and 80 amino acid residues long) that are a key element of the nonspecific innate immunity
in most organisms, displaying a wide range of antimicrobial, antifungal, antivarial and even
anticancer effects [1]. Lately, AMPs have attracted great research interest in the context of
strategies to combat multi-drug resistant bacterial infections [2]. Although it is commonly
believed that the cationic and amphiphilic nature of these small proteins is the key to their
activity, there is still no clarity about all the traits that define a peptide as antimicrobial.

№ Sequence Length [aa] Net charge

1 VGCIHEGI 8 -1
2 KKDVGIGIGG 10 +1
3 RVIGNWIGLGL 11 +1
4 WHSEGNVGINA 11 -1
5 KVKDNQWRP 9 +2
6 PRGSGGRGGSHGGGGIPP 18 +2
7 VNVVGGGGGIVGGGIGGGGM 20 0
8 IIIDGFGGGIIVEHDPGS 18 -3
9 GVSIIIGGNHGIIQGIEI 18 -1

10 MPEGINPGGIIGGGACIGERP 21 -1

Table 1: Putative antimicrobial peptides, isolated from the lightest fraction of the mucus
of garden snail Helix aspersa.

Here we present a novel synthetic approach based on enhanced-sampling molecular
modelling for the study and categorization of the interaction of newly isolated peptides

∗peicho@phys.uni-sofia.bg
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Figure 1: Metadynamics simulation input setup. The upper and lower membrane leaflets
model the outer and inner bacterial membrane layers respectively.

(Table 1) from the lightest fraction (below 3 kDa) of the mucus of the garden snail Helix
aspersa, known for its antimicrobial features [3, 4].

We propose that the free-energy profile of the process of peptide penetration and
translocation within a model lipid bi-layer may shed light on the peptides’ propensity
to impact the bacterial membrane. To obtain this profile, metadynamics [5] was employed,
with a biasing potential applied along a collective variable (CV) that describes the Z-
projection of the distance between the center of masses (COMs) of the phospholipids’ P
atoms and the AMP Cα atoms. The simulation setup is depicted in Fig. 1. The P atoms
were constrained along the Z-axis and movement allowed in the XY-plane only.

The model bacterial membrane was asymmetrically charged. The inner monolayer
consisted of 70% POPE (neutral) and 30% POPG (negative) phospholipids and had twice
as large charge density as the outer monolayer, containing 85 % POPE and 15 % POPG
lipids. The CV thus constructed traversed an interval of 10 nm (from -5 nm to 5 nm) from
the inner to the outer membrane leaflet. Two independent metadynamics simulations were
performed for each peptide: a forward simulation, modeling the peptide translocation
from the outer to the inner layer, and a backward simulation, modeling the process in
the opposite direction (from the inner to the outer membrane layer). Based on the two
simulations, the potential of mean force (PMF) along the selected CV was reconstructed
and analyzed. For two of the peptides – peptide 3 and peptide 6 – no convergent simulations
could be obtained within the above simulation setup, so these were discarded from further
analysis. The obtained PMF profiles are presented in Fig. 2.

Our preliminary results reveal certain asymmetry in the free-energy barriers in the two
leaflets of the membrane, promoting a directed translocation that cannot be associated with
a single parameter. It is rather the charge distribution than the net charge that matters
in this context, in combination with the specifics of the peptide amino acid content (the
primary structure). Experimental validation of this hypothesis is ongoing.
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Figure 2: PMF profiles obtained from the converged simulations.
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1 Introduction

Pohozhaev-type identities have been used in a large number of papers involving critical
exponents, mostly related to elliptic problems. We can just mention here the seminal papers
of Pohozhaev (1965), Serrin, Pucci (1986), Mitidieri, Pohozhaev (2003). In the critical case
where the embedding fails to be compact the classical work of Brezis, Nirenberg (1983)
must be mentioned.

Starting with the paper D. Lupo and K. Payne (2003), (2005) have also studied critical
exponent phenomena for a class of mixed type elliptic-hyperbolic equations in multidimen-
sional domains for the case of some classical boundary value problems. These ideas were
further developed by Lupo, Payne, Popivanov (2005), establishing results for nonexistance
of nontrivial regular solution both in two-dimensional case and in higher dimensions for
Gellerstedt type operator in both supercritical and critical case.

An interesting topic is the application of Pohozhaev type identities in the study of
nonexistence of nontrivial generalized solutions. Lupo, Payne and Popivanov (2014) stud-
ied the semilinear Goursat problem but in the frame of generalized solvability (instead of
C2 solutions) which is quite more natural for mixed type equations. They obtain nonexis-
tence results for generalized solution in both supercritical and critical cases by applying the
Pohozhaev type identity along a suitable regularized approximating sequence of smooth
functions which approximate generalized solution. Extending these ideas to the semilinear
Cauchy-Goursat problem Popivanov, Moiseev, Boshev (2018).

On the other hand, mixed-type problems with two degeneration lines in the linear case
were studied by Nakhushev (1966), (1967), Zainulabidov (1969), Popivanov (1978) and
many more.
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For problems with two orthogonal degeneration lines containing nonlinearities, He, Liu
[1] study

yuxx + xuyy = u|u|p−1 in Br(0), (1)

u = 0 on ∂Br(0) ∪X ∪ Y ∪ AD, (2)

where Br(0) ⊂ R
2 is a disc {|x| < r}, X := Br(0) ∩ {y = 0}, Y := Br(0) ∩ {x = 0} and

AD := Br(0) ∩ {x + y = 0}. They obtain result for nonexistence of nontrivial regular
solution for the problem only in the critical case p = 3 by imposing Dirichlet boundary
conditions on the external boundary but also on X and Y and on AD.
Remark 1. In our opinion such boundary value problems with some additional conditions
on some segments inside the domain are strongly overdetermined and the statement of the
problem in this case must be without these additional Dirichlet data.

2 Formulation of the problem

Find a solution of the differential equation

y|y|m−1uxx + x|x|m−1uyy + F ′(u) = 0 in Ω, (3)

which satisfies the boundary condition

u = 0 on AB ∪ BC ∪ CD, (4)

where F ′(u) = u|u|p−2, p > 2, 0 < m < 2; Ω ⊂ R
2 is a mixed type domain consisting

of two hyperbolic subdomains and an elliptic subdomain. The hyperbolic subdomains are
bounded by characteristic lines OA,AB and OD,CD respectively and the elliptic arc is
bounded by the arc BC. On the other characteristic lines (segments of the line x+ y = 0),
namely OA and OD where O is the origin, no boundary conditions are imposed. We obtain
result for nonexistence of nontrivial regular solution for the problem (3), (4) by applying
Pohozhaev type identity and the application of the exact Hardy-Sobolev inequality. The
results are obtained for both supercritical case where p > 2∗(2,m) = 4/m where 2∗(2,m)
is the critical Sobolev exponent which arises from the embedding of the corresponding
weighted Sobolev space H1

0,m(Ω) →֒ Lp(Ω) as well as for the critical case p = 2∗(2,m).

3 Embedding theorems and critical exponents

Embeddings of type H1
0 (Ω) →֒ Lq(Ω) have deep relationship with critical exponents phe-

nomena. We distinguish supercritical case when the power of the nonlinearity is greater
than Sobolev embedding constant, critical case when the power equals the constant and
subcritical case which is when the power is less than the constant. A classical example is
the one used in the seminal work of Pohozhaev (1965).
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4 The Sobolev embedding theorem

Let Ω be a bounded smooth domain in R
n, n ∈ N , n ≥ 3. Then one has the embedding of

H1
0 (Ω) into Lq(Ω) with q ≤

2n

n− 2
. The critical Sobolev exponent is denoted by 2∗(n) :=

2n

n− 2
and the embedding is compact for q ∈ [1, 2∗(n)), but fails to be compact at the so

called critical case when q = 2∗(n).
There are certain weighted Sobolev spaces that are associated to equations of mixed

type. Particular weighted Sobolev spaces associated to equation (3) will be with norm

||u||2
H1

0,m
(Ω) =

∫
Ω

(
|y|mu2

x + |x|mu2
y

)
dxdy

where Ω ⊂ R
2, a bounded smooth domain and weights given by (|y|m, |x|m).

Proposition 1: Let m > 0 be given. From the embedding H1
0,m(R

2) →֒ Lq(R2) one ob-
tains q ≤ 2∗(2,m) = 4

m
.

5 Pohozhaev identity and nonexistence result

The Pohozhaev type identity for the problem (3) - (4) is given by
∫
Ω

(
2−

m

2
p
)
F (u)dxdy =

∫
AB∪BC∪CD

W1 · nds+

∫
OA∪OD

(W1 +W2) · nds, (5)

where the vector functions W1 and W2 are

W1 = (xux + yuy)(y|y|
m−1ux, x|x|

m−1uy)−

(
y|y|m−1u2

x + x|x|m−1u2
y

2

)
(x, y),

W2 =
m

2
u(y|y|m−1ux, x|x|

m−1uy) + F (u)(x, y) .

and F (u) :=
∫ u

0
u|u|p−2ds = |u|p

p
is the primary function of F ′(u) with F (0) = 0.

We must note the fact that boundary conditions are imposed on part of the boundary
and there are parts where no information is given. Thus, in the respective Pohozhaev type
identity there are additional boundary integrals whose sign must be evaluated. For that
purpose key role plays Hardy-Sobolev inequality with remainder term.

∫ 0

−R

(−t)α(w′(t))2dt ≥
(α− 1)2

4

∫ 0

−R

(−t)α−2(w(t))2dt+
4

R2

∫ 0

−R

(−t)α(w(t))2dt, (6)

with w ∈ C1(−R, 0) ∩ C([−R, 0]), w(−R) = 0 and α > 1. This refinement of the classical
Hardy-Sobolev inequality originates from the work of Brezis, Vasquez (1997) and is used
for derivation of nonexistence results for critical growth phenomena for both regular and
generalized solutions.
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Theorem 1 Let Ω ⊂ R
2 be a mixed type domain consisting of two hyperbolic subdomains

and bounded elliptic subdomain. Let, xnx + yny ≥ 0 on the line BC in the elliptic part

Ω3. Let u ∈ C1(Ω) ∩ C2(Ω) be a classical solution to (3) - (4) with F ′(u) = u|u|p−2. Then

u ≡ 0 in the supercritical case p > 2∗(2,m) = 4
m
. If in addition on the elliptic arc BC the

condition xnx + yny > 0 holds, then the result u ≡ 0 holds also in the critical case p = 4
m
.

Sketch of the proof: We are going to use (5) and by appropriate integration and
rearrangement we will obtain contradiction for u being nontrivial. In addition, we will use
also Hardy-Sobolev inequality (6) to ensure that the integrals over the segments OA,OD

where no boundary conditions are imposed have appropriate sign.
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Boundary value problems for fractional PDEs
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Consider the equation

(
∂

∂x
+

∂α

∂yα

)
u(x, y) = f(x, y) (0 < α < 1), (1)

where ∂α

∂yα
is the Liouville fractional derivative of order α, which is defined as follows [1,

§ 2.3]
∂α

∂yα
u(x, y) =

∂

∂t

∫ y

−∞

(y − t)−α

Γ(1− α)
u(x, t) dt.

Note that the equation (1) is an example of one of the simplest fractional partial
differential equations. In the limiting case (for α = 1), this equation turns into the first-
order hyperbolic equation

(
∂

∂x
+

∂

∂y

)
u(x, y) = f(x, y). (2)

This simplicity and clarity can be a good motivation for studying equations of the form
(1), including for comparing the properties of integer order PDEs with their fractional
counterparts. This may contribute to a better understanding of what the presence of
fractional differentiation in the equation can bring.

We also note that equations of the form (1) arise when solving diffusion and diffusion-
wave equations of fractional order by the factorization method [2], in particular, based on
the equality (

∂

∂x
+

∂α

∂yα

)(
∂

∂x
−

∂α

∂yα

)
= −

(
∂2α

∂y2α
−

∂2

∂x2

)
.

Moreover, such equations (1) appear in mathematical modeling of population dynamics
(e.g., see [3]).

The study of fractional PDEs of order ≤ 1 began not so long ago, but nevertheless has
a wide bibliography. Apparently, the first works devoted to such equations were the papers
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[4] and [5] (see also [6]). Later, for such equations, as well as their generalizations, various
initial and boundary value problems were considered, including problems in multidimen-
sional domains and domains with curvilinear boundary, non-local problems, equations with
variable and matrix coefficients, equations with fractional discrete-distributed differenti-
ation operators, etc. A survey giving an idea of the main approaches can be found in
[7].

Most of the papers dealt with fractional differentiation operators defined on a finite
interval (having the origins at the finite points). In (1), we consider the Liouville fractional
derivative, which has the origin at minus infinity.

Such equations induce asymptotic problems (problems without initial conditions). For
these problems, instead of the initial conditions, it is necessary to specify the asymptotics
of the desired solution. Here we consider just such a problem.

Let

Ω = (r, a)× (−∞, b) = {(x, y) : x ∈ (r, a), y ∈ (−∞, b)} (r < a)

and
Ωr = Ω ∪ {(x, y) : x = r, y < b}, Ωε = (r, a− ε)× (−∞, b− ε).

A function u(x, y) is called a regular solution of the equation (1) in the domain Ω
if: u(x, y) ∈ C(Ωr) ∩ C1

x(Ω); D
α−1
−∞yu(x, y) ∈ C1

y (Ω); (R − y)−αu(x, y) ∈ L(−∞, R) (as a
function of y, ∀x ∈ (r, a) and R < b); u(x, y) satisfies the equation (1) in Ω.

We consider the following problem: find a regular solution u(x, y) of the equation (1)
in the domain Ω satisfying the condition

u(r, y) = ϕ(y) (y < b). (3)

Define the function

wµ(x, y) = yµ−1φ

(
−α, µ; −

x

yα

)
(x, y > 0),

where

φ (ξ, η; z) =
∞∑
k=0

zk

k! Γ(ξk + η)
(ξ > −1)

is the Wirght function [8], [9].
Now, we formulate the main results of the work.

Theorem 1 Let f(x, y) ∈ L (Ωε), ϕ(y) ∈ L(−∞, b− ε) and

lim
R→−∞

sup
x∈(r,a−ε)

y<R

|u(x, y)| = 0, (4)

for any sufficiently small ε > 0.
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If u(x, y) is a regular solution of the problem (1) and (3), then

u(x, y) =

∫ y

−∞

ϕ(t)w0(x− r, y − t) dt+

+

∫ x

r

∫ y

−∞

f(s, t)w0(x− s, y − t) dt ds. (5)

The proof of Theorem 1 is based on a modification of the Green function method. An
immediate consequence of Theorem 1 is the statement about the uniqueness of the solution
of the problem under consideration.

Theorem 2 There is at most one regular solution to the problem (1) and (3) in the class

of functions satisfying (4).

Note that Theorem 1 does not imply that any function of the form (5) is a priori
a solution to the problem (1) and (3). In order this to be the case, it is necessary to
impose additional conditions on the right side f(x, y) and the boundary function ϕ(y).
The following statement gives such conditions.

Theorem 3 Let ϕ(y) ∈ C(−∞, b) ∩ L(−∞, b− ε), f(x, y) ∈ C (Ωr) ∩ L (Ωε),

lim
y→−∞

(−y)δϕ(y) = 0 (δ > 1− α),

and let f(x, y) be representable in the form

f(x, y) = D−ξ
rx D

−η
−∞y g(x, y) (ξ > 0, η > 0),

where g(x, y) ∈ L (Ωε), (x− r)µg(x, y) ∈ C (Ωr) and

sup {(x− r)µ(b− y)ν |g(x, y)| : (x, y) ∈ Ωε} ≤ C, C = C(ε),

for some µ < ξ, ν > η + 1 and for any suffucuently small ε > 0.
Then the function u(x, y) defined by (5) is a regular solution to the problem (1) and

(3).

Theorem 3 is proved by a direct verification.
A notable consequence of the above statements is the fact that the solutions of the

homogeneous equation (1) turn out to be analytic functions of the variable x for each fixed
y < b. This property contrasts markedly with the case of equations with the Riemann-
Liouville derivatives, which have the origins at finite points, and differs sharply from the
case of equation (2).
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On the application of HSS-compression for numerical

solution of space-fractional parabolic problems:

complexity and scalability
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Bulgarian Academy of Sciences

1 Introduction

The fractional-in-space elliptic operators of power α ∈ (0, 1) are utilized in modeling
anomalous di�usion. Such models are used in image processing, �nancial mathematics,a
electromagnetistics, peridynamics, �ows in porous media, just to name a few.

Consider the parabolic equation ∂u(x, t)/∂t + (−∆)αu(x, t) = f(x, t), where (−∆)α

stands for the fractional Laplacian with homogeneous boundary conditions and initial con-
dition u0(x). The problem is non-local and in general its numerical solution is very expen-
sive. We are studying the application of Hierarchical Semi-Separable (HSS) compression
for the e�cient solution of discrete time-dependent fractional di�usion problems.

2 Fractional parabolic problem

Here, the integral de�nition of the fractional Laplace operator is assumed. The Finite
Element Method (FEM) is employed for the approximation in space as outlined in [1],
while the backwards Euler scheme, described in [3] is used for the discretization in time.
In the case of spectral fractional Laplacian, a similar problem is examined in [4]. Unlike
[4], in this article we provide an experimental comparative analysis for the case when the
initial condition u0(x) is piece-wise constant, that is, the solution is less regular.

Applying the FEM discretization in space, we get the Cauchy problem

ML
du

dt
+Ku = MLf , 0 < t ≤ T, u(0) = u0,

for the unknown functions u = (uj(t)) ∈ Rn, t ∈ [0, T ] and right hand side f = (fj(t)) ∈
Rn. HereK = Kij ∈ Rn×n is the sti�ness matrix corresponding to the fractional Laplacian.
With ML = diag (mi

L) ∈ Rn we denote the lumped mass matrix.
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For the discretization in time we use the fully implicit backward Euler method with
uniform time step τ

ML
uj+1 − uj

τ
+Kuj+1 = ML

f j+1 + f j

2
, j = 0, . . . ,m− 1,

where m is the number of time steps,

mτ = T, t0 = 0, tj+1 = tj + τ and uj = u(tj), f j = f(tj).

The following test problem is used in the presented numerical experiments: (x, t) ∈
Ω× [0, T ] = (−1, 1)2× (0, 0.1), right hand side f(x) = 0, m time-steps, α = 0.5, and initial
condition de�ned by the checkerboard function

u0(x) =

{
1, x ∈ [0, 0.5]2

0, otherwise.

On Fig. 1 we present the initial condition u0 and the solution in t = 0.025, 0.05,
0.075 and 0.1. The pictures illustrate the process of smoothing the initial data during the
evolution.

(a) Initial condition (b) u0, t = 0 (c) u64, t = 0.0025

(d) u128, t = 0.05 (e) u192, t = 0.075 (f) u256, t = 0.1

Figure 1: Initial condition u0 and solution at several time points.
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3 Hierarchical Semi-Separable Compression

The Hierarchical Semi-Separable (HSS) compression belongs to the hierarchical group of
methods for solving systems of linear algebraic equations. In a nutshell, these methods
are used to compress the original coe�cient matrix A into an hierarchical representation
H. This form of the matrix takes less space and allows computations to be carried out
more e�ciently. The compression requires that the original matrix has proper structure,
i.e. that the o�-diagonal blocks of A have low rank. In this work we use the HSS solver
implemented in the STRUctured Matrices PACKage (STRUMPACK) [2]. The algorithm
works in three steps:

1. HSS compression. The original matrix is compressed into HSS form H. The com-
putational complexity is O(n2r), where n is the number of unknowns and r is the
maximum rank of the o�-diagonal blocks,

2. ULV-like factorization. The compressed form H of the matrix is then factorized in a
modi�ed form of ULV factorization. The computational complexity is O(nr2),

3. Solving the linear algebraic system with the factorized matrix. Uses the factorized
matrix and the right hand side to obtain the solution. The computational complexity
is O(rn).

The overall computational complexity is O(n2r), where r � n for suitable problems.
The goal is to compete with the computational complexity O(n3) of the Gaussian elimina-
tion solvers. As will be shown in the next section, the accuracy and e�ciency of the HSS
compression also depend on the relative εrel and absolute εabs thresholds speci�ed by the
user.

4 Comparative analysis

On Fig. 2 we present a comparison of the computational times obtained by the block LU
factorization solver from the MKL package and the HSS compression based solver from
STRUMPACK. We �x εabs = 10−8 and vary εrel ∈ {10−2, 10−4, 10−6, 10−8}. The better
computational complexity of the hierarchical method leads to better execution times both
for the sequential and parallel tests.

On Fig. 3 we present the computational times of the di�erent parts of the HSS based
solver. We should note that the compression and factorization steps are executed only
once, while solving systems with the factorized matrix is repeated at each time step. In
this way, the solving steps have a greater impact on the total execution time than the
computationally more expensive compression and factorization steps.
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(a) Sequential (b) 16 threads

Figure 2: Comparison of MKL and HSS solvers.

5 Concluding remarks

In this work we analyze the performance of a hierarchical solver for a parabolic fractional
di�usion problem. The HSS based solver compares favorably with the direct Gaussian
solver from MKL in both the sequential and parallel experiments.
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Fractional diffusion equations have been widely used to accurately describe anomalous
solute transport in complex media. This paper proposes a local meshless method named
the generalized finite difference method (GFDM), to solve a class of multidimensional
space fractional diffusion equations (SFDEs) in a finite domain. In the GFDM, the spa-
tial derivative terms are expressed as linear combinations of neighboring-node values with
different weighting coefficients using the moving least-square approximation. An explicit
formula for the SFDE is then obtained. The numerical solution is achieved by solving a
sparse linear system. Four numerical examples are provided to verify the effectiveness of
the proposed method. Numerical analysis indicates that the relative errors of prediction
results are stable and less than 1% (0.001% − 1%). The method can also be applied for
irregular grids with acceptable accuracy.
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In this paper, we study the existence of at least three solutions for a fractional discrete
boundary value problem

{
T+1∇

α
k (k∇

α
0 (u(k))) +k ∇

α
0 (T+1∇

α
k (u(k))) + ϕp(u(k)) = λf(k, u(k)),

u(0) = u(T + 1) = 0
(1)

where 0 < α < 1, λ > 0, k∇
α
0 is the left nabla discrete fractional difference and T+1∇

α
k is

the right nabla discrete fractionl difference, f : [1, T ]N0
× R → R is a continuous function,

ϕp is tho so called p-Laplacian operator defined as ϕp(s) = |s|p−2s and 1 < p < ∞.
Several sufficient conditions for the existence of multiple solutions of the boundary value

problem (1) are given. Our approach is based on the variational method. An example is
presented to illustrate the applicability of the results.
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4 Institute of Information and Communication Technologies,

Bulgarian Academy of Sciences

COVID-19 pandemic poses unprecedented societal challenges on a global scale with
enormous medical, economic, political and ethical impact. To devise therapeutic strategies
to counteract SARS-CoV-2 infection it is crucial to develop a comprehensive understanding
of how the virus hijacks the host and inactivates its immune response during the course
of the infection. This knowledge is indispensable for developing new drugs, alongside with
repurposing existing ones.

To ensure its replication, the SARS-CoV-2 virus blocks the innate immune response of
the host cell by interrupting mRNA transportation from nuclei to the cytoplasm and influ-
ences the IFN signalling pathway by preventing the transportation of STAT1 trough the
nuclear pores thus blocking the expression of type I IFN induced genes. It was hypothesised
that the SARS-CoV-2 Nsp13 protein influences the IFN type I production by interacting
with two key players of IFN signalling pathway – TANK-binding kinase 1 (TBK1) and
TANK-binding kinase 1-binding protein 1 (TBKBP1/SINTBAD [1]. We aim at ellucadat-
ing the mechanism of this interaction in order to unblock the inhibited interferon pathways.
For this, we focused on the viral replicase-transcriptase complex (RTC), part of which is
the helicase Nsp13.

We developed a precise model of the replicase-transcriptase complex of SARS-CoV-2
from the crystallographic structure deposited in Protein Data Bank (PDB ID 6XEZ [2]),
adding the missing amino acids and nucleotides. Bigger missing parts were modeled de
novo and the final structure of the complex was protonated by simulated physiological
conditions of pH=7, T=300K, and salt content 0.15 M/l. A topology was created for
the resultant structure with the software package GROMACS [3], accounting for Zn2+
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Figure 1: The replicase-transcriptase complex of SARS-CoV-2; PDB ID 6XEZ, Nsp8 in
red, Nsp13 in yellow (left panel; Nsp13: PDB apo form in yellow, the structure after 330
ns of MD simulation, with parameterized Zn2+ ions in blue (right panel).

containing fragments of protein structure (Fig. 1). The contact sites between Nsp8 [4] and
Nsp13 were identified and ranked based on their importance.

Further, similarities between Nsp8 and TBK1 were explored on the sequence level and
with the secondary structure taken into account. To this end, all possible fragments derived
from the Nsp8 sequence and longer than 10 amino acids were examined for similarities with
all possible positions with respect to the TBK1 sequence [5] means of similarity matrices
BLOSUM45, BLOSUM62, BLOSUM80 and BLOSUM90 [6, 7, 8]. The identified fragments
with the highest degree of similarity were used for the assessment of the possibility of stable
complexes formation between Nsp13 and TBK1.
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Exponent Splitting Schemes for Evolution Equations

with Fractional Powers of Operators

Petr N. Vabishchevich
Nuclear Safety Institute, Russian Academy of Sciences, Moscow, Russia

We have considered the Cauchy problem for a first-order evolutionary equation with
fractional powers of the operator. Such nonlocal mathematical models are used, for exam-
ple, to describe anomalous diffusion processes. We want the transition to a new level in
time to be solved common problems. Computational algorithms are constructed based on
some approximations of operator functions. Currently, when solving stationary problems
with fractional powers of the operator, the most attention is paid to rational approxima-
tions [1]. In the approximate solution of nonstationary problems, we come to equations
with an additive representation of the problem operator [2]. Additive-operator schemes are
constructed by using different variants of splitting schemes. In the present work, the time
approximations are based on approximations of the transition operator by the product of
exponents. We use exponent splitting schemes of the first and second-order of accuracy.
The results of numerical experiments for a two-dimensional model problem with fractional
powers of the elliptic operator are presented. 1. Problem formulation. The object of
our study is the Cauchy problem

du

dt
+ Aαu = f(t), 0 < t ≤ T, (1)

u(0) = u0. (2)

The operator A is a self-adjoint positive definite operator in the finite-dimensional Hilbert
space H. For the solution of the problem (1), (2), we have the representation

u(t) = exp (− tAα)u0 +
∫ t

0

exp (− (t− s)Aα)f(s)ds, 0 < t ≤ T. (3)

We approximate in time using a uniform grid with a step τ . We use the notation
yn = y(tn), tn = nτ , n = 0, . . . , N, Nτ = T . From (3), we obtain

un+1 = exp (− τAα)un +
∫ tn+1

tn
exp (− (tn+1 − s)Aα)f(s)ds, n = 0, . . . , N − 1.

We consider an approach to an approximate solution of the problem (1), (2) with a prior
approximation of Aα by some operator D. In this case we have

yn+1 = S(D)yn + F n(D, f), n = 0, . . . , N − 1, (4)
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where

D ≈ Aα, S(D) ≈ exp (− τD), F n(Aα, f) ≈
∫ tn+1

tn
exp (− (tn+1 − s)Aα)f(s)ds.

After choosing the operator D, we construct some approximations S(D).
2. Rational approximation of the fractional power. For Aα, 0 < α < 1, we put

Aα = AA−β, β = 1− α.

We use a rational approximation of Aα in the form

D = D(A) ≈ Aα, D(A) = AR(A), R(A) = a0I +
m∑
i=1

ai(biI + A)−1 (5)

with the coefficients

a0 ≥ 0, ai > 0, bi > 0, i = 0, 1, . . . ,m.

The simplest approach to constructing a rational approximation of the operator A−β

involves applying some quadrature formula for the integral on the right-hand side Balakr-
ishnan formula

A−β =
sin(βπ)

π

∫
∞

0

θ−β(θI + A)−1dθ, 0 < β < 1.

In this work the best rational approximation was performed using the open-source Python
package baryrat (https://github.com/c-f-h/baryrat).

3. Exponent splitting schemes. With a rational approximation (5) for the operator
D, we have an additive representation

D =
m∑
i=0

Di, D0 = a0A, Di = aiA(biI + A)−1, i = 1, 2, . . . ,m. (6)

For the operator terms in (6), we have

Di = D∗

i ≥ 0, DiDj = DjDi, i, j = 0, 1, . . . ,m. (7)

Under the conditions (6), (7), we have

exp (− τD) = exp
(
− τ

m∑
i=0

Di

)
=

m∏
i=0

exp (− τDi). (8)

Thereby the time transition operator from one level to another (the operator exponent
exp (−τD)) is split into the product of the operator exponents exp (−τDi), i = 0, 1, . . . ,m.
Given (8), we can construct exponent splitting schemes when

S(D) =
m∏
i=0

S(Di).
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For the transition operator we use the representation

exp (− τD) = S(D) + τ γQ(D) +O(τ γ+1).

In modern computational practice, the schemes of the first (γ = 2) and second (γ = 3)
order of accuracy receive the most attention. When choosing a method for approximate
solution of the Cauchy problem for a first-order evolution equation with a self-adjoint
operator, instead of the standard unconditional stability condition, one can focus on the
more stringent SM-stability conditions (Spectral Mimetic stability). In this case the scheme
has ̺-stability, spectral monotonicity and the scheme is asymptotically stable.

We construct unconditionally stable exponent splitting schemes using various approx-
imations of the transition operator with account of pairwise permutation of operators
Di(A), i = 0, 1, . . . ,m. An implicit scheme of the first order of accuracy (analog of the
implicit Euler scheme) and a symmetric scheme of the second order of accuracy (analog of
the Crank-Nicholson scheme) are distinguished. SM-stable schemes to which the implicit
Euler scheme belongs, but the Crank-Nicholson scheme does not belong, are of particular
importance for computational practice. We have investigated two types of such exponent
splitting schemes of second order accuracy.

The accuracy of the constructed exponent splitting schemes is illustrated by examples
of calculations for a test two-dimensional problem with a fractional power of the Laplace
operator using finite-difference approximations on a uniform grid over space. We inves-
tigated the influence of the power (α parameter) and the time step when using different
exponent splitting schemes.
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Enthalpy Solution of a Two-dimensional Fractional

Stefan Problem
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Here our interest is in the numerical solution of a Stefan melting problem [1] in a square
domain L × L. Initially the domain, insulated on all sides, is solid at the melting phase
change temperature, u = 0. Melting is induced by setting the the boundaries along x = 0
and y = 0 to the fixed temperature u = 1. We write the governing equation for determining
the evolution of the temperature field and the advance of the melting through time t in
the domain as,

∂αH

∂tα
=

∂2u

∂x2
+

∂2u

∂y2
, 0 < α ≤ 1 (1)

where, assuming a unit latent heat l = 1, the enthalpy is defined as

H(x, y, t) =

{
u(x, y, t) + 1, if u(x, y, t) > 0
0, if u(x, y, t) = 0

(2)

As written the left hand side of the governing equation is expressed in terms of a Rieman-
nâĂŞLiouville time fractional derivative of order 0 < α ≤ 1. A setting of α = 1 recovers
the well known enthalpy model [1], where we should expect the standard diffusion scaling

between length and time ℓ ∼ t
1

2 . Due to the convenience of a single domain treatment,
removing the necessity to explicitly track the melting front, the enthalpy formulation has
been extensively used to model industrial melting problems, e.g., metal processing. In the
cases where α < 1 the given enthalpy formulation will apply to cases where the domain
contains a distribution of heterogeneous length scales that disrupt the square root of time
scaling, leading to anomalous transport where ℓ ∼ t

α
2 [7].

In terms of one-dimensional problem domains, there have been a number of previous
studies that have looked at Stefan problem formulations with fractional time derivatives
[2, 3, 4, 5, 6]. These works have introduced numerical and analytical solutions, all of which
clearly exhibit the expected anomalous transport scaling ℓ ∼ t

α
2 . In this work we have

two objectives: (i) Extent the one-dimensional enthalpy solution introduced in [4] to two-
dimensions. (ii) See if we can find a clear anomalous signal in the 2-D domain that recovers
the scaling ℓ ∼ t

α
2 .
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Following [4], we seek a time explicit, finite difference control volume solution of the
governing enthalpy equation [eq.(1)]. The domain L × L is covered with a mesh of node
centered square cells (size ∆ × ∆, ∆ = L

m
) indexed by rows i = 1, 2 . . . ,m, and columns

j = 1, 2 . . . ,m. This allows us to approximate the right hand side of eq.(1), as

∂2u

∂x2
+

∂2u

∂y2
≈

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j − ul − ub

∆2
(3)

where at most nodes ul = ub = 0, but, to account for boundary conditions, the following
settings are made, when i = 1, ui−1,j = 2, ub = ui,j, when i = n, ui+1,j = 0, ub = −ui,j,
when j = 1, uj−1,j = 2, ul = ui,j, and when j = n, ui,j+1 = 0, ul = −ui,j. We approximate
the RiemannâĂŞLiouville time fractional derivative of the left of eq.(1) with the Grünwald
weights, writing at time t = k∆t,

∂αHk
i,j

∂tα
≈

1

∆tα

k∑
p=0

gpH
j−p
i,j , (4)

where gp, p = 0, 1, . . . , are the Grünwald weights

g0 = 1, gp = gp−1

[
p− 1− β)

p

]
, p = 1 . . . k. (5)

From eqs. (3) and (4) we propose the following time updating solution. The solution
is initiated by setting u0

i,j = H0
i,j = 0. At time level k > 0 we solve the explicit equation

Hk
i,j =

∆tα

∆2
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j − ul − ub)−

k∑
p=1

gpH
j−p
i,j (6)

at each node. From the time updated nodal enthalpy field, we use the relationship in eq.(2)
to update the nodal temperature and liquid fraction fields,

uk
i,j = max(Hk

i,j − 1, 0), fk
i,j = min(Hk

i,j, 1), (7)

where the liquid fraction, constrained by 0 ≤ fi,j ≤ 1, can be used to track the progress of
the melting phase change. Following this step, the calculations and updates for time level
k + 1 can proceed.

We carry out the solution on a domain of size (L =)30 × 30 with a space step ∆ = 1
and a time step ∆t = 0.1. To quantify the behavior of the melting, we plot, with time, the
position (0 ≤ x ≤ L) of the melt front along the line y = L = 30. We denote this position
as s(t) and only record values when the melting, in a given control volume i completes the
phase change, that is, as fi = 0, we record the time t and set s(t) = i∆x. We find, across
a range of values of α [1.9, 0.9, 0.8, 0.7] that the predicted front position is almost perfectly
fit by the power-law s(t) = atn. The values of the exponents for given values of α are given
in Table 1. We first note that, when α = 1, the fit exponent is n = 0.5025, indicating,
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Table 1: Exponnets of power-law fits s = atn.

α = 1.0 α = 0.9 α = 0.8 α = 0.7
n = 0.5025 n = 0.4504 n = 0.3980 n = 0.3530

as expected a normal transport behavior. However, for other choices of the value α, the
exponent is anomalous, recovering the values n =≈ α/2 obtained from a scaling analysis
[7].

So we have succeeded in extending a pervious one-dimensional numerical solution of
a time fraction Stefan problem to two-dimensions. A solution that shows clear signals of
anomalous transport behavior.
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We consider the time fractional flow model in multicontinuum porous media

Ci

∂αipi

∂tαi

−∇.(ki∇pi) +
∑
j 6=i

ηij(pi − pj) + ηif (pi − pf ) = gi in ΩT = Ω× (0, T ), (1)

Ω ⊂ Rd, ηij = ηji, coupled with fractured (d− 1) dimension equation

Cf

∂α
fpf

∂tαf

−∇.(kf∇pf ) +
∑
j 6=f

ηjf (pj − pf ) = gf in γf = γ × (0, T ), γ ⊂ Rd−1 (2)

∂αpi

∂tα
=

1

Γ(1− α)

∫ t

0

(t− s)−α∂pi

∂s
(s)ds, 0 < α ≤ 1, α = α1, . . . , αI , αf ,

the Caputo derivative is used. The unknown functions pi = pi(x, t), x ∈ Ω, are pressure in
porous or fractures matrix, ki ≥ 0, kf ≥ 0 the porous (or fracture) matrix and permeability
and ηij = ηji the mass transfer term that are proportional to the continuous permeabilities,
see e.g. [1,2].

We solve the problem of identification of the coefficients k ≡ {k1, . . . , kI} , η ≡
{ηij, ηjf i, j = 1, . . . , I} and the initial conditions

ϕ(x) ≡ {ϕ1(x) = p1(x, 0), . . . , ϕI(x) = pI(x, 0), ϕf (x) = pf (x, 0)} (3)

if the additional information can be measured

pi(xl, tm; a) = pilm, l = 1, . . . , L, m = 1, . . . ,M (4)

and i ∈ Î ⊆ {1, . . . , f}, a ≡ (k, η, ϕ} ∈ A - the admissible set.
It can be rewritten in operator form A(a) = P , where A : A → P is an injective operator,
a ∈ A, p ∈ P , P is a Euclidian space of data P = {pi11, . . . , p

i
LM} .
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The inverse problem A(a) = p is ill-posed, i.e. its solution may not exist and/or its
solution is non-unique and/or unstable to errors in measurements (3), see e.g. [2,3] . Here,
the inverse problem is reduced to the minimization problem

a∗ = argmin
a∈A

J(a), J(a) =< A(a)− p, A(a)− p >, (5)

where the functional J(a) characterize the quadratic derivation of the model data from the
experimental data. and we take it as follows

J(a) =
∑
i∈Î

L∑
l=1

M∑
m=1

(pi(xl, tm; a)− pilm)
2

By the following assertion we report the well-posedness of the direct (forward) problem.

Theorem 1 The direct problem (1),(2) with zero Neumann’s boundary conditions is well-
posed in appropriate functional spaces and the energy estimate holds

E(t) ≤ E(0)Eβ(ρ1t
β) + Γ(β)Eβ,β(ρ1t

β)D−β
0t ρ2(t), β = min(α1, . . . , αI , αf ),

E(t) =
I∑

i=1

∫
Ω

Cip
2
i (x, t)dx+

∫
Ω

Cfp
2
f (x, t)dx, (6)

ρ2(t) =
I∑

i=1

D−αi

0t

∫
Ω

g2i (x, t)dx+D
−α

f

0t

∫
Ω

g2f (x, t)dx, (7)

ρ1 is a constant and Eβ, Eβ,β are Mittag-Leffler functions.
The derivation uses Gronwall and Bellman type inequality and the simple one if β ≤ α

and h(t) ≥ 0 then

D−α
0t h(t) ≤

Γ(β)tα−β

Γ(α)
D

−β
0t h(t)

for the Riemann - Liouville integral.
Further, for clarity, we will consider the continuum model in [1] for d = 1, I = 2 and

k1, k2-constants, kf = 0 as well as η12 = η21 = l(t), η1f = ηf1 = b(t), η2f = ηf2 = c(t), ,
i.e. we have M = 3 unknown reaction coefficients. Also, we will take C1 = C2 = Cf = 1 ,
g1 = g2 = gf = 1. Now, we can introduce the matrices with the vector η = (l, b, c) :

B =(bin)=


 −l − b l b

l −l − c c

b c −b− c


 , Q=(qin)=


 −p1 + p2 −p1 + pf 0

−p2 + p1 0 −p2 + pf
0 −pf + p1 −pf + p2




Next, if δa is an increment we denote the deviation of solution p(p1, p2, pf ) by
δp(x, t; δa) = p(x, t; a+ δa)− p(x, t; δa).
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Then it satisfies the following initial boundary value problem with accuracy up to terms
of order o(|δa|2), the sensitivity problem:

∂α1δp1

∂tα1

− k1
∂2δp1

∂x2
−

N∑
n=1

b1nδpn −

S∑
s=1

q1sδηs − δk1
∂2p1

∂x2
= 0,

∂α2δp2

∂tα2

− k2
∂2δp2

∂x2
−

N∑
n=1

b2nδpn −

S∑
s=1

q2sδηs − δk2
∂2p2

∂x2
= 0,

∂α
fpf

∂tαf

−
N∑

n=1

b3nδpn −
S∑

s=1

q3sδηs − δkf
∂2pf

∂x2
= 0,

N = I + 1 = 2 + 1 = 3, S = 3, p3 = pf .

δpi(x, 0) = δϕi(x), x ∈ Ω = (0, 1),

∂pi

∂x

∣∣∣∣
x=0

=
∂pi

∂x

∣∣∣∣
x=1

= 0, i = 1, 2, p3 = pf , t ∈ (0, T ).

Now we are in position to formulate our main result.

Theorem 2. The gradient of the cost functional J(a) is given by

J ′(a) =

(∫
Ω
QTrR(x, t)dx,

∫
Ω

∫ T

0

∂2

∂x2
(x, t)R(x, t)dtdx, R(x, 0)

)Tr

,

where the vector function R(x, t) is the solution of the adjoint problem

∂α1r1

∂tα1

+ k1
∂2r1

∂x2
−

N∑
n=1

bn1rn + S1 = 0,
∂α2r2

∂tα2

+ k2
∂2r2

∂x2
−

N∑
n=1

bn2rn + S2 = 0,

∂α
f rf

∂tαf

−

N∑
n=1

bn3rn + S3 = 0, N = I + 1 = 2 + 1 = 3, p3 = pf ,

ri(x, T ) = 0, x ∈ Ω;
∂ri

∂x

∣∣∣∣
x=0

=
∂ri

∂x

∣∣∣∣
x=1

= 0,

Si =

M∑
m=1

L∑
l=1

∫ T

0

∫
Ω
(pi(x, t; a)− pilm)δ(t− tm)(x− xl)dxdt, i = 1, 2, 3, p3 = pf

and δ(t− tm) is the Dirac-delta function.

The report focuses on the theoretical analysis of the problem. On further we will continue

with the numerical solution using the CGM (Conjugate Gradient Method).
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