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Abstract. The presented comparative analysis concerns two parallel it-
erative solvers for large-scale linear systems related to µFEM simulation
of human bones. The benchmark problems represent the strongly hetero-
geneous structure of real bone specimens. The voxel data are obtained
by a high resolution computer tomography. Non-conforming Rannacher-
Turek finite elements are used for discretization of the considered prob-
lem of linear elasticity. It is well known that the preconditioned con-
jugate gradient method is the best tool for efficient solution of large-
scale symmetric systems with sparse, positive definite matrices. Here, the
performance of two parallel preconditioners is studied. Both are based
on displacement decomposition. The first one uses modified incomplete
Cholesky factorization MIC(0) and the other – algebraic multigrid. The
comparative analysis is mostly based on the computing times to run the
codes. The number of iterations for both preconditioners are also dis-
cussed.

Keywords: FEM, PCG, DD, MIC(0), AMG, parallel algorithms.

1 Introduction

This study is motivated by the development and tuning of robust iterative so-
lution methods, algorithms and software tools for µFE (micro finite element)
simulation of human bones. A voxel representation of the bone structure based
on micro computer tomography (CT) images is used to formulate the problem.
The computational domain is a strongly heterogeneous composition of solid and
fluid phases, see Fig. 2. The considered isotropic linear elasticity model is a
current brick in the development of a toolkit for µFE simulation of the bone
microstructure. The implementation of a poroealsticity model is the next step
in this project.

Non-conforming Rannacher-Turek FEs are used for discretization of the prob-
lem. The obtained linear system is large, with a sparse, symmetric and positive
definite matrix. This implies the use of iterative solvers based on the precondi-
tioned conjugate gradient (PCG) method [7]. The elasticity stiffness matrix has
a coupled block structure corresponding to a separable displacement ordering of
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the unknowns. Here, the performance of the following two basic precondition-
ing codes, incorporated in a displacement decomposition framework, is studied.
The first one is the modified incomplete factorization, MIC(0), and the second
is the algebraic multigrid, AMG. The MIC(0) code is developed in IPP-BAS,
Sofia, while the AMG one is the BoomerAMG module of the software system
Hypre developed at LLNL, Livermore. The comparative analysis is focused on
the number of iterations and the related computing times for real-life large-scale
problems.

The presented results are based on some recent studies of the authors ad-
dressed to the case of scalar elliptic problems [18]. The earlier considered FEM
elliptic solvers are used here in the construction of efficient preconditioners for
the coupled elasticity system.

The paper is organized as follows. In Section 2 we describe the Finite El-
ement Method (FEM) setting of the problem. Then, in Section 3 MIC(0) and
BoomerAMG preconditioning algorithms are presented. Section 4 is devoted to
numerical experiments. First, experiments with constant coefficients on three
parallel computers are shown. The next set of experiments illustrates the behav-
ior of preconditioners on heterogeneous (voxel) problems with strong coefficient
jumps.

2 Non-conforming FEM formulation of the problem

We consider the weak formulation of the linear elasticity problem in the form
[1]: find u ∈ [H1

E(Ω)]3 = {v ∈ [H1(Ω)]3 : vΓD
= uS} such that

∫

Ω

[2µε(u) : ε(v) + λdivu divv]dΩ =

∫

Ω

f tvdΩ +

∫

ΓN

gtvdΓ, (1)

∀v ∈ [H1
0 (Ω)]3 = {v = [H1(Ω)]3 : vΓD

= 0}, with the positive constants λ and
µ of Lamé, the symmetric strains

ε(u) := 0.5(∇u + (∇u)t),

the volume forces f , and the boundary tractions g, ΓN ∪ ΓD = ∂Ω, |ΓD| 6= ∅.
The Lamé coefficients are given by λ =

νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
, where E

stands for the modulus of elasticity, and ν ∈ (0, 1
2 ) is the Poisson ratio.

To obtain a stable saddle-point system one usually uses a mixed formulation
for u and divu. By the choice of piece-wise constant finite elements for the
dual variable, it can be eliminated at the macroelement level, and thereafter
a symmetric positive definite FEM system in primal unknowns (displacement)
is obtained. This approach is known as reduced and selective integration (RSI)
technique, see [3]. For the discretization of (1) we use nonconforming rotated
trilinear elements of Rannacher-Turek [8].

Let ΩH = wH
1 ×wH

2 ×wH
3 be a regular coarser decomposition of the domain

Ω ⊂ R
3 into hexahedrons, and let the finer decomposition Ωh = wh

1 × wh
2 × wh

3
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be obtained by a regular refinement of each macro element E ∈ ΩH into eight
similar hexahedrons. The cube ê = [−1, 1]3 is used as a reference element in
the parametric definition of the rotated trilinear elements. For each e ∈ Ωh, let
ψe : ê → e be the trilinear 1–1 transformation. Then the nodal basis functions
are defined by the relations {φi}6

i=1 = {φ̂i ◦ψ−1
e }6

i=1, where φ̂i ∈ span{1, ξj, ξ2j −
ξ2j+1, j = 1, 2, 3}. One possible set of interpolation conditions are: φ̂i(bΓ j ) = δij ,

where δij is the Kronecker symbol and bΓ j are the midpoints of the walls {Γ j}6
j=1

of ê. Then,

φ̂1(x, y, z) =
(

1 − 3x+ 2x2 − y2 − z2
)

/6,

φ̂2(x, y, z) =
(

1 + 3x+ 2x2 − y2 − z2
)

/6,

φ̂3(x, y, z) =
(

1 − x2 − 3y + 2y2 − z2
)

/6,

φ̂4(x, y, z) =
(

1 − x2 + 3y + 2y2 − z2
)

/6,

φ̂5(x, y, z) =
(

1 − x2 − y2 − 3z + 2z2
)

/6,

φ̂6(x, y, z) =
(

1 − x2 − y2 + 3z + 2z2
)

/6.

The RSI FEM discretization reads as follows: find uh ∈ V h
E such that

∑

e∈Ωh

∫

e

[

2µε∗(uh) : ε∗(vh) + λ divuh divvh
]

de =

∫

Ω

f tvhdΩ +

∫

ΓN

gtvhdΓ,

(2)

∀vh ∈ V h
0 , where ε∗(u) := ∇u − 0.5IQH

L [∇u − (∇u)t], V h
0 is the FEM space,

satisfying (in nodalwise sense) homogeneous boundary conditions on ΓD, the op-

erator IQH

L denotes the L2–orthogonal projection ontoQH , the space of piecewise
constant functions on the coarser decomposition ΩH of Ω. Then the standard
computational procedure leads to the coupled system of linear equations





K11 K12 K13

K21 K22 K23

K31 K32 K33









u1
h

u2
h

u3
h



 =





f1
h

f2
h

f3
h



 . (3)

Here the stiffness matrix K is written in block form corresponding to a separate
displacements components ordering of the vector of nodal unknowns. Since K
is sparse, symmetric and positive definite, we use the PCG method to solve the
system (3).

3 Preconditioning algorithms

The PCG is known to be the best algorithm for solution of large systems of
linear equations with symmetric and positive definite sparse matrices [7]. Crucial
for its performance is the preconditioning technique used. Here we focus on two
preconditioners based on the isotropic variant of the displacement decomposition
(DD)[4,5]. We write the DD auxiliary matrix in the form

CDD =





A
A
A



 (4)
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where A is the stiffness matrix corresponding to the bilinear form

a(uh, vh) =
∑

e∈Ωh

∫

e

E

(

3
∑

i=1

∂uh

∂xi

∂vh

∂xi

)

de. (5)

Such approach is motivated by the second Korn’s inequality, which holds for the
RSI FEM discretization (2) under consideration. This means that the estimate

κ(C−1
DDK) = O((1 − 2ν)−1)

holds uniformly with respect to the mesh size parameter in the FEM discretiza-
tion [6]. The first of the studied preconditioners is obtained by MIC(0) fac-
torization of the blocks in (4). As an alternative, inner PCG iterations with
BoomerAMG for A are used to approximate the DD block-diagonal matrix (4).

3.1 Parallel MIC(0) preconditioning

First, we give a brief introduction to the modified incomplete factorization [9],
see also [11]. Our presentation at this point follows those from [4]. Let us rewrite
the real N ×N matrix A = (aij) in the form

A = D − L− LT

where D is the diagonal and (−L) is the strictly lower triangular part of A. Then
we consider the approximate factorization of A which has the form:

CMIC(0) = (X − L)X−1(X − L)T

with X = diag(x1, · · · , xN ) being the diagonal matrix determined by the con-
dition of equal rowsums. We are interested in the case when X > 0 and thus
CMIC(0) is positive definite for the purpose of preconditioning. If this holds, we
speak about stable MIC(0) factorization. Concerning the stability of MIC(0), the
following theorem holds [10,4].

Theorem 1. Let A = (aij) be a symmetric real N × N matrix and let A =
D − L− LT be the splitting of A. Let us assume that

L ≥ 0,
Ae ≥ 0,

Ae + LTe > 0, e = (1, · · · , 1)T ∈ RN ,

i.e. that A is a weakly diagonally dominant with nonpositive offdiagonal entries
and that A+ LT = D − L is strictly diagonally dominant. Then the relation

xi = aii −
i−1
∑

k=1

aik

xk

N
∑

j=k+1

akj > 0

holds and the diagonal matrix X = diag(x1, · · · , xN ) defines stable MIC(0) fac-
torization of A.
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Remark 1. The presented numerical tests are performed using the perturbed
version of MIC(0) algorithm, where the incomplete factorization is applied to
the matrix Ã = A+ D̃. The diagonal perturbation D̃ = D̃(ξ) = diag(d̃1, . . . d̃N )
is defined as follows:

d̃i =

{

ξaii if aii ≥ 2wi

ξ1/2aii if aii < 2wi

where 0 < ξ < 1 is a properly chosen parameter, and wi =
∑

j>i −aij .

The idea of our parallel algorithm is to apply the MIC(0) factorization on an
auxiliary matrix B, which approximates A. The matrix B has a special block
structure, which allows a scalable parallel implementation.

Following the standard FEM assembling procedure we write A in the form
A =

∑

e∈ωh
LT

e AeLe, where Ae is the element stiffness matrix, Le stands for
the restriction mapping of the global vector of unknowns to the local one corre-
sponding to the current element e. Let us consider the following approximation
Be of Ae:

Ae =

















a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

















, Be =

















b11 a12 a13 a14 a15 a16

a21 b22 a23 a24 a25 a26

a31 a32 b33 0 0 0
a41 a42 0 b44 0 0
a51 a52 0 0 b55 0
a61 a62 0 0 0 b66

















.

The local numbering follows the pairs of the opposite nodes of the reference
element. The diagonal entries of Be are modified to hold the rowsum crite-
ria. Assembling the locally defined matrices Be we get the global matrix B =
∑

e∈ωh
LT

e BeLe. The condition number estimate κ(B−1A) ≤ 3 holds uniformly
with respect to mesh parameter and possible coefficient jumps (see for the related
analysis in [15,16]). This particular choice of Be gives an important property of
the matrix B – its diagonal blocks (corresponding to (x, y) cross sections) are
diagonal matrices. This allows a scalable parallel implementation, which for the
case of scalar elliptic problems is studied in [17,18]. The sparsity structure of
the matrices A and B is illustrated by Fig. 1. Lexicographic node numbering is
used.

This paper concerns with scalability of the parallel DD MIC(0) precondi-
tioner

CDDMIC(0) =





CMIC(0)(B)
CMIC(0)(B)

CMIC(0)(B)



 .

3.2 BoomerAMG

BoomerAMG contains sequential and parallel implementations of algebraic multi-
grid methods [12]. It can be used as a solver or as a preconditioner. Various
different parallel coarsening techniques and relaxation schemes are available.
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Fig. 1. Sparsity structure of the matrix A on the left and matrix B on the right, for
the division of Ω into 2x2x6 hexahedrons. Non-zero elements are drawn with small
squares.

See [13,14] for a detailed description of the coarsening algorithms, the interpo-
lation and numerical results.

Version 2.0.0 of the Hypre library was used for the performed tests.
The following coarsening techniques are available:

– the Cleary-Luby-Jones-Plassman (CLJP) coarsening,
– various variants of the classical Ruge-Stüben (RS) coarsening algorithm, and
– the Falgout coarsening which is a combination of CLJP and the classical RS

coarsening algorithm.

The following relaxation techniques are available:

– Jacobi relaxation,
– hybrid Gauss-Seidel / Jacobi relaxation scheme,
– symmetric hybrid Gauss-Seidel / Jacobi relaxation scheme, and
– Gauss-Seidel relaxation.

The Falgout coarsening was used in the presented tests. A V(1,1)-cycle with
hybrid Gauss-Seidel smoothing is performed. The related AMG strength thresh-
old is 0.5. The default coarsening with one inner iteration was set at the begin-
ning. This variant proved to be very expensive, especially with respect to the
consumed memory. Then we switched on the option of aggressive coarsening on
the first two levels. As a result the memory consumption noticeably dropped. To
get a reasonable convergence of the outer PCG iteration, the number of inner
iterations were to be increased. Table 1 justifies our decision to use the aggres-
sive coarsening in the further numerical tests. The following data are collected in
this table: mesh size parameter n; number of processors p; number of AC levels
(levels with aggressive coarsening where 0 stands for no aggressive coarsening);
number of outer iterations Itout; related inner iterations Itinn; computation time
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Table 1. BoomerAMG

n p AC levels Itout Itinn T [s] M [MB]

32 1 0 12 1 15.6 108
32 1 2 9 4 10.4 66
64 1 0 13 1 185.3 899
64 1 2 9 4 107.2 432
64 4 0 24 1 180.1 1225
64 4 2 10 4 58.5 664

T in seconds; required total memory M in megabytes. A more detailed descrip-
tion of the model test problem is given at the beginning of the next section. As
one can see, despite the increased number of inner iterations, the computational
times are strongly decreased and the parallel efficiency is improved if aggressive
coarsening is used.

4 Comparative numerical tests

4.1 Scalability tests

Numerical tests with the considered two parallel algorithms and codes are present
and analyzed in this section. The tests are run on three parallel platforms,
referred to further as C1, C2 and C3. Platform C1 is an “IBM SP Cluster
1600” consisting of 64 p5-575 nodes interconnected with a pair of connections to
the Federation HPS (High Performance Switch). Each p5-575 node contains 8
Power5 SMP processors at 1.9GHz and 16GB of RAM. The network bandwidth
is 16Gb/s. Platform C2 is an IBM Linux Cluster 1350, made of 512 dual-core
IBM X335 nodes. Each node contains 2 Xeon Pentium IV processors and 2GB of
RAM. Nodes are interconnected with a 1Gb Myrinet network. Platform C3 is a
“Cray XD1” cabinet, fully equipped with 72 2-way nodes, totaling in 144 AMD
Opteron processors at 2.4GHz. Each node has 4GB of memory. The CPUs are
interconnected with the Cray RaidArray network with a bandwidth of 5.6Gb/s.

The computational domain is the cube [0, 1]3, where homogeneous Dirichlet
boundary conditions are assumed at the bottom. The force ||g|| = 1 is acting
on the top. The mesh is uniform. Here n stands for the number of subintervals
in the fine grid of the RSI FEM discretization in each direction. The mechan-
ical characteristics of the model problem are E = 1 and ν = 0.3. The size of
the resulting nonconforming FEM system is N = 9n2(n + 1). The number of
processors p is increased proportionally with the problem size N . The stopping
criterion in all considered tests is (C−1rNit , rNit)/(C−1r0, r0) < 10−6, where ri

is the current residual and C stands for the used preconditioner. Table 2 presents
the time T in seconds, the number of iterations It (the outer ones for the AMG
code), varying the preconditioners, the problem sizes and the platforms.

In a good agreement with the theory, the number of iterations for MIC(0)
increases as O(

√
n), while the AMG iterations stay about the same. For the
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Table 2. Parallel Tests I

C1 C2 C3

MIC(0) AMG MIC(0) AMG MIC(0) AMG
n N p T [s] It T [s] It T [s] It T [s] It T [s] It T [s] It

64 2 396 160 1 136.6 115 150.1 9 83.7 115 84.0 9 83.9 115 115.1 9
128 19 021 824 8 202.0 163 195.6 10 172.1 163 229.8 10 127.8 163 152.6 10
256 151 584 768 64 355.6 230 261.4 10 464.1 230 430.0 10 328.2 230 307.1 10

smallest problem (N=2 396 160) MIC(0) clearly outperforms the AMG code.
For the medium size (N= 19 021 824) the times are rather similar. However, for
the largest problem (N=151 584 768) the advantage of AMG is well expressed.

4.2 Voxel analysis tests

The bone microstructure is a typical example of strongly heterogeneous media. In
the presented tests, the computational domain is a composition of solid and fluid
phases. The CT image is extracted from the dataset [2]. The voxel size is 37µm.
Each voxel corresponds to a macroelement from the RSI FEM discretization.
The bone specimen is placed between two plates (see Fig. 2). The thickness of
the plates is 1 voxel. The position of the bottom plate is fixed (homogeneous
Dirichlet boundary conditions), and a force of ||g|| = 1 is uniformly distributed
on the top one. This setting simulates a vertically loaded bone specimen. The
density of the solid phase is an important characteristics of the bone. The density
of the considered three specimens is respectively 25%, 19%, 18% for the cases
32 × 32 × 32, 64 × 64 × 64, 128 × 128 × 128.

Fig. 2. Structure of the solid phase: 32 × 32 × 32 - left, 64 × 64 × 64 - middle, and
128 × 128 × 128 - right.
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The considered test problems are given by the following parameters:Ep = 10,
Es = 1, Ef = ζ ∈ {0.1, 0.01, 0.001}, ν = 0.3. Here, Ep is the elasticity modulus
of the two plates, Es stands for a scaled elasticity modulus of the solid phase,
while Ef introduces varying coefficient jumps between solid and fluid phases.

The results presented in Table 3 are obtained on the platform C2. For
the case of the biggest coefficient jumps (ζ=0.001) and the biggest problem
(N=151 584 768), outer PCG iteration with AMG preconditioner fails to con-
verge within the specified time limit of 7200 seconds. This test was repeated
with an increased number of inner iterations. The corresponding values in the
table are obtained with Itin = 6.

Table 3. Parallel Tests II

ζ = 0.1 ζ = 0.01 ζ = 0.001

MIC(0) AMG MIC(0) AMG MIC(0) AMG
n p T [s] It T [s] It T [s] It T [s] It T [s] It T [s] It

64 1 239.3 330 374.9 27 348.3 505 757.9 57 588.6 823 1040.5 78
128 8 833.2 708 681.0 25 975.5 830 1501.3 60 2166.7 1850 2908.9 107
256 64 2393.8 1237 945.4 25 3495.7 1831 2114.4 57 6025.8 3150 5520.1 114

What we see is that the number of iterations for the MIC(0) code increase
more drastically with the problem size, than the case without jumps. AMG
preconditioner manages to sustain the number of iterations for different problem
sizes and fixed ζ, except for the case ζ = 0.001, where slight increase is observed.
For the smallest problem (N=2 396 160) MIC(0) outperforms the AMG code
again for all variations of ζ. For the medium sized problem (N=19 021 824)
MIC(0) code is faster for the cases of strong coefficient jumps (ζ = 0.01 and
ζ = 0.001). For the largest problem (N=151 584 768) AMG is faster, but its
advantage decreases with the rise of the coefficient jump. The reason for this
behavior is that the AMG iterations are much more expensive than the MIC(0)
ones. So, the increased number of iterations has much heavier impact on the
computational time for the AMG code.

The general conclusion is that the studied codes provide a stable toolkit for
computer simulation of the bone microstructure. Both approaches have their
advantages depending on the size of the FEM systems and the level of hetero-
geneity of the bone specimens. The achieved parallel scalability well corresponds
to the connectivity of the considered problems.
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