
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 483–492

ISSN 1896-7094
c© 2007 PIPS

Comparative Analysis of High Performance
Solvers for 3D Elliptic Problems

Ivan Lirkov and Yavor Vutov

Institute for Parallel Processing, Bulgarian Academy of Sciences,
Acad. G. Bonchev, Bl. 25A, 1113 Sofia, Bulgaria,
ivan@parallel.bas.bg yavor@parallel.bas.bg

http://parallel.bas.bg/˜ivan/ http://parallel.bas.bg/˜yavor/

Abstract. The presented comparative analysis concerns two iterative
solvers for 3D linear boundary value problems of elliptic type. After
applying the Finite Difference Method (FDM) or the Finite Element
Method (FEM) discretization a system of linear algebraic equations has
to be solved, where the stiffness matrix is large, sparse and symmetric
positive definite. It is well known that the preconditioned conjugate gra-
dient method is the best tool for efficient solution of large-scale symmetric
systems with sparse positive definite matrices. Here, the performance of
two preconditioners is studied, namely the Modified Incomplete Cholesky
factorization MIC(0) and the Circulant Block-Factorization (CBF) pre-
conditioning. Portable parallel codes are developed based on Message
Passing Interface (MPI) standards. The comparative analysis is mostly
based on the execution times to run the parallel codes. The number
of iterations for both preconditioners are also discussed. The performed
numerical tests on parallel computer systems demonstrate the level of
efficiency of the developed algorithms. The obtained parallel speed-up
and efficiency well illustrate the scope of efficient applications.

1 Introduction

We are concerned with the numerical solution of linear boundary value prob-
lems of elliptic type. After discretization, such problems are reduced to find the
solution of linear systems of the form Au = b. We consider here symmetric and
positive definite problems. We assume also, that A is a large scale matrix. In
practice, large problems of this class are often solved by iterative methods, such
as the conjugate gradient (CG) method. At each step of these iterative meth-
ods only the product of A with a given vector v is needed. Such methods are
therefore ideally suited to exploit the sparsity of the matrix A.

Typically, the rate of convergence of these methods depends on the con-
dition number κ(A) of the coefficient matrix A: the smaller κ(A) is, the faster
convergence. Unfortunately, for elliptic problems of second order, usually κ(A) =
O(n2), where n is the number of mesh points in each coordinate direction, and
hence grows rapidly with n. To accelerate the iteration convergence a precondi-
tioner M is combined with the CG algorithm. The theory of the Preconditioned

483

484 Ivan Lirkov and Yavor Vutov

CG (PCG) method says that M is considered as a good preconditioner if it
reduces significantly the condition number κ(M−1A), and at the same time, if
the preconditioner allows efficient computation of the product M−1v for a given
vector v. A third important aspect should be added to the above two, namely,
the requirement for efficient implementation of the PCG algorithm on recent
parallel computer systems, see e.g. [5].

2 The 3D Elliptic Problem

Let us consider the following 3D elliptic problem:

−
∂

∂x1

(

k1
∂u

∂x1

)

−
∂

∂x2

(

k2
∂u

∂x2

)

−
∂

∂x3

(

k3
∂u

∂x3

)

= f(x1, x2, x3),

∀(x1, x2, x3) ∈ Ω,

0 < σmin ≤ k1(x1, x2, x3), k2(x1, x2, x3), k3(x1, x2, x3) ≤ σmax,

u(x1, x2, x3) = 0, ∀(x1, x2, x3) ∈ Γ = ∂Ω,

(1)

on the unit cube [0, 1]3. Let the domain be discretized by a uniform grid with
mesh size h = 1

n .

2.1 Nonconforming Finite Element Method

Let Th is a decomposition of Ω with n × n × n cubes.
The weak formulation of the problem (1) reads as follows: for f ∈ L2(Ω) find

u ∈ V ≡ H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on Γ}, satisfying

A(u, v) = (f, v) ∀v ∈ H1
0 (Ω), where A(u, v) =

∫

Ω

∑3
i=1 ki

∂u
∂xi

∂v
∂xi

dx.
The above variational problem is then discretized using the finite element

method, i.e., the continuous space V is replaced by a finite dimensional subspace
Vh. Then the finite element formulation is:

find uh ∈ Vh, satisfying A(uh, vh) = (f, vh) ∀vh ∈ Vh.
The resulting discrete problem to be solved is then a linear system of equations

A(FEM)uh = fh, (2)

where uh stands for the vector of unknown degrees of freedom, A(FEM) and fh
are the corresponding global stiffness matrix and global right hand side.

Non-conforming finite elements based on rotated multilinear shape functions
were introduced by Rannacher and Turek [14] as a class of simple elements for
the Stokes problem. Some more details about non-conforming finite elements
can be found, e.g., in [3, 6, 9]. The cube [−1, 1]3 is used as a reference element ê
to define the isoparametric rotated trilinear element e ∈ Th. Let Ψe : ê → e be
the corresponding trilinear one-to-one transformation, and let the nodal basis
functions be determined by the relation

{φi}
6
i=1 = {φ̂i ◦ Ψ−1

e }6
i=1, {φ̂i} ∈ span{1, x1, x2, x3, x

2
2 − x2

1, x
2
1 − x2

3},

where ’◦’ denotes the composition of functions. Shape functions {φ̂i}
6
i=1 used

in presented experiments are found by the point-wise interpolation condition
φ̂i(b

j
e) = δij , where bj

e, j=1,6 are the centers of the faces of the cube ê.

Comparative Analysis of High Performance Solvers for 3D Elliptic Problems 485

2.2 Finite Difference Method

Let us consider the usual seven-point centered difference approximation for prob-
lem (1). This discretization leads to a system of linear algebraic equations

A(FDM)u = b

where the vector of unknowns u has size (n − 1)3. If the grid points are or-
dered along the x1 and x2 directions first, the matrix A(FDM) admits a block-
tridiagonal structure. The matrix A(FDM) can be written in the following form
A(FDM) = tridiag(Ai,i−1, Ai,i, Ai,i+1), i = 1, 2, . . . , n − 1, where the diagonal
blocks Ai,i are block-tridiagonal matrices which corresponds to one x3-plane
and the off-diagonal blocks are diagonal matrices.

3 MIC(0) Factorization Preconditioning

Let us first recall some well known facts about the modified incomplete fac-
torization MIC(0). Let us decompose the real N × N matrix A in the form
A = D − L − LT , where D is the diagonal and (−L) is the strictly lower trian-
gular part of A. Then we consider the approximate factorization of A which has
the following form:

MMIC(0)(A) = (X − L)X−1(X − L)T ,

where X = diag(x1, . . . , xN) is a diagonal matrix determined such that A and
MMIC(0) have equal row sums. We restrict ourselves to the case when X > 0,
i.e., when MMIC(0) is positive definite. In this case, the MIC(0) factorization is
called stable. Concerning the stability of the MIC(0) factorization, we have the
following theorem [8].

Theorem 1. Let A = (aij) be a symmetric real N × N matrix and let A =
D−L−LT be the splitting of A. Let us assume that (in an element-wise sense)

L ≥ 0, Ae ≥ 0, Ae + LTe > 0, e = (1, · · · , 1)T ∈ R
N ,

i.e., that A is a weakly diagonally dominant matrix with non-positive off-diagonal
entries and that A+LT = D−L is strictly diagonally dominant. Then the relation

xi = aii −

i−1
∑

k=1

aik

xk

N
∑

j=k+1

akj > 0 (3)

holds and the diagonal matrix X = diag(x1, · · · , xN) defines a stable MIC(0)
factorization of A.

Remark 1. The numerical tests presented in this work are performed using the
perturbed version of MIC(0) algorithm, where the incomplete factorization is

486 Ivan Lirkov and Yavor Vutov

Fig. 1. Sparsity structure of the matrix A on the left and matrix B on the right, for
the division of Ω into 2x2x6 hexahedrons. Non-zero elements are drawn with small
squares.

applied to the matrix Ã = A + D̃. The diagonal perturbation D̃ = D̃(ξ) =
diag(d̃1, . . . d̃N) is defined as follows:

d̃i =

{

ξaii if aii ≥ 2wi,

ξ1/2aii otherwise,

where 0 < ξ < 1 is a constant and wi = −
∑

j>i aij .

The idea of the parallel preconditioner is to apply the MIC(0) factorization on
an auxiliary matrix B. The matrix B has a special block structure, which allows
a scalable parallel implementation.

Following the standard FEM assembling procedure we write A in the form
A =

∑

e∈ωh
LT

e AeLe, where Ae is the element stiffness matrix, Le stands for
the restriction mapping of the global vector of unknowns to the local one corre-
sponding to the current element e. Let us consider the following approximation
Be of Ae:

Ae =

















a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

















, Be =

















b11 a12 a13 a14 a15 a16

a21 b22 a23 a24 a25 a26

a31 a32 b33 0 0 0
a41 a42 0 b44 0 0
a51 a52 0 0 b55 0
a61 a62 0 0 0 b66

















.

The local numbering follows the pairs of the opposite nodes of the reference
element. The diagonal entries of Be are modified to hold the row-sum cri-
teria. Assembling the locally defined matrices Be we get the global matrix
B =

∑

e∈ωh
LT

e BeLe.
The sparsity structure of the matrices A and B is illustrated by Fig. 1. Lexico-

graphic node numbering is used. The important property of the matrix B is that
its diagonal blocks are diagonal matrices. This allows a parallel implementation,
see [1, 2].

Comparative Analysis of High Performance Solvers for 3D Elliptic Problems 487

4 Circulant Block-Factorization Preconditioning

Let us recall that a circulant matrix C has the form (Ck,j) =
(

c(j−k) mod m

)

,
where m is the size of C. Any circulant matrix can be factorized as C = FΛF ∗,
where Λ is a diagonal matrix containing the eigenvalues of C, and F is the Fourier

matrix F = 1√
m

{

e2π jk
m

i

}

, 0 ≤ j, k ≤ m − 1. Here i stands for the imaginary

unit.
We use now the general form of the CBF preconditioning matrix M for the

matrix A(FDM) by

MCBF = tridiag(Ci,i−1, Ci,i, Ci,i+1) i = 1, 2, . . . n − 1,

where Ci,j = Block − Circulant(Ai,j) is block-circulant approximation of the
corresponding block Ai,j [12, 13]. The approach of defining block-circulant ap-
proximations can be interpreted as simultaneous averaging of the matrix coeffi-
cients and changing of the Dirichlet boundary conditions to periodic ones.

The algorithm (sequential and parallel) of the CBF preconditioner is de-
scribed in [10, 11].

5 Numerical Tests

The numerical tests presented in this section illustrate the convergence rate
as well as the parallel performance of the developed algorithms for 3D elliptic
problems. We consider further test problems with variable coefficients in the
form

∂

∂x1

[

(

1 +
ǫ

2
sin (2π (x1 + x3))

) ∂u

∂x1

]

+
∂

∂x2

[

(

1 +
ǫ

2
sin (2π (x1 + x2))

) ∂u

∂x2

]

+
∂

∂x3

[

(

1 + ǫex1+x2+x3

) ∂u

∂x3

]

= f (x1, x2, x3) (4)

where ǫ ∈ [0, 1] is a parameter. It is well known that the circulant preconditioners
are competitive with the incomplete LU factorization for moderately varying
coefficients. This reflects the averaging of the coefficients, used in the block-
circulant approximations.

The right hand side f is chosen in such a way that the problem (4) has
solution

u (x1, x2, x3) = sin 2πx1 sin 2πx2 sin 2πx3.

The computations are done with double precision. The iteration stopping crite-
rion is

||rNit ||M−1/||r0||M−1 < 10−3,

where rj stands for the residual at the jth iteration step of the preconditioned
conjugate gradient method. The codes have been implemented in C/C++ and
the parallelization has been facilitated using the MPI [15, 16] library. We report

488 Ivan Lirkov and Yavor Vutov

Table 1. Number of iterations and execution times of the algorithms.

N Nit Error Execution time T1

CLX SP5

MIC(0) CBF MIC(0) CBF MIC(0) CBF MIC(0) CBF MIC(0) CBF

ǫ = 0

101 376 32 768 13 5 3.29 E-3 3.02 E-3 0.55 0.21 0.23 0.16
338 688 110 592 15 5 1.52 E-3 1.37 E-3 1.29 1.06 0.80 1.10
798 720 262 144 17 5 8.89 E-4 7.78 E-4 5.50 1.62 2.16 1.31

2 681 856 884 736 21 4 4.64 E-4 3.50 E-4 14.79 7.17 9.45 7.79
6 340 608 2 097 152 21 4 3.54 E-4 1.98 E-4 55.29 11.36 23.38 11.06

21 344 256 7 077 888 25 4 2.30 E-4 8.83 E-5 57.94 90.69 71.20

ǫ = 0.1

101 376 32 768 19 19 5.09 E-3 3.08 E-3 0.79 0.60 0.33 0.43
338 688 110 592 22 21 2.71 E-3 1.40 E-3 1.85 3.69 1.15 3.71
798 720 262 144 29 24 1.62 E-3 7.96 E-4 9.17 6.51 3.61 4.69

2 681 856 884 736 38 32 1.06 E-3 3.58 E-4 26.21 45.02 16.75 47.23
6 340 608 2 097 152 42 37 5.56 E-4 2.02 E-4 108.07 79.48 45.69 72.94

21 344 256 7 077 888 59 48 6.27 E-4 9.04 E-5 547.16 209.27 655.31

ǫ = 1

101 376 32 768 14 23 1.19 E-2 3.53 E-3 0.59 0.72 0.25 0.34
338 688 110 592 19 30 5.53 E-3 1.60 E-3 1.61 5.14 1.00 4.27
798 720 262 144 28 36 3.13 E-3 9.10 E-4 8.86 9.18 3.49 5.01

2 681 856 884 736 31 47 1.67 E-3 4.09 E-4 21.51 65.25 13.74 59.92
6 340 608 2 097 152 41 58 1.15 E-3 2.31 E-4 105.56 122.69 44.63 93.93

21 344 256 7 077 888 64 80 8.41 E-4 1.03 E-4 882.02 226.71 1001.33

the results of the experiments executed on Linux clusters located in Bologna,
Italy. In our experiments, times have been collected using the MPI provided
timer and the best results from multiple runs are reported. We present the
elapsed time Tp in seconds on p processors, the speed-up Sp = T1/Tp, and the
parallel efficiency Ep = Sp/p.

Table 1 contains the number of iterations and the execution times collected
on two clusters: CLX and SP5. CLX is an IBM Linux Cluster 1350 made of
512 2-way IBM X335 nodes. Each computing node contains 2 Xeon Pentium IV
processors running at 3 GHz and 2 GB of RAM. Nodes are interconnected via a
Myrinet network with a maximum bandwidth of 256 Mb/s. We have used IBM
Visual Age compiler with options “-align -tpp7 -O3 -xN”. SP5 is an IBM SP Clus-
ter 1600, made of 64 nodes p5–575 (see http://www.ibm.com/servers/eserver
/pseries/library/sp books/) interconnected with a pair of connections to the
Federation HPS (High Performance Switch). Globally the machine has 512 IBM
Power5 processors and 1.2 TB of memory. A p5–575 node contains 8 SMP pro-
cessors Power5 at 1.9 GHz and have at least 16 GB of memory. The HPS inter-
connect is capable of a bandwidth of up to 2 GB/s unidirectional.

First two columns of Table 1 show the size of the discrete problem. Next
two columns report the number of iterations, the maximal error of the obtained
solution of (4) is shown in next columns. For Laplace equation (for ǫ = 0) for

Comparative Analysis of High Performance Solvers for 3D Elliptic Problems 489

Table 2. Execution time for parameter ǫ = 1

p MIC(0) CBF
n

32 48 64 96 128 192 33 49 65 97 129 193

IBM Linux Cluster 1350

1 0.59 1.61 8.86 21.51 105.56 0.72 5.14 9.18 65.25 122.69 882.02
2 0.33 1.44 4.84 18.52 58.88 0.45 3.06 6.03 39.10 90.35 536.99
3 1.98 26.38 358.07
4 0.22 0.94 2.81 10.27 32.04 154.37 0.24 1.66 3.43 21.33 49.82 293.03
6 1.11 14.53 198.28
8 0.18 0.68 2.00 6.14 17.93 91.32 0.12 0.77 1.89 11.35 27.04 157.66

12 0.54 7.89 111.16
16 0.48 0.70 2.43 4.76 13.31 63.31 0.07 0.41 0.86 6.10 14.79 88.26
24 0.28 3.87 58.41
32 0.24 0.54 1.33 3.96 10.08 42.51 0.08 0.11 2.83 8.36 45.11
48 0.66 1.36 3.39 11.88 46.60 0.22 1.97 31.80
64 2.26 3.93 7.51 30.03 0.39 3.59 23.78

IBM SP Cluster 1600

1 0.25 1.00 3.49 13.74 44.63 226.71 0.34 4.27 5.01 59.92 93.93 1001.33
2 0.16 0.52 1.82 7.16 23.94 121.03 0.18 2.11 2.27 28.71 38.97 438.48
3 1.44 19.11 273.96
4 0.10 0.36 0.98 4.03 13.06 63.31 0.09 1.07 1.12 14.27 18.97 196.92
6 0.71 9.41 131.47
8 0.07 2.70 0.72 2.30 7.77 42.05 0.05 0.56 0.62 7.20 9.83 119.34

12 0.60 5.75 80.12
16 1.27 2.56 0.49 1.31 4.15 21.12 0.38 0.35 0.47 4.40 6.66 61.20
24 0.69 2.99 41.58
32 0.10 0.20 0.40 0.99 2.85 13.65 0.33 0.30 2.36 3.55 31.52
48 2.50 3.97 1.34 2.26 11.31 0.16 1.62 21.63
64 2.05 0.86 1.97 10.27 0.19 2.09 16.64

similar mesh size used in FEM and FDM discretization the obtained accuracy
has the same order but the FEM discretization leads to a system of linear equa-
tions with approximately three times more unknowns. This leads to the larger
execution time of MIC(0) algorithm. For problems with strongly varying coef-
ficients MIC(0) algorithm has a preference and regardless of larger size of the
discrete problem the MIC(0) algorithm is faster.

Table 2 shows the parallel execution time for the problem with strongly vary-
ing coefficients (for parameter ǫ = 1). The comparison shows that the MIC(0)
algorithm is faster except for relatively large mesh size on large number of proces-
sors. This fact confirms our general expectations that the incomplete Cholesky
factorization is robust preconditioner (in this case — for problems with strongly
varying coefficients) and that the CBF algorithm is highly parallelizable.

Table 3 compare the parallel execution time per one PCG iteration. The
comparison shows that the MIC(0) algorithm is faster except execution on more
than 16 processors on CLX cluster. The speed-up obtained on both clusters

490 Ivan Lirkov and Yavor Vutov

Table 3. Execution time per iteration of the algorithms.

n T
it

1 T
it

2 T
it

3 T
it

4 T
it

6 T
it

8 T
it

12 T
it

16 T
it

24 T
it

32 T
it

48 T
it

64 T
it

96

MIC(0) algorithm, IBM Linux Cluster 1350

32 0.039 0.022 0.015 0.012 0.032 0.016
48 0.080 0.072 0.047 0.034 0.035 0.027 0.033
64 0.305 0.167 0.097 0.069 0.084 0.046 0.047 0.078
96 0.672 0.579 0.321 0.192 0.149 0.124 0.106 0.123

128 2.513 1.402 0.763 0.427 0.317 0.240 0.283 0.179
192 2.375 1.405 0.974 0.654 0.717 0.462

MIC(0) algorithm, IBM SP Cluster 1600

32 0.016 0.011 0.007 0.005 0.085 0.007
48 0.049 0.026 0.018 0.135 0.128 0.010 0.125
64 0.120 0.063 0.034 0.025 0.017 0.014 0.137 0.071
96 0.429 0.224 0.126 0.072 0.041 0.031 0.042 0.027

128 1.062 0.570 0.311 0.185 0.099 0.068 0.054 0.047
192 3.487 1.862 0.974 0.647 0.325 0.210 0.174 0.158

CBF algorithm, IBM Linux Cluster 1350

33 0.023 0.018 0.009 0.004 0.003 0.003
49 0.147 0.097 0.061 0.052 0.035 0.023 0.016 0.012 0.008 0.006
65 0.211 0.160 0.091 0.048 0.021 0.012 0.009
97 1.193 0.806 0.534 0.438 0.295 0.234 0.153 0.120 0.075 0.056 0.038 0.025

129 1.718 1.500 0.830 0.453 0.238 0.118 0.059
193 9.750 6.514 4.233 3.529 2.388 1.913 1.244 0.985 0.654 0.517 0.364 0.243 0.174

CBF algorithm, IBM SP Cluster 1600

33 0.013 0.007 0.003 0.002 0.001 0.001
49 0.135 0.066 0.045 0.033 0.022 0.017 0.015 0.011 0.007 0.004 0.004
65 0.130 0.058 0.029 0.015 0.011 0.007 0.004
97 1.232 0.588 0.391 0.292 0.192 0.147 0.117 0.089 0.060 0.046 0.031 0.020

129 1.561 0.643 0.312 0.161 0.109 0.057 0.033
193 12.149 5.377 3.356 2.381 1.608 1.462 0.980 0.748 0.507 0.383 0.262 0.201 0.141

is reported in Table 4. As it was expected, the parallel features of the CBF
algorithm lead to higher speed-up. Moreover, a super-linear speed-up is observed
on SP5 cluster. The main reasons for this fact can be related to splitting the
entire problem into subproblems which helps memory management, in particular
allows for better usage of cache memories of individual parallel processors.

6 Concluding Remarks and Future Works

In this paper we concerned with the numerical solution of 3D elliptic problems.
After discretization, such problems reduce to the solution of linear systems.
We use two preconditioners: the Modified Incomplete Cholesky factorization
MIC(0) and the Circulant Block-Factorization (CBF) preconditioning. Presented
numerical results show that the rate of convergence of the CBF preconditioner
is the same as for ILU factorization. We reported on the parallel performance of
the studied preconditioners applied to the PCG algorithm. The developed MPI

Comparative Analysis of High Performance Solvers for 3D Elliptic Problems 491

Table 4. Speed-up of the algorithms.

n S2 S3 S4 S6 S8 S12 S16 S24 S32 S48 S64 S96

MIC(0) algorithm, IBM Linux Cluster 1350

32 1.751 2.505 3.122 1.219 2.385
48 1.111 1.702 2.350 2.292 2.902 2.432
64 1.826 3.118 4.394 3.633 6.615 6.389 3.883
96 1.160 2.091 3.489 4.500 5.389 6.325 5.446

128 1.792 3.290 5.882 7.919 10.430 8.861 14.003
192 1.000 1.690 2.438 3.627 3.312 5.131

MIC(0) algorithm, IBM SP Cluster 1600

32 1.450 2.143 2.885 0.190 2.239
48 1.852 2.765 0.369 0.389 4.593 0.397
64 1.886 3.475 4.718 6.945 8.485 0.876 1.677
96 1.913 3.396 5.893 10.364 13.588 10.029 15.355

128 1.862 3.410 5.719 10.725 15.526 19.526 22.204
192 1.872 3.579 5.386 10.720 16.566 20.040 21.983

CBF algorithm, IBM Linux Cluster 1350

33 1.33 2.73 5.88 9.16 8.37
49 1.52 2.40 2.82 4.26 6.28 9.11 12.00 17.52 22.97
65 1.32 2.32 4.36 9.96 17.95 24.76
97 1.48 2.23 2.73 4.04 5.10 7.79 9.93 16.01 21.32 31.25 47.48

129 1.15 2.07 3.80 7.22 14.56 29.35
193 1.50 2.30 2.76 4.08 5.10 7.84 9.90 14.90 18.86 26.80 40.17 55.96

CBF algorithm, IBM SP Cluster 1600

33 1.94 3.80 7.24 8.73 13.76
49 2.03 3.02 4.09 6.12 7.97 9.27 12.75 18.11 35.74 32.65
65 2.23 4.52 8.59 11.52 18.88 31.60
97 2.09 3.15 4.22 6.43 8.41 10.52 13.84 20.53 26.88 39.38 63.06

129 2.43 5.01 9.71 14.36 27.41 47.82
193 2.26 3.62 5.10 7.56 8.31 12.39 16.24 23.95 31.68 46.33 60.49 85.93

codes provide new effective tool for solving of large-scale problems in realistic
time on a coarse-grain parallel computer systems.

The experimental data collected from two clusters is only preliminary. In the
near future we plan, first, to complete the performance studies by running our
code on a number of additional machines. Second, we will extend our work to
non-uniformly shaped domains, non-uniform discretization as well as situations
when the proposed approach is embedded in a solver for non-linear problems.
The implementation of the possibility for overlapping of computations and com-
munications (see, e.g. [2, 7]) will be analyzed at the next step in development of
the parallel code.

Acknowledgments. This research was partially supported by grant I-1402/2004
from the Bulgarian NSF and by the project BIS-21++ funded by FP6 INCO
grant 016639/2005. The parallel numerical tests were supported via the EC
Project HPC-EUROPA RII3-CT-2003-506079.

492 Ivan Lirkov and Yavor Vutov

References

1. P. Arbenz, S. Margenov, Parallel MIC(0) preconditioning of 3D nonconforming
FEM systems, Iterative Methods, Preconditioning and Numerical PDEs, Proceed-
ings of IMET Conference, Prague, 2004, 12-15.

2. P. Arbenz, S. Margenov, Y. Vutov, Parallel MIC(0) Preconditioning of 3D Elliptic
Problems Discretized by Rannacher–Turek Finite Elements, Comput. Math. Appl.

(to appear)
3. D. N. Arnold, F. Brezzi, Mixed and nonconforming finite element methods: imple-

mentation, postprocessing and error estimates, RAIRO Model. Math. Anal. Nu-

mer., 19, 1985, 7–32.
4. O. Axelsson, Iterative solution methods, Cambridge University Press, Cambridge,

1994.
5. A. O. H. Axelsson, M.G. Neytcheva, Supercomputers and numerical linear algebra,

KUN, Nijmegen, 1997.
6. G. Bencheva, S. Margenov, Parallel incomplete factorization preconditioning of

rotated linear FEM systems, J. Comput. Appl. Mech., 4 (2), 2003, 105–117.
7. G. Bencheva, S. Margenov, J. Starý. Parallel PCG Solver for Nonconforming FE

Problems: Overlapping of Communications and Computations. Large-Scale Scien-

tific Computing, I. Lirkov, S. Margenov, and J. Waśniewski eds., Lecture notes in

computer sciences, 3743, Springer Verlag, 646–654, 2005.
8. R. Blaheta, Displacement decomposition—incomplete factorization precondition-

ing techniques for linear elasticity problems, Numer. Linear Algebra Appl., 1, 1994,
107–126.

9. D. Braess, Finite elements. Theory, fast solvers, and applications in solid mechan-

ics, Cambridge University Press, 1997.
10. I. Lirkov, S. Margenov, Parallel complexity of conjugate gradient method with

circulant block-factorization preconditioners for 3D elliptic problems, Recent Ad-

vances in Numerical Methods and Applications, O. P. Iliev, M. S. Kaschiev, Bl.
Sendov, P. V. Vassilevski, eds., World Scientific, Singapore, 1999, 482–490.

11. I. Lirkov, S. Margenov, M. Paprzycki, Parallel performance of a 3D elliptic solver,
Numerical Analysis and Its Applications II, L. Vulkov, J. Waśniewski, P. Yalamov
eds., Lecture Notes in Computer Sciences, 1988, Springer Verlag, 2001, 535–543.

12. I. Lirkov, Y. Vutov, Parallel Performance of a 3D Elliptic Solver, Proceedings of the

International Multiconference on Computer Science and Information Technology,
Volume 1, M. Ganzha, M. Paprzycki, J. Wachowicz, K. Wecel eds., (CD-ROM),
ISSN 1896–7094, 2006, 579–590.

13. I. Lirkov, Y. Vutov, The Convergence Rate and Parallel Performance of a 3D
Elliptic Solver, System Science, to appear.

14. R. Rannacher, S. Turek, Simple nonconforming quadrilateral Stokes Element, Nu-

mer. Methods Partial Differential Equations, 8 (2), 1992, 97–112.
15. M. Snir, St. Otto, St. Huss-Lederman, D. Walker, J. Dongara, MPI: The Complete

Reference, Scientific and engineering computation series, The MIT Press, Cam-
bridge, Massachusetts, 1997, Second printing.

16. D. Walker and J. Dongara, MPI: a standard Message Passing Interface, Supercom-

puter, 63, 1996, 56–68.

