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Abstract Numerical homogenization is applied for upscaling of theér elasticity
tensor of strongly heterogeneous microstructures. Rémemakurek finite elements
are used for the discretization. The scalability of two par&#CG solvers is stud-
ied. Both are based on displacement decomposition. Theofiistuses modified
incomplete Cholesky factorization MIC(0) and the othergebkraic multigrid. The
numerical homogenization scheme is based on the assungitiarperiodic mi-
crostructure. This implies the use of periodic boundaryditions on the reference
volume element. Numerical upscaling results are shown.t&seproblem repre-
sents a trabecular bone tissue. The voxel microstructuteeobone is extracted
from a high resolution computer tomography image.

1 Introduction

Many materials, such as human bone and composite mateass é& complex
microstructure. The macro level material properties glypiepend on their mi-
crostructure. The overall mechanical responses can beildedaising multilevel
techniques that are built upon basic conservation priasipt the micro level.

In this work we consider a human trabecular bone tissueokslvepresentation
obtained from a micro computer tomography images is usedrtodlate the prob-
lem. Here, the computational domain is a strongly hetereges composition of
solid and fluid phases. Our goal is to obtain upscaled magnoperties of trabec-
ular bone tissue. As a first step, in this paper, the mechlarmsponse of the solid
phase only, is taken into account. To this purpose a fic8tidomain approach is
used. The isotropic linear elasticity model consideree lea brick in the develop-
ment of a toolkit foruFE simulation of the bone micro-structure.
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The 3D nature of the problems leads after a discretizatianvery large linear
systems. This, in turn, leaves no other approach to solve the application of
parallel computers. The large size also implies the usesddtive solvers. The pre-
conditioned conjugate gradient (PCG) method is known tdbéest solution tool
for large systems of linear equations with symmetric andtipesdefinite sparse
matrices [6]. It is also know that the PCG method convergesémidefinite ma-
trices in the orthogonal to the kernel subspace. The usabpdéioning technique
is crucial for the PCG performance. In this work two parafietconditioners are
applied for the solution of the arising linear system. Thstfine uses incomplete
factorization, the other — algebraic multigrid [1].

This paper is organized as follows. The applied numericahdgenization
scheme is described in Section 2. In Section 3 we introdweaghd preconditioning
methods. Results from numerical experiments are presantbd last section.

2 Homogenization Technique

Let Q be a parallelepipedal domain representing our referenteme element
(RVE) andu = (ug,up,us) be the displacements vector (. Here, components
of the small strain tensor are:

£y (u(x)) =  ((24x), i) W
| =
J 2\ 9x a%;
We assume that Hooke's law holds:
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Here, tensoc is called the stiffness tensor, whiteis the stress tensor.

The symmetric 6< 6 matrix C is called the stiffness matrix. For an isotropic
materialC has only two independent degrees of freedom. For orthanoygiteri-
als (materials containing three orthogonal planes of sytryyamatrix C has nine
independent degrees of freedom: three Young’s mdauylE,, Ez, three Poisson’s
ratiosvi, V23, V31 and three shear moduyli 2, t23, Uz1. The stiffness matrix for or-
thotropic materials takes the following form:
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The goal of our study was to obtain homogenized materialgntags of the tra-
becular bone tissue. In other words — to find the stiffnessaeaf a homogeneous
material which would have the same macro-level propertsesua RVE. Our ap-
proach follows the numerical upscaling method from [10k(aé&so [9]). The ho-
mogenization scheme requires findi@gperiodic functionsg® = (4, &8 £y, k,
| = 1,2, 3, satisfying the following problem in a week formulation:

9 Noa g
/Q <Cupq(x)dxq> dT(,-dQ = /chjkl (X)ijdQ, (4)

for an arbitraryQ-periodic variational functiorp € H1(Q). After computing the
characteristic displacemenfé', from (4) we can compute the homogenized elas-
ticity tensorct using the following formula:

0 ki
er'm = ﬁ/g (Cijkl (X)—Ciqu(X)diF;> dQ. (5)

Due to the symmetry of the stiffness tenspwe have the relatioﬁkI = E'k. There-
fore the solution of only six problems (4) is required to abtthe homogenized
stiffness tensor.

The periodicity of the solution implies the use of periodabdary conditions.
Rotated trilinear (Rannacher-Turek) finite elements [¥2]wsed for the numerical
solution of (4). This choice is motivated by the additiontlslity of the noncon-
forming finite element discretization in the case of strgrigtterogeneous materi-
als [4]. Construction of a robust non-conforming finite elsthmethod is generally
based on application of mixed formulation leading to a saqgdint system. By the
choice of non continuous finite elements for the dual (preystariable, it can be
eliminated at the (macro)element level. As a result we oldasymmetric positive



4 Yavor Vutov

semi-definite finite element system in primal (displacersewariables. We utilize
this approach, which is referred as tteduced and selective integration (RSI) [2].
3 Preconditioning algorithms

Both of the considered preconditioners are based on theosotvariant of the
displacement decomposition (DD)[11]. We write the DD aiaxif matrix in the

form
A
Cop=| A (6)
A
whereA is the stiffness matrix corresponding to the bilinear form
3 5 ph
a(u" V) = Z /E ZldUth de. (7)
econ”e = dX| dXi

Such approach is motivated by the second Korn’s inequalitych holds for the
RSI FEM discretization under consideration. This meanstti@estimate

K(ConK) = O((1—2v) ™)

holds uniformly with respect to the mesh size parametererREM discretization.
The first of the studied preconditioners is obtained by M)Gégtorization of the
blocks in (6).

3.1 Parallel M1 C(0) preconditioning

The first method used is based on parallel MIC(0) preconutidor scalar elliptic
problems [3]. Its basic idea is to apply MIC(0) factorizatiof an approximatiorB

of the stiffness matriXA. Matrix B has a special block structure. Its diagonal blocks
are diagonal matrices. This allows the solution of the pné@@ning system to be
performed in parallel. The condition number estimatB—1A) < 3 holds uniformly
with respect to mesh parameter and possible coefficientguisge for the related
analysis in [3]). This technique is applied three times —ediioc each diagonal block
of (6). Thus we obtain the parallel MIC(0) preconditionettie form:

Cwmic(o)(B)
Copmic(o) = Cwmic(o)(B)
Cwmic(0)(B)

More details on applying this preconditioner for the pragmbeomogenization tech-
nique can be found in [15].
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3.2 BoomerAMG

Our second approach uses inner PCG iterations with Boom& A A to approx-
imate the DD block-diagonal matrix (6). BoomerAMG is paghkilgebraic multi-
grid implementation, part of the software package HYPREelged in Lawrence
Livermore National Laboratory, USA. It can be used as a salveas a precondi-
tioner. Various different parallel coarsening technigaed relaxation schemes are
available. See [14] for a detailed description of the ca@rggalgorithms, the inter-
polation and numerical results.

Version 2.0.0 of the Hypre library was used for the perforresstis. Parallel mod-
ified independent sets (PMIS) coarsening was used in themexstests. A V(1,1)-
cycle with hybrid Gauss-Seidel smoothing is performed. fEhated AMG strength
threshold is (6. Aggressive coarsening on the first two levels was utilinearder
to decrease operator complexity. This noticeably reduedrtemory footprint of
the preconditioner. The number of inner iterations was fixedl

4 Numerical Experiments

To solve the above described upscaling problem, a portasbdipl FEM code was
designed and implemented in C++. The parallelization has feilitated using the
MPI library [13].

The analyzed test specimens are parts of trabecular baue textracted from
a high resolution computer tomography image [7]. The vokas & 37um. The
trabecular bone has a strongly expressed heterogeneotssimicture composed
of solid and fluid phases. To get a periodic RVE, the specirsamiirored three
times, see Fig. 1.

Homogenized properties of different RVEs with sizerok n x n, wheren €
{32,64,128}, see Fig. 1. The Young modulus and the Poisson ratio of thd sol
phase, taken from [8], arB® = 14.7GPa andvs = 0.325. Our intention was to
obtain the homogenized elasticity tensor of the RVE, takig account the elastic
response of the solid phase only. We interpret the fluid phasgefictitious domain.
On that account exponentially decreasing Young modHlus- {ES for the voxels
corresponding to the fluid phase are used, wideiethe parameter decreased. We
setv’ = vS which practically doesn’t influence the numerical upsagliesults.

The iteration stopping criterion wag!||c-1/]|r|c-2 < 1076, wherer/ is the
residual at the-th iteration step of the preconditioned conjugate gratdieethod
and C stands for the used preconditioner.

Numerical experiments were performed on a Blue Gene/P machiis a mas-
sively parallel computer consisting of quad-core nodes PbwerPC based low
power processors run at 850 MHz. Each node has 2GB of RAM. dladeinter-
connected with several specialized high speed networks—&ihmetwork for peer
to peer communications and tree network for collective camications, among
others.
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Fig. 1 Structure of the solid phase: (a)= 32, (b)n= 64, (c)n=128.

Starting on 2 processors for solution of the smallest protfie= 32), the number
of processors is increased proportionally to the numbenkhawns, for the larger
problems. In Table 1 are collected timesand number of iteratiorls for the MIC(0)
preconditioner and for the solution of one subproblem (#k flesults with the three
RVEs and € {107,1072,10°3,10~#,10-°} are shown. The number of unknowns
is indicated withN, and the number of processors — withThe same information,
but for BoomerAMG preconditioner is presented in Table 2.

Table1 MIC(0)

7=1017=102 (=103 (=107 (=10°

n N pTlg It Tlg It T[§ It T[§ It Tg It
32 2396160 2 267 219 455 378 689 576 816 684 836 701
64 19021824 16 442 320 804 588 1235 907 1683 1239 1937 1426
128 151584 768 128 937 462 1715 851 2939 1462 3953 1969 4638 230

Table2 BoomerAMG

(=101 ¢=102%2 (¢=10°% ¢=10% (7=10°
n N p T[g It T[g§ It T[g It T[g It TI[g It
32 2396 160 2 596 30 989 51 1385 73 1644 86 1682 88
64 19021824 16 669 30 1212 56 1736 81 2238 105 2447 115
128 151584768 128 1114 39 1706 61 2566 93 3292 120 3856 141
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The number of iterations for both preconditioners increaseually with the de-
crease of. The available theoretical estimates for the convergehtieeoMIC(0)
preconditioner concern some model problems for homogenemierials. In such
cases, the number of iterationsis= O(n%/2) = O(N'/¢). Here the number of iter-
ations has very similar behavior fgre {10-1,102}. Nevertheless, even for very
large coefficient jumps convergence is only slightly detexting. Slight increase
in the number of iterations with the problem size is obsefeedhe BoomerAMG
preconditioner. We see similar parallel times for both MICé&nd BoomerAMG
preconditioners. BoomerAMG has some advantage for thesangroblem in the
case of strong coefficient jumps.

The obtained structure of the homogenized stiffness méffixcorresponds to
the case of orthotropic materials in all of the experimemtss is due to the en-
forced triple mirroring procedure. Following (3), the Yaumoduli E; in each of
the coordinate directions and the Poisson ratigs= — &;j/&i can be computed
explicitly by the formulas

E=1/si vij=-Esj

wheres;j stand for the elements of the compliance ma8ix (Ch)~1, see [5].

Tables 3, 4 and 5 contain the computed homogenized Young Im&aisson
ratios and shear moduli for varying the fictitious domain iygumodulus parameter
{ for the considered three different specimens.

Table 3 Homogenized material properties1= 32

{ =] E; Es Vig Vo3 V31 23 Hs1 H12
101 4.52a0° 6.2310° 6.2410° 0.208 0.300 0.286 2.28¢° 1.3910° 1.3510°
102 2.0310° 4.724¢ 4.6%10° 0.095 0.271 0.229 1.730° 4.81%1¢ 3.801¢°
103 1.6%10° 4.4810° 4.4510° 0.074 0.264 0.212 1.660° 3.561¢ 2.4240°
104 1.6310° 4.4640° 4.4210° 0.072 0.263 0.210 1.650° 3.421¢ 2.2610°
105 1.6240° 4.4540° 4.4210° 0.071 0.262 0.210 1.650° 3.404¢ 2.2440

Table4 Homogenized material properties1= 64

{ E; =3 =) Vig Vo3 V31 M3 Ha1 Hi12
101 2.8610° 3.1k10° 3.5510¢° 0.288 0.270 0.281 1.18° 9.0%10° 9.50<10°
102 8.731¢ 1.124¢° 1.9410° 0.191 0.164 0.185 4.94¢¢ 1.621¢ 1.71ac¢
103 5.694¢ 8.02a¢® 1.7310° 0.127 0.124 0.117 3.900¢ 5.2210 5.2240
104 5.3310 7.6210® 1.7k10° 0.117 0.119 0.102 3.7 3.8810 3.77%10
10° 5.294¢ 7.5810® 1.7k10° 0.116 0.118 0.101 3.%60° 3.7410 3.6240

A stable behavior of the implemented numerical homogeinaacheme is ob-
served in all cases. A good accuracy of the computed homoggnfoung mod-
uli and Poisson ratios is achieved if the fictitious domaindmosE" = CES for
{ e {1(T4,1(T5}. In all three cases the orthotropy ratio is about 3. This avily
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Table5 Homogenized material propertiesi= 128

¢

= = Es V12 Vo3 V31 H23 H31 Hi12

107+ 2.6610° 2.4%1° 2.6%10° 0.315 0.284 0.278 8.Z60° 8.7810° 8.8%1(P
102 7.904¢® 5.9%1¢° 9.511¢®° 0.282 0.180 0.171 1.93¢ 1.681¢° 1.641C°
103 4.6540¢° 2.8k1¢® 7.101¢° 0.228 0.114 0.094 8.460' 6.2210" 3.3%10°
104 4.2040° 22418 6.781¢° 0.222 0.100 0.076 6.660' 4.8910" 1.4010°
10° 4.1540¢° 2.16A¢ 6.751¢° 0.222 0.098 0.073 6.440 4.7540 1.1810

confirms that the hypothesis that the trabecular bone sieicbuld be interpreted
(approximated) as isotropic is not realistic.
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