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Abstract Numerical homogenization is applied for upscaling of the linear elasticity
tensor of strongly heterogeneous microstructures. Rannacher-Turek finite elements
are used for the discretization. The scalability of two parallel PCG solvers is stud-
ied. Both are based on displacement decomposition. The firstone uses modified
incomplete Cholesky factorization MIC(0) and the other – algebraic multigrid. The
numerical homogenization scheme is based on the assumptionof a periodic mi-
crostructure. This implies the use of periodic boundary conditions on the reference
volume element. Numerical upscaling results are shown. Thetest problem repre-
sents a trabecular bone tissue. The voxel microstructure ofthe bone is extracted
from a high resolution computer tomography image.

1 Introduction

Many materials, such as human bone and composite materials have a complex
microstructure. The macro level material properties strongly depend on their mi-
crostructure. The overall mechanical responses can be described using multilevel
techniques that are built upon basic conservation principles at the micro level.

In this work we consider a human trabecular bone tissue. Its voxel representation
obtained from a micro computer tomography images is used to formulate the prob-
lem. Here, the computational domain is a strongly heterogeneous composition of
solid and fluid phases. Our goal is to obtain upscaled material properties of trabec-
ular bone tissue. As a first step, in this paper, the mechanical response of the solid
phase only, is taken into account. To this purpose a fictitious domain approach is
used. The isotropic linear elasticity model considered here is a brick in the develop-
ment of a toolkit forµFE simulation of the bone micro-structure.
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The 3D nature of the problems leads after a discretization toa very large linear
systems. This, in turn, leaves no other approach to solve them but application of
parallel computers. The large size also implies the use of iterative solvers. The pre-
conditioned conjugate gradient (PCG) method is known to be the best solution tool
for large systems of linear equations with symmetric and positive definite sparse
matrices [6]. It is also know that the PCG method converges for semidefinite ma-
trices in the orthogonal to the kernel subspace. The used preconditioning technique
is crucial for the PCG performance. In this work two parallelpreconditioners are
applied for the solution of the arising linear system. The first one uses incomplete
factorization, the other – algebraic multigrid [1].

This paper is organized as follows. The applied numerical homogenization
scheme is described in Section 2. In Section 3 we introduce the used preconditioning
methods. Results from numerical experiments are presentedin the last section.

2 Homogenization Technique

Let Ω be a parallelepipedal domain representing our reference volume element
(RVE) andu = (u1,u2,u3) be the displacements vector inΩ . Here, components
of the small strain tensor are:

εi j (u(x)) =
1
2

(

∂ui(x)

∂x j
+

∂u j(x)

∂xi

)

(1)

We assume that Hooke’s law holds:
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Here, tensorc is called the stiffness tensor, whileσ is the stress tensor.
The symmetric 6× 6 matrix C is called the stiffness matrix. For an isotropic

materialC has only two independent degrees of freedom. For orthotropic materi-
als (materials containing three orthogonal planes of symmetry), matrixC has nine
independent degrees of freedom: three Young’s moduliE1, E2, E3, three Poisson’s
ratiosν12,ν23,ν31 and three shear moduliµ12,µ23,µ31. The stiffness matrix for or-
thotropic materials takes the following form:
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where
δ = 1−ν12ν21−ν13ν31−ν23ν32−2ν12ν23ν31,

ν12

E1
=

ν21

E2
,

ν23

E2
=

ν32

E3
,

ν31

E3
=

ν13

E1
.

The goal of our study was to obtain homogenized material properties of the tra-
becular bone tissue. In other words – to find the stiffness tensor of a homogeneous
material which would have the same macro-level properties as our RVE. Our ap-
proach follows the numerical upscaling method from [10] (see also [9]). The ho-
mogenization scheme requires findingΩ -periodic functionsξ kl = (ξ kl

1 ,ξ kl
2 ,ξ kl

3 ), k,
l = 1,2,3, satisfying the following problem in a week formulation:

∫

Ω

(

ci jpq(x)
∂ξ kl

p

∂xq

)

∂φi

∂x j
dΩ =

∫

Ω
ci jkl(x)

∂φi

∂x j
dΩ , (4)

for an arbitraryΩ -periodic variational functionφ ∈ H1(Ω). After computing the
characteristic displacementsξ kl , from (4) we can compute the homogenized elas-
ticity tensorcH using the following formula:

cH
i jkl =

1
|Ω |

∫

Ω

(

ci jkl(x)− ci jpq(x)
∂ξ kl

p

∂xq

)

dΩ . (5)

Due to the symmetry of the stiffness tensorc, we have the relationξ kl = ξ lk. There-
fore the solution of only six problems (4) is required to obtain the homogenized
stiffness tensor.

The periodicity of the solution implies the use of periodic boundary conditions.
Rotated trilinear (Rannacher-Turek) finite elements [12] are used for the numerical
solution of (4). This choice is motivated by the additional stability of the noncon-
forming finite element discretization in the case of strongly heterogeneous materi-
als [4]. Construction of a robust non-conforming finite element method is generally
based on application of mixed formulation leading to a saddle-point system. By the
choice of non continuous finite elements for the dual (pressure) variable, it can be
eliminated at the (macro)element level. As a result we obtain a symmetric positive
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semi-definite finite element system in primal (displacements) variables. We utilize
this approach, which is referred as thereduced and selective integration (RSI) [2].

3 Preconditioning algorithms

Both of the considered preconditioners are based on the isotropic variant of the
displacement decomposition (DD)[11]. We write the DD auxiliary matrix in the
form

CDD =





A
A

A



 (6)

whereA is the stiffness matrix corresponding to the bilinear form

a(uh,vh) = ∑
e∈Ω h

∫

e
E

(

3

∑
i=1

∂uh

∂xi

∂vh

∂xi

)

de. (7)

Such approach is motivated by the second Korn’s inequality,which holds for the
RSI FEM discretization under consideration. This means that the estimate

κ(C−1
DDK) = O((1−2ν)−1)

holds uniformly with respect to the mesh size parameter in the FEM discretization.
The first of the studied preconditioners is obtained by MIC(0) factorization of the
blocks in (6).

3.1 Parallel MIC(0) preconditioning

The first method used is based on parallel MIC(0) preconditioner for scalar elliptic
problems [3]. Its basic idea is to apply MIC(0) factorization of an approximationB
of the stiffness matrixA. Matrix B has a special block structure. Its diagonal blocks
are diagonal matrices. This allows the solution of the preconditioning system to be
performed in parallel. The condition number estimateκ(B−1A)≤ 3 holds uniformly
with respect to mesh parameter and possible coefficient jumps (see for the related
analysis in [3]). This technique is applied three times – once for each diagonal block
of (6). Thus we obtain the parallel MIC(0) preconditioner inthe form:

CDDMIC(0) =





CMIC(0)(B)
CMIC(0)(B)

CMIC(0)(B)



 .

More details on applying this preconditioner for the proposed homogenization tech-
nique can be found in [15].
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3.2 BoomerAMG

Our second approach uses inner PCG iterations with BoomerAMG for A to approx-
imate the DD block-diagonal matrix (6). BoomerAMG is parallel algebraic multi-
grid implementation, part of the software package HYPRE developed in Lawrence
Livermore National Laboratory, USA. It can be used as a solver or as a precondi-
tioner. Various different parallel coarsening techniquesand relaxation schemes are
available. See [14] for a detailed description of the coarsening algorithms, the inter-
polation and numerical results.

Version 2.0.0 of the Hypre library was used for the performedtests. Parallel mod-
ified independent sets (PMIS) coarsening was used in the presented tests. A V(1,1)-
cycle with hybrid Gauss-Seidel smoothing is performed. Therelated AMG strength
threshold is 0.5. Aggressive coarsening on the first two levels was utilizedin order
to decrease operator complexity. This noticeably reduced the memory footprint of
the preconditioner. The number of inner iterations was fixedto 4.

4 Numerical Experiments

To solve the above described upscaling problem, a portable parallel FEM code was
designed and implemented in C++. The parallelization has been facilitated using the
MPI library [13].

The analyzed test specimens are parts of trabecular bone tissue extracted from
a high resolution computer tomography image [7]. The voxel size is 37µm. The
trabecular bone has a strongly expressed heterogeneous microstructure composed
of solid and fluid phases. To get a periodic RVE, the specimen is mirrored three
times, see Fig. 1.

Homogenized properties of different RVEs with size ofn× n× n, wheren ∈
{32,64,128}, see Fig. 1. The Young modulus and the Poisson ratio of the solid
phase, taken from [8], areEs = 14.7GPa andνs = 0.325. Our intention was to
obtain the homogenized elasticity tensor of the RVE, takinginto account the elastic
response of the solid phase only. We interpret the fluid phaseas a fictitious domain.
On that account exponentially decreasing Young modulusE f = ζ ES for the voxels
corresponding to the fluid phase are used, whereζ is the parameter decreased. We
setν f = νs which practically doesn’t influence the numerical upscaling results.

The iteration stopping criterion was||r j||C−1/||r0||C−1 < 10−6, wherer j is the
residual at thej-th iteration step of the preconditioned conjugate gradient method
and C stands for the used preconditioner.

Numerical experiments were performed on a Blue Gene/P machine. It is a mas-
sively parallel computer consisting of quad-core nodes. The PowerPC based low
power processors run at 850 MHz. Each node has 2GB of RAM. Nodes are inter-
connected with several specialized high speed networks—3D mesh network for peer
to peer communications and tree network for collective communications, among
others.
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(a) (b) (c)

Fig. 1 Structure of the solid phase: (a)n = 32, (b)n = 64, (c)n = 128.

Starting on 2 processors for solution of the smallest problem (n = 32), the number
of processors is increased proportionally to the number of unknowns, for the larger
problems. In Table 1 are collected timesT and number of iterationsIt for the MIC(0)
preconditioner and for the solution of one subproblem (4). The results with the three
RVEs andζ ∈ {10−1,10−2,10−3,10−4,10−5} are shown. The number of unknowns
is indicated withN, and the number of processors – withp. The same information,
but for BoomerAMG preconditioner is presented in Table 2.

Table 1 MIC(0)

ζ = 10−1 ζ = 10−2 ζ = 10−3 ζ = 10−4 ζ = 10−5

n N p T [s] It T [s] It T [s] It T [s] It T [s] It
32 2 396 160 2 267 219 455 378 689 576 816 684 836 701
64 19 021 824 16 442 320 804 588 1 235 907 1 683 1 239 1 937 1 426

128 151 584 768 128 937 462 1 715 851 2 939 1 462 3 953 1 969 4 634 2 309

Table 2 BoomerAMG

ζ = 10−1 ζ = 10−2 ζ = 10−3 ζ = 10−4 ζ = 10−5

n N p T [s] It T [s] It T [s] It T [s] It T [s] It
32 2 396 160 2 596 30 989 51 1 385 73 1 644 86 1 682 88
64 19 021 824 16 669 30 1 212 56 1 736 81 2 238 105 2 447 115

128 151 584 768 128 1 114 39 1 706 61 2 566 93 3 292 120 3 856 141
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The number of iterations for both preconditioners increasegradually with the de-
crease ofζ . The available theoretical estimates for the convergence of the MIC(0)
preconditioner concern some model problems for homogeneous materials. In such
cases, the number of iterations isnit = O(n1/2) = O(N1/6). Here the number of iter-
ations has very similar behavior forζ ∈ {10−1,10−2}. Nevertheless, even for very
large coefficient jumps convergence is only slightly deteriorating. Slight increase
in the number of iterations with the problem size is observedfor the BoomerAMG
preconditioner. We see similar parallel times for both MIC(0) and BoomerAMG
preconditioners. BoomerAMG has some advantage for the largest problem in the
case of strong coefficient jumps.

The obtained structure of the homogenized stiffness matrixCH corresponds to
the case of orthotropic materials in all of the experiments.This is due to the en-
forced triple mirroring procedure. Following (3), the Young moduli Ei in each of
the coordinate directions and the Poisson ratiosνi j = − ε j j/εii can be computed
explicitly by the formulas

Ei = 1/sii νi j = −Eis ji

wheresi j stand for the elements of the compliance matrixS = (CH)−1, see [5].
Tables 3, 4 and 5 contain the computed homogenized Young moduli, Poisson

ratios and shear moduli for varying the fictitious domain Young modulus parameter
ζ for the considered three different specimens.

Table 3 Homogenized material properties –n = 32

ζ E1 E2 E3 ν12 ν23 ν31 µ23 µ31 µ12

10−1 4.52×109 6.23×109 6.24×109 0.208 0.300 0.286 2.29×109 1.39×109 1.35×109

10−2 2.03×109 4.72×109 4.67×109 0.095 0.271 0.229 1.73×109 4.81×108 3.80×108

10−3 1.67×109 4.48×109 4.45×109 0.074 0.264 0.212 1.66×109 3.56×108 2.42×108

10−4 1.63×109 4.46×109 4.42×109 0.072 0.263 0.210 1.65×109 3.42×108 2.26×108

10−5 1.62×109 4.45×109 4.42×109 0.071 0.262 0.210 1.65×109 3.40×108 2.24×108

Table 4 Homogenized material properties –n = 64

ζ E1 E2 E3 ν12 ν23 ν31 µ23 µ31 µ12

10−1 2.86×109 3.11×109 3.55×109 0.288 0.270 0.281 1.19×109 9.07×108 9.50×108

10−2 8.73×108 1.12×109 1.94×109 0.191 0.164 0.185 4.94×108 1.62×108 1.71×108

10−3 5.69×108 8.02×108 1.73×109 0.127 0.124 0.117 3.90×108 5.22×107 5.22×107

10−4 5.33×108 7.62×108 1.71×109 0.117 0.119 0.102 3.77×108 3.88×107 3.77×107

10−5 5.29×108 7.58×108 1.71×109 0.116 0.118 0.101 3.76×108 3.74×107 3.62×107

A stable behavior of the implemented numerical homogenization scheme is ob-
served in all cases. A good accuracy of the computed homogenized Young mod-
uli and Poisson ratios is achieved if the fictitious domain modulusE f = ζ Es for
ζ ∈

{

10−4,10−5
}

. In all three cases the orthotropy ratio is about 3. This evidently
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Table 5 Homogenized material properties –n = 128

ζ E1 E2 E3 ν12 ν23 ν31 µ23 µ31 µ12

10−1 2.66×109 2.47×109 2.67×109 0.315 0.284 0.278 8.76×108 8.78×108 8.87×108

10−2 7.90×108 5.97×108 9.51×108 0.282 0.180 0.171 1.93×108 1.68×108 1.64×108

10−3 4.65×108 2.81×108 7.10×108 0.228 0.114 0.094 8.46×107 6.22×107 3.37×107

10−4 4.20×108 2.24×108 6.78×108 0.222 0.100 0.076 6.66×107 4.89×107 1.40×107

10−5 4.15×108 2.16×108 6.75×108 0.222 0.098 0.073 6.44×107 4.75×107 1.18×107

confirms that the hypothesis that the trabecular bone structure could be interpreted
(approximated) as isotropic is not realistic.
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