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Abstract

Two parallel iterative solvers for large-scale linear systems related to µFEM simu-
lation of human bones were developed. The considered benchmark problems represent
the strongly heterogeneous structure of real bone specimens. The voxel data are ob-
tained by a high resolution computer tomography. Non-conforming Rannacher-Turek
finite elements are used for discretization of the considered problem of linear elasticity.

Here the preconditioned conjugate gradient method is used. The performance of
two parallel preconditioners is studied. Both are based on displacement decomposition.
The first one uses modified incomplete Cholesky factorization MIC(0) and the other
– algebraic multigrid.

1 Introduction

This work is devoted to the development and tuning of robust iterative solution meth-
ods, algorithms and software tools for µFE (micro finite element) simulation of human
bones. A voxel representation of the bone structure based on micro computer tomog-
raphy (CT) images is used to formulate the problem. The computational domain is
a strongly heterogeneous composition of solid and fluid phases, see Figure 1. The
considered isotropic linear elasticity model is a current brick in the development of
a toolkit for µFE simulation of the bone microstructure. The implementation of a
poroelasticity model is the next step in this project.

Figure 1: Bone microstructure.

Non-conforming Rannacher-Turek FEs are used for discretization of the problem.
The obtained linear system is large, with a sparse, symmetric and positive definite
matrix. This implies the use of iterative solvers based on the preconditioned conju-
gate gradient (PCG) method [1]. The elasticity stiffness matrix has a coupled block
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structure corresponding to a separable displacement ordering of the unknowns. Here,
the performance of the following two basic preconditioning codes, incorporated to a
displacement decomposition framework, is studied. The first one is the modified in-
complete factorization, MIC(0), and the second is the algebraic multigrid, AMG. The
MIC(0) code is developed in IPP-BAS, Sofia, while the AMG one is the BoomerAMG
module of the software system Hypre developed at LLNL, Livermore. The compara-
tive analysis is focused on the number of iterations and the related computing times
for real-life large-scale problems.

2 Non-conforming FEM formulation of the problem

We consider the weak formulation of the linear elasticity problem in the form: find
u ∈ [H1

E(Ω)]3 = {v ∈ [H1(Ω)]3 : vΓD
= uS} such that

∫

Ω

[2µε(u) : ε(v) + λ div u div v]dΩ =

∫

Ω

f tvdΩ +

∫

ΓN

gtvdΓ, (1)

∀v ∈ [H1
0 (Ω)]3 = {v = [H1(Ω)]3 : vΓD

= 0}, with the positive constants λ and µ of
Lamé, the symmetric strains ε(u) := 0.5(∇u + (∇u)t), the volume forces f , and the
boundary tractions g, ΓN ∪ ΓD = ∂Ω, |ΓD| 6= ∅. The Lamé coefficients are given by

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
, where E stands for the modulus of elasticity, and

ν ∈ (0, 1

2
) is the Poisson ratio.

To obtain a stable saddle-point system one usually uses a mixed formulation
for u and div u. By the choice of piece-wise constant finite elements for the dual
variable, it can be eliminated at the macroelement level, and thereafter we get a
symmetric positive definite FEM system in primal unknowns (displacement). This
approach is known as reduced and selective integration (RSI) technique, see [2]. For the
discretization of (1) we use nonconforming rotated trilinear elements of Rannacher-
Turek [3].

After the RSI discretization, the following system of linear equations is obtained

[

K11 K12 K13

K21 K22 K23

K31 K32 K33

]





u1

h

u2

h

u3

h



 =





f1

h

f2

h

f3

h



 . (2)

Here the stiffness matrix K is written in block form corresponding to a separate dis-
placements components ordering of the vector of nodal unknowns. Since K is sparse,
symmetric and positive definite, we use the PCG method to solve the system (2).

3 Preconditioning algorithms

Crucial for the performance of the PCG algorithm is the preconditioning technique
used. Here we present two preconditioners based on the isotropic variant of the
displacement decomposition (DD)[4, 5]. We write the DD auxiliary matrix in the
form

CDD =

[

A
A

A

]

(3)

2



where A is the stiffness matrix corresponding to the bilinear form

a(uh, vh) =
∑

e∈Ωh

∫

e

E

(

3
∑

i=1

∂uh

∂xi

∂vh

∂xi

)

de. (4)

Such approach is motivated by the second Korn’s inequality, which holds for the RSI
FEM discretization under consideration. This means that the estimate κ(C−1

DDK) =
O((1 − 2ν)−1) holds uniformly with respect to the mesh size parameter in the FEM
discretization.

The first approach used is based on the recently developed parallel MIC(0) pre-
conditioner for scalar elliptic problems [6]. Its basic idea is to apply MIC(0) factor-
ization of an approximation B of the stiffness matrix A. Matrix B has a special block
structure. Its diagonal blocks are diagonal matrices. This allows the solution of the
preconditioning system to be performed in parallel. The condition number estimate
κ(B−1A) ≤ 3 holds uniformly with respect to mesh parameter and possible coefficient
jumps (see for the related analysis in [6]). This technique is applied three times - once
for each diagonal block of (3).

In our second approach inner PCG iteration is used. BoomerAMG code from the
Hypre package is used as a preconditioner. The Falgout coarsening was used in the
presented tests. A V(1,1)-cycle with hybrid Gauss-Seidel smoothing was performed.
The related AMG strength threshold was 0.5. Aggressive coarsening was used. The
number of the inner iterations was fixed to 4.

4 Comparative numerical tests

4.1 Scalability tests

Numerical tests with the considered two parallel algorithms and codes are present
and analyzed in this section. The tests are run on three parallel platforms, referred
to further as C1, C2 and C3. Platform C1 is an “IBM SP Cluster 1600” consisting
of 64 p5-575 nodes interconnected with a pair of connections to the Federation HPS
(High Performance Switch). Each p5-575 node contains 8 Power5 SMP processors at
1.9GHz and 16GB of RAM. The network bandwidth is 16Gb/s. Platform C2 is an
IBM Linux Cluster 1350, made of 512 dual-core IBM X335 nodes. Each node contains
2 Xeon Pentium IV processors and 2GB of RAM. Nodes are interconnected with a
1Gb Myrinet network. Platform C3 is a “Cray XD1” cabinet, fully equipped with
72 2-way nodes, totaling in 144 AMD Opteron processors at 2.4GHz. Each node has
4GB of memory. The CPUs are interconnected with the Cray RaidArray network
with a bandwidth of 5.6Gb/s.

The computational domain is the cube [0, 1]3, where homogeneous Dirichlet bound-
ary conditions are assumed at the bottom. The force ||g|| = 1 is acting on the top.
The mesh is uniform. Here n stands for the number of subintervals in the fine grid
of the RSI FEM discretization in each direction. The mechanical characteristics of
the model problem are E = 1 and ν = 0.3. The size of the resulting nonconforming
FEM system is N = 9n2(n + 1). The number of processors p is increased propor-
tionally with the problem size N . The stopping criterion in all considered tests is
(C−1rNit , rNit)/(C−1r0, r0) < 10−6, where ri is the current residual and C stands
for the used preconditioner. Table 1 presents the time T in seconds, the number of
iterations It (the outer ones for the AMG code), varying the preconditioners, the
problem sizes and the platforms.
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Table 1: Parallel Tests I

C1 C2 C3

MIC(0) AMG MIC(0) AMG MIC(0) AMG
n N p T [s] It T [s] It T [s] It T [s] It T [s] It T [s] It

64 2 396 160 1 136.6 115 150.1 9 83.7 115 84.0 9 83.9 115 115.1 9
128 19 021 824 8 202.0 163 195.6 10 172.1 163 229.8 10 127.8 163 152.6 10
256 151 584 768 64 355.6 230 261.4 10 464.1 230 430.0 10 328.2 230 307.1 10

4.2 Voxel analysis tests

The bone microstructure is a typical example of strongly heterogeneous media. In the
presented tests, the computational domain is a composition of solid and fluid phases.
The CT image is extracted from the dataset [8]. The voxel size is 37µm. Each voxel
corresponds to a macroelement from the RSI FEM discretization. The bone specimen
is placed between two plates (see Figure 2). The thickness of the plates is 1 voxel. The
position of the bottom plate is fixed (homogeneous Dirichlet boundary conditions),
and a force of ||g|| = 1 is uniformly distributed on the top one. This setting simulates
a vertically loaded bone specimen.

Figure 2: Vertical stresses: n = 64 - left, n = 128 - middle, n = 256 - right;
red indicates areas with maximal stress, blue - with minimal.

The considered test problems are given by the following parameters: Ep = 10,
Es = 1, Ef = ζ ∈ {0.1, 0.01, 0.001}, ν = 0.3. Here, Ep is the elasticity modulus of
the two plates, Es stands for a scaled elasticity modulus of the solid phase, while Ef

introduces varying coefficient jumps between solid and fluid phases.
The results presented in Table 2 are obtained on the platform C2. For the case

of the biggest coefficient jumps (ζ=0.001) and the biggest problem (N=151 584 768),
outer PCG iteration with AMG preconditioner fails to converge within the specified
time limit of 7200 seconds. This test was repeated with an increased number of inner
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iterations. The corresponding values in the table are obtained with Itin = 6. On
Figure 2 with different colors are shown vertical stresses.

Table 2: Parallel Tests II

ζ = 0.1 ζ = 0.01 ζ = 0.001

MIC(0) AMG MIC(0) AMG MIC(0) AMG
n p T [s] It T [s] It T [s] It T [s] It T [s] It T [s] It

64 1 239.3 330 374.9 27 348.3 505 757.9 57 588.6 823 1040.5 78
128 8 833.2 708 681.0 25 975.5 830 1501.3 60 2166.7 1850 2908.9 107
256 64 2393.8 1237 945.4 25 3495.7 1831 2114.4 57 6025.8 3150 5520.1 114
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