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Abstract. Novel parallel algorithms for the solution of large FEM linear systems arising from
second order elliptic partial differential equations in 3D are presented. The problem is discretized
by rotated trilinear nonconforming Rannacher–Turek finite elements. The resulting symmetric
positive definite system of equations Ax = f is solved by the preconditioned conjugate gradient
algorithm. The preconditioners employed are obtained by the modified incomplete Cholesky
factorization MIC(0) of two kinds of auxiliary matrices B that both are constructed as local
approximations of A. Two parallel algorithms based on the different block structures of the
related matrices B are studied. The numerical tests presented confirm the scallability of one of
the algorithms.

1. Introduction

We consider the model elliptic boundary value problem:

Lu ≡ −∇ · (a(x)∇u(x)) = f(x) in Ω,

u = 0 on ΓD,(1.1)

(a(x)∇u(x)) · n = 0 on ΓN ,

where Ω = [0, 1]3 ⊂ R
3, ΓD ∪ ΓN = ∂Ω and a(x) is a symmetric and positive definite coefficient

matrix. The problem is discretized using non-conforming finite elements method (FEM). The
resulting linear algebraic system is assumed to be large. The stiffness matrix A is symmetric and
positive definite. For large scale problems, the preconditioned conjugate gradient (PCG) method
is known to be the best solution method [?].

The recent efforts in development of efficient solution methods for non-conforming finite element
systems is inspired by their importance for various applications in scientific computations and
engineering [14, 2, 13]. The goal of this study is to develop new parallel PCG solvers for the
arising 3D FEM elliptic systems. Locally modified approximations of the global stiffness matrix
are proposed allowing for: a) a stable MIC(0) (modified incomplete Cholesky) factorization;
and b) a scalable parallel implementation. The considered non-conforming FEM and MIC(0)
factorization are robust for problems with possible jumps of the coefficients

The algorithm is based on the experience in developing such kind of algorithms for 2D problems
using conforming FEM elements on skewed meshes [10] and non-conforming rotated bilinear FEM
elements [?, 13, ?]. The rotated trilinear non-conforming finite elements on hexahedrons are used
for the numerical solution of (1.1).

We assume that Ωh = wh1

1 ×wh2

2 ×wh3

3 is a decomposition of the computational domain Ω ⊂ R
3

into hexahedrons. The degrees of freedom are associated with the midpoints of the sides. The
standard computational procedure leads to the linear system of equations Ax = b, where the
stiffness matrix A is sparse, symmetric and positive definite.
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The rest of this paper is organised as follows. Section 2 describes the element-by-element
construction of the preconditioners. Section 3 contains the parallel implementation details and
estimates of parallel times. Some results from numerical experiments, are presented in Section 4.

Table 1. Variant B1

n N p I TC1 TC2 TC3

127 6193536 1 44 96.21 133.9 85.64
160 12364800 2 50 128.5 186.7 94.74
202 24849636 4 56 197.6 258.7 127.92
255 49939200 8 64 317.7 361.2 182.57
322 100469796 16 72 465.4 608.8 289.59
406 201264756 32 81 759.9 1072. 435.69

Table 2. Variant B2

n N p I TC1 TC2 TC3

127 6193536 1 44 68.88 125.15 94.17
160 12364800 2 49 79.91 189.36 109.82
202 24849636 4 54 93.74 225.12 127.63
255 49939200 8 61 114.4 287.38 153.52
322 100469796 16 68 163.4 368.83 252.48
406 201264756 32 76 165.5 480.11 245.04

Programs for Variants B1 and B2 access the memory in a different pattern. This explains the
different behavior of sequential times, comparing variants B1 and B2 on different machines. The
tables well illustrate the different properties of the computing platforms used.

As expected, one can observe that the iteration count is of order O(n1/2) = O(N1/6) and the

total time grows as O(n1/2) = O(N1/6), especially in Variant B2.
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