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PREFACE

The Bulgarian Section of SIAM (BGSIAM) was founded on January 18, 2007 and the
accepted Rules of Procedure were officially approved by the SIAM Board of Trustees
on July 15, 2007. The activities of BGSIAM follow the general objectives of SIAM,
as established in its Certificate of Incorporation.

Realizing the importance of interdisciplinary collaboration and the role that applied
mathematics plays in advancing science and technology in industry, we solicit the
support of SIAM as the major international organization for Industrial and Applied
Mathematics in order to promote the application of mathematics to science, engineer-
ing and technology in Republic of Bulgaria.

The 3rd Annual Meeting of BGSIAM (BGSIAM’08) was hosted by the Institute of
Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia. It took part on
December 22 and 23, 2008. The conference support provided by SIAM is very highly
appreciated.

During BGSIAM’08 conference a wide range of problems concerning recent achieve-
ments in the field of industrial and applied mathematics were presented and discussed.
The meeting provided a forum for exchange of ideas between scientists, who develop
and study mathematical methods and algorithms, and researchers, who apply them
for solving real life problems.

More than 50 participants from four universities, three institutes of the Bulgarian
Academy of Sciences and also from outside the traditional academic departments
took part in BGSIAM’08. They represent most of the strongest Bulgarian research
groups in the field of industrial and applied mathematics. The involvement of younger
researchers was especially encouraged and we are glad to report that 8 from the
presented 27 talks were given by Ph.D. students.

LIST OF INVITED LECTURES:

• LUDMIL ZIKATANOV
Penn State, University Park, PA, USA
DISCONTINUOUS GALERKIN METHODS AND PRECONDITIONING

• GEORGI POPOV
University of Nantes, France
INTEGRAL AND SPECTRAL GEOMETRY OF LIOUVILLE BILLIARD TA-
BLES

• SVETLA NIKOVA
Catholic University of Leuven, Belgium
SECRET SHARING SCHEMES AND ERROR CORRECTING CODES



The present volume contains the scientific program of BGSIAM’08 (Part A), extended
abstracts of the conference talks (Part B), and the list of participants (Part C). The
extended abstracts are ordered alphabetically according to the family names of the
first author.

Svetozar Margenov
Chair of BGSIAM Section

Stefka Dimova
Vice-Chair of BGSIAM Section

Angela Slavova
Secretary of BGSIAM Section

Sofia, February 2009
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Part A

Scientific program





Monday, December 22
09:00 - 10:50 SESSION 1
Chairman S. Margenov
09:00 - 09:10 Opening
09:10 - 09:50 Invited Plenary Talk:

G. Popov, P. Topalov Integral and Spectral Geometry of Liou-
ville Billiard Tables

09:50 - 10:10 R. Anguelov, Dynamically Consistent Schemes for Epidemio-
logical Models

10:10 - 10:30 O. Kounchev, An Optimal Control in Elasticity Theory
10:30 - 10:50 S. Fidanova, K. Atanasov, P. Marinov, Intuitionistic Fuzzy Es-

timations of the Ant Colony Optimization
Coffee Break

11:10 - 12:30 SESSION 2
Chairman G. Popov
11:10 - 11:30 A. Slavova, Cellular Neural Networks’ Model of Risk Manage-

ment
11:30 - 11:50 M. Kostova, V. Djurov, Intelligent Approaches for Radiolaca-

tional Monitoring
11:50 - 12:10 A. Slavova, V. Ivanova, Traveling Waves in Newell-Whitehead

Cellular Neural Network Model
12:10 - 12:30 P. Cristea, V. Mladenov, G. Tsenov, R. Tuduce, Prediction of

Mycobacterium Tuberculosis (rpoB) Nucleotide Sequences by
Using Neural Networks

Lunch Break
14:00 - 16:00 SESSION 3
Chairman N. Kolkovska
14:00 - 14:40 Invited Plenary Talk:

L. Zikatanov, Discontinuous Galerkin Methods and Precondi-
tioning

14:40 - 15:00 A. Andreev, M. Racheva, Non-Conforming Z-type FE for
Fourth-Order Problems: Estimates and Application

15:00 - 15:20 P. Boyanova, S. Margenov, On AMLI Preconditioning of
Graph-Laplacians: Properties of the Two-Level Method

15:20 - 15:40 N. Kosturski, S. Margenov, Y. Vutov, Efficient Solution of µ-
FEM Elasticity Problems in the Case of Almost Incompressible
Materials

15:40 - 16:00 Y. Vutov, Scalability Tests of Two Parallel PCG Solvers on
Blue Gene/P

Coffee Break
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Monday, December 22
16:20 - 18:20 SESSION 4
Chairman K. Georgiev
16:20 - 16:40 G. Nikolov, Cubature Formulae for the Disk Using Radon Pro-

jections
16:40 - 17:00 B. Jovanovic, M. Koleva, L. Vulkov, Numerical Solution of El-

liptic and Parabolic Problems on Disjoint Domains
17:00 - 17:20 N. Kolkovska, R. Slavchev, D. Vasileva, On the Numerical

Simulation of Surface Forces Acting on AFM Tip
17:20 - 17:40 I. Hristov, St. Dimova, Dynamics of Multilayered Josephson

Junctions
17:40 - 18:00 I. Dimov, R. Georgieva, S. Ivanovska, Tz. Ostromsky, Z.

Zlatev, Sensitivity Analysis of Air Pollution Models
18:00 - 18:20 G. Bencheva, Towards Real-Time Data-Driven Computer Sim-

ulation of Blood Cells Production and Regulation
RECEPTION

Tuesday, December 23
09:00 - 10:40 SESSION 5
Chairman P. Boyvalenkov
09:00 - 09:40 Invited Plenary Talk:

S. Nikova Secret Sharing Schemes and Error Correcting Codes
09:40 - 10:00 R. Dodunekova, On Error Detection with Block Codes
10:00 - 10:20 I. Landjev, Codes and Geometries Over Finite Rings
10:20 - 10:40 M. Manev, Classification of (28,8,2,3) Superimposed Codes

Coffee Break
11:00 - 12:20 SESSION 6
Chairman S. Dimova
11:00 - 11:20 V. Gerdjikov, N. Kostov, T. Valchev, Reductions and Soli-

ton Solutions of Nonlinear Evolution Equations on Symmetric
Spaces

11:20 - 11:40 R. Ivanov, Integrable Models for Shallow Water Waves
11:40 - 12:00 M. Todorov, Ch. Christov, On the Solution of the System of

ODEs Governing the Polarized Stationary Solutions of CNLSE
12:00 - 12:20 D. Georgieva, I. Stefanov, M. Todorov, S. Yazadjiev, Numeri-

cal Investigation of Charged Black Holes in the Scalar-Tensor
Theories of Gravity with Massive Scalar Field

CLOSING
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Part B

Extended abstracts∗

∗Arranged alphabetically according to the family name of the first author.





Non-Conforming Z-type FE for Fourth-Order Problems:
Estimates and Application

Andrey Andreev, Milena Racheva

We present a new convergence analysis of Zienkiewicz-type (Z-type) non-conforming
triangular finite element applied to the fourth-order partial differential equations.
Let Ω be a bounded polygonal domain in R2 with boundary ∂Ω. Let also Hm(Ω)
be the usual m−th order Sobolev space on Ω with a norm ‖ · ‖m,Ω and a seminorm
| · |m,Ω and (·, ·) denote the L2(Ω)−inner product.
Consider the following fourth-order model problem for f ∈ L2(Ω):

∆2u = f in Ω,

u =
∂u

∂ν
= 0 on ∂Ω,

(1)

where ν = (ν1, ν2) is the unit outer normal to ∂Ω and ∆ is the standard Laplacian
operator.
The weak form of the problem (1) is: find u ∈ H2

0 (Ω) such that

a(u, v) = (f, v), ∀ v ∈ H2
0 (Ω), (2)

where

a(u, v) =

∫

Ω

2∑

i,j=1

∂2
iju ∂

2
ijv dx ∀ u, v ∈ H2(Ω).

Let τh be family of regular finite element partitions of Ω which fulfill standard as-
sumptions. The partitions τh consist of triangles K and h is mesh parameter. We
can define the finite element space Vh by means of Z-type elements which will be
introduced.

The corresponding approximate variational problem of (2) is: find uh ∈ Vh ⊂ H2
0 (Ω)

such that
a(uh, vh) = (f, vh), ∀ vh ∈ Vh. (3)

As it is well-known, the Zienkiewicz triangle represents a reduced cubic Hermite finite
element (see [1, 2]) for which:

• K is a 2-simplex with vertices ai, 1 ≤ i ≤ 3;

• one possible set of degrees of freedom is (for any test function p):

p(ai), 1 ≤ i ≤ 3 and Dp(ai)(aj − ai), 1 ≤ i, j ≤ 3, i 6= j.

• PK ⊂ P3(K) and dimPK = 9 (fig. 1).
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Figure 1:

Some Z-type triangular elements having the same degrees of freedom can be proposed
by means of different ways (see, e.q. [2]).
The following properties of Z-type element could be mentioned: (i) it is an incomplete
and non-conforming C0−element for fourth-order problems; (ii) it uses the degrees
of freedom just the same with the Zienkiewicz triangle, but its shape function space
is different; (iii) it takes values of function and its derivatives at vertices as degrees
of freedom and by this the global number of degrees of freedom is an optimal one;
(iv) it is convergent (applied to 4-order problems) in contrast to Zienkiewicz triangle,
which is only convergent in parallel line condition and divergent in general grids.
For any 2-simplex K we define

P (K) = P2(K) + span
{
λ2
i λj − λiλ2

j , 1 ≤ i < j ≤ 3
}
,

where λi, i = 1, 2, 3 are the barycentric coordinates of K. Then we can define the
shape function space by P ′

3(K).

Lemma 1. ([2], Lemma 1) The set of degrees of freedom is PK−unisolvent.

In order to get convergence analysis of the considered element we also consider the
Hermite triangle with a suitably modified 10-th degree of freedom, namely, integral
value on K is taken instead of the value at the barycenter of K (fig. 1).
Let ΠK denote the interpolation operator corresponding to Z-type finite element
partition τh and πh be the interpolation operator related to modified Hermite finite
element. Our convergence analysis is based on the estimation of Πhv − πhv for any
v ∈ H2

0 on each element K ∈ τh [3].
The calculations use the shape functions for both elements and are accomplished on
the reference element (t1, t2) ∈ K = {t1, t2 ≥ 0, t1 + t2 ≤ 1}:

Πhv − πh = 60t1t2(1 − t1 − t2)EK(v) ≤ 20

9
EK(v),
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where

EK(v) =




1

3

3∑

i=1

v(ai)−
1

24

3∑

i,j=1

i6=j

Dv(ai)(ai − aj)−
1

meas(K)

∫ ∫

K

v dt1 dt2




is error functional of quadrature formula and EK(v) = 0 for v ∈ P2(K).
The last estimate is the crutial point of the main result:

Theorem 1. Let Vh be the finite element space corresponding to nonconforming Z-
type element. Then there exists a constant C = C(Ω) > 0, independent of h and such
that

inf
vh∈Vh

2∑

m=0

hm|v − vh|m,Ω ≤ Ch3‖v‖3,Ω, ∀v ∈ H2
0 (Ω).

Then we can prove the following result:

Theorem 2. Let u ∈ H3(Ω) ∩H2
0 (Ω) and uh ∈ Vh be the solutions of the problems

(2) and (3), respectively. Then there exists a constant C = C(Ω) > 0, independent of
h and such that

‖u− uh‖2,Ω ≤ Ch‖u‖3,Ω.
We apply the previous consideration to the corresponding fourth-order eigenvalue
problem. Consider a thin elastic plate corresponding to a bounded domain Ω ∈ R2.
If the material is homogeneous and isotropic, the question about the possible small
vibrations of the plate leads to the basic eigenvalue equation:

∆2w = λw in Ω, (4)

subject to some boundary conditions.
The variational EVP takes the form

a(w, v) = λ(w, v), ∀v ∈ V ⊂ H2
0 (Ω).

The finite dimensional analogue of the problem (4) by means of Z-type non-conforming
elements is (see [5]):

ah(wh, vh) = λh(wh, vh), ∀vh ∈ Vh.

It is to be noted here that the sesquilinear form ah is uniformly elliptic:

α‖∆u‖20,Ω ≤ ah(u, u), ∀u ∈ H2(Ω).

Theorem 3. Assume the conditions of Theorem 2 are satisfied.

Then λ
(k)
h −→ λ(k) (h → 0), k = 1, . . . , Nh and for any sequence of normalized

eigenfunctions w
(k)
h ∈ Vh, ‖w(k)

h ‖ = 1, there exist eigenfunctions w ∈ H2
0 (Ω) such

that
‖w(k)

h − w‖2,Ω −→ 0 (h→ 0).

9



Moreover, if w ∈ H3(Ω) ∩H2
0 (Ω), then

‖w(k)
h − w‖2,Ω ≤ Ch‖w‖3,Ω,

|λ(k)
h − λ| ≤ Ch2‖w‖23,Ω.

Acknowledgements. This work is partly supported by the Bulgarian NSF Grants
VU-MI 202/2006 and DO02-147/2008.
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Dynamically Consistent Schemes for Epidemiological
Models

Roumen Anguelov

The paper deals with the construction of numerical schemes that faithfully replicate
the behavior of dynamical systems modeling the spread of disease. The alignment of
the properties of the dynamical system and its numerical discretization is character-
ized in terms of ”topological dynamic consistency” introduced in [2] and described
below.
Let D ⊆ R

d, d ≥ 1 be a given domain and let us assume that the system of differential
equations

dy

dt
= f(y), y(0) = x, (1)

where x ∈ D and f ∈ C0(D,D), defines a (positive) dynamical system on D. This
means that for every x ∈ D problem (1) has a unique solution y = y(x, t) ∈ D
for all t ∈ [0,∞). For a given t ∈ (0,∞), the mapping S(t) : D → D given by
S(t)(x)→ y(x, t) is called the evolution operator, and the set

{S(t) : t ∈ (0,∞)} (2)

is the well-known evolution semi-group. To simplify the matters, we assume here
that the maps S(t), t > 0, are all topologically equivalent to each other. This is for
example the case of Morse-Smale flows with fixed points only. In this respect let us
recall that two maps p : X → X and q : Y → Y , where X and Y are topological
spaces, are called topologically equivalent if there exists a homeomorphism µ : X → Y
such that p ◦ µ = µ ◦ q.
Suppose that the solution of (1) is approximated on the time grid {tk = kh : k =
0, 1, ...} by a difference equation of the form

yk+1 = F (h)(yk) , y0 = x , (3)

where the maps F (h) : D → D are defined for every h > 0. Hence, for every h > 0,
the difference equation in (3) defines a discrete dynamical system.

Definition The difference scheme (3) is called topologically dynamically consistent
with the dynamical system (1), whenever for every h > 0 the map F (h) is topologically
equivalent to the maps in the set (2). (Thus, the maps S(t) and F (h) are topologically
the same for every t > 0 and h > 0).

The concept of structural stability describes maps f : X → X , which remain es-
sentially the same under small perturbations in the sense that the perturbed map is
topologically equivalent to the original one. The underlying function space is typically
considered to be Cr(X,X), where often r = 1. In practical applications this space
may be determined not only by the differentiability of the maps but also by conditions
intrinsic to the model. Hence, we formulate the definition of structural stability in
the following more general form.
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Definition Let V be a topological space of maps from X to X . A map f ∈ V is
called V structurally stable if there exists a neighborhood U of f in the topology of
V such that every map g ∈ U is topologically equivalent to f .

The notion of structural stability is used for the construction of topologically dynam-
ically consistent schemes in the following way

1. Identify all unstable ”features” of the maps S(t), t > 0, e.g. nonhyperbolic fixed
points, fixed points on the boundary, orbits connecting saddle points, orbits on
the boundary, etc. The list needs to be complete so that if these features are
removed, all maps S(t) are C1 structurally stable.

2. Consider the space V of all maps in C1(D,D) which have the same unstable
features. Then the maps S(t), t > 0, are V structurally stable.

3. Construct a numerical method of the form (3) such that F (h) ∈ V and the map
F (h) is V structurally stable for all h > 0.

As a model example we consider the classic SIR model, [3], for the spread of disease,

ds

dt
= b(1− s)− βis+ δr,

di

dt
= βis− γi− bi, (4)

dr

dt
= γi− δr − br,

where s is the fraction of susceptibles in the total population, i is the fraction of the
infectives and r is the fraction of the recovered. It is easy to see that the system of
differential equations (4) defines a (positive) dynamical system on the two-dimensional
manifold M = {(s, i, r) : s+ i+ r = 1, s ≥ 0, i ≥ 0, r ≥ 0}. Eliminating s we obtain
the system (4) in an equivalent form of two equations

di

dt
= βi(1− i− r) − γi− bi,

(5)
dr

dt
= γi− δr − br.

Now, (5) defines a dynamical system on D = {(i, r) : i ≥ 0 , r ≥ 0 , i+ r ≤ 1}.
The point (0, 0) is always an equilibrium of (5) and respectively (1, 0, 0) is always an
equilibrium of (4). This is the Disease Free Equilibrium (DFE). The system may have
another equilibrium, namely,

(
δ + b

γ + δ + b

(
1− 1

σ

)
,

γ

γ + δ + b

(
1− 1

σ

))
, (6)

where σ = β
γ+b is the basic reproduction number. Our concern here are the prop-

erties of the dynamical system. The point in (6) is an equilibrium of the dynamical
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system whenever it belongs to its domain D, that is, when σ > 1. It is called an
Endemic Equilibrium (EE) since it describes a permanent presence of the disease.
Using standard techniques one can establish the following properties:

• The orbit of (1, 0) is always the line segment connecting it to DFE. Denote this
line by Γ1 and the rest of the boundary of D by Γ2.

• If σ ≤ 1 then DFE is globally asymptotically stable on D.

• If σ > 1 then EE is stable and attracting with basin of attraction D \ Γ1 and
DFE is a hyperbolic saddle point with Γ1 being its stable manifold.

It is easy to see that the maps S(t) for the model (5) are not C1 structurally stable
due to the fact that it has a fixed point and an orbit on the boundary of the domain
D. However, the maps S(t) are V structurally stable, where

V =



g : D → D :

∣∣∣∣∣∣

1) g : D → g(D) is a diffeomorphism
2) DFE is a fixed point of g
3) Γ1 is invariant and in the stable manifold of DFE





Now we need to construct a difference scheme of the form (3) with an operator F (h)
which is structurally stable with respect to the same space V. To this end we apply
the non-standard finite difference method. The following scheme, which uses nonlocal
approximation of the nonlinear term, is crafted in such a way that the operator F (h)
is V structurally stable.

in+1 − in
h

= (β − b− βin+1 − βrn+1)in − γin+1,
(7)

rn+1 − rn
h

= γin+1 − (δ + b)rn+1.

Then, as indicated earlier, the topological dynamic consistency of the scheme follows.
The numerical results in the figures below are obtained with β = 1, b = 0 and
varying values of the parameters γ and δ and the time step size h. Note that σ = 1

γ .

Figures 1, 2 and 3 represent numerical solutions by the nonstandard method (7).
As an indication of what can go wrong if the dynamic consistency is not taken into
account the simulation with data as in Figure 3 is repeated by using the second order
Runge-Kutta method and the computed solution is given in Figure 4.
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Fig. 1 Fig. 2

Fig. 3 Fig. 4
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Towards Real-Time Data-Driven Computer Simulation of
Blood Cells Production and Regulation

Gergana Bencheva

Motivation. The blood cells (BCs) are produced and regulated during a complex
biological process, called haematopoiesis. Mature BCs evolve from haematopoietic
pluripotent stem cells (HSCs) after a sequence of complex differentiations in the bone
marrow. This is possible due to the high self-renewal and differentiation capacity
of the HSCs. Each type of BCs is a result of the action of specific proteins, known
as Growth Factors or Colony Stimulating Factors (CSF), at specific moments during
the haematopoiesis process. BCs that have not yet matured are called blast cells.
Simplified diagram of the differentiation stages in haematopoiesis and the main growth

BC type Vital function Growth factors
Erythrocyte Transport oxygen Erythropoietin
Leukocyte Fight infections Granulocyte-CSF, Macrophage-CSF,

Granulocyte-Macrophage-CSF,
Interleukins

Thrombocyte Control bleeding Thrombopoietin

Figure 1: Differentiation stages and growth factors in haematopoiesis.

factors responsible for each of the BC types are shown in Figure 1.
Need for computer simulation. The BCs perform various vital functions like trans-
porting oxygen to tissues, fighting infections and controlling bleeding. Various haema-
tological diseases are characterized by abnormal production of particular BCs (either
matured or blast). For example, acute leukaemia occurs when the blast cells replicate
themselves uncontrollably and interfere with the production and activity of normal
BCs. If undiscovered or left untreated, it can cause death within few weeks or months.
The approach ”trial-error” is not recommended for dealing with questions related to
understanding and predicting of human physiological processes in health and disease.
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The computer modelling is especially useful in such cases and gives possibility to:
a) understand better the BCs production and regulation processes; b) design nature
experiments for validation of hypotheses; c) predict the effect of various treatment
options for patients with specific haematological diseases. The current step towards
real-time data-driven computer simulation of haematopoiesis aims at tuning of soft-
ware parameters and comparison of the obtained results with those presented in [1].
Delay differential equations (DDEs) provide an important way of describing the
time evolution of biological systems whose rate of change also depends on their con-
figuration at previous time instances. DDEs take part in the mathematical model of
CSF mediated haematopoiesis which is proposed in [1] and used in the current inves-
tigations. In the bone marrow, HSCs are divided into two groups: proliferating cells
and nonproliferating (or quiescent) cells. Their populations at time t are denoted by
P (t) ≥ 0 and Q(t) ≥ 0 respectively. The population of the circulating mature BCs is
denoted by M(t) ≥ 0 and the growth factor concentration is E(t) ≥ 0. The following
system of stiff nonlinear ordinary DDEs have to be solved





dQ

dt
= −δQ(t)− g(Q(t))− β(Q(t), E(t))Q(t)

+2e−γτβ(Q(t− τ), E(t − τ))Q(t− τ)
dM

dt
= −µM(t) + g(Q(t))

dE

dt
= −kE(t) + f(M(t))

(1)

with appropriate initial conditions for t ∈ [−τ, 0]. The delay τ corresponds to the
proliferating phase duration, which is assumed to be constant. The rates at which
the proliferating and quiescent cells can die are represented in (1) by the parameters
γ and δ respectively. The degradation rates µ and k of the mature BCs and of CSF in
the blood are assumed to be positive. Quiescent cells can either be introduced in the
proliferating phase with a rate β(Q(t), E(t)) or differentiate in mature BCs with a rate
g(Q(t)). The negative feedback control f(M(t)) of the bone marrow production on
the CSF production acts by the mean of circulating mature BCs: the more circulating
BCs are, the less growth factor is produced.
The trivial steady-state of (1) is not a biologically interesting equilibrium since it
describes a pathological situation that can only lead to death without appropriate
treatment. The existence of nontrivial positive steady-state is ensured (see [1] for
details) by the conditions:

0 < δ + g′(0) < β

(
0,
f(0)

k

)
, 0 ≤ τ < τmax :=

1

γ
ln




2β
(
0, f(0)

k

)

δ + g′(0) + β
(
0, f(0)

k

)


 (2)

Computer simulation. Runge-Kutta methods are widely used for numerical so-
lution of systems of ordinary differential equations (see e.g. [3]). Efficient codes for
both stiff and non-stiff problems have been developed and made freely available in
Internet. Two of them are DOPRI5, implementing Dormand and Prince method of
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order 5 for non-stiff problems, and RADAU5, implementing Runge-Kutta method
based on Radau quadrature formula for stiff problems (both downloadable from [4]).
When dealing with delays, a special attention should be focused on the so called
breaking points (or primary discontinuities), at which the solution possesses only a
limited number of derivatives, and remains piecewise regular between two consecutive
such points. Locating the breaking points and including them into the mesh is a
crucial issue on the numerical integration of DDEs, because any step-by-step method
attains its own order of accuracy provided that the solution sought is sufficiently
smooth in the current integration interval. The codes RETARD and RADAR5 are
modifications of DOPRI5 and RADAU5 for the case of DDEs, where the issues of
breaking points are taken into account. More information regarding the numerical
solution of DDEs can be found e.g. in [2] and references therein.
In the current work, the software parameters of RETARD and RADAR5 are tuned in
order to solve (1). It is done with the help of the test data for erythropoiesis presented
in [1], where the numerical results are obtained using dde23, a Matlab solver for DDEs
written by Shampine and Thompson [5].
The coefficient functions for normalized initial conditions E0 = 0.5, Q0 = 2, M0 = 5
and the values of the parameters involved in the model are taken as follows (τmax is
computed from (2) with the presented data):

Function

β(E) = β0
E

1 + E
, β0 > 0

g(Q) = GQ, G > 0

f(M) =
a

1 +KM r
, a,K, r > 0

τ ∈ [0, τmax), τmax = 2.99 days

Parameter Value Range (day−1)

δ 0.01 day−1 0 – 0.09
G 0.04 day−1 0 – 0.09
β0 0.5 day−1 0.08 – 2.24
γ 0.2 day−1 0 – 0.9
µ 0.02 day−1 0.001 – 0.1
k 2.8 day−1 —
a 6570 —
K 0.0382 —
r 7 —

In this case the system is not stiff and the solvers RETARD, RADAR5 and dde23
produce one and the same results. The obtained solution for three values of the delay
τ is presented in Figure 2. The Hopf bifurcation for τ = 1.4 is the reason for the
periodic solutions in the second case.
Further steps towards real-time data-driven computer simulation of haematopoiesis
include calibration of the model and software tools for: a) leukocytes (each of the
7 types) and thrombocytes on the base of model data, e.g. taken from papers and
experiments in vitro; b) each of the three BC types on the base of real data from
clinical practice, i.e. on the base of patient specific data taken in vivo. They require
identification of parameters and sensitivity analysis as intermediate steps.

Acknowledgements. This work is partly supported by the Bulgarian NSF Grant
DO02-214/2008.
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Figure 2: Solution of (1) for three values of the delay τ = 0.5, 1.4, 2.9.
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On AMLI Preconditioning of Graph-Laplacians: Properties
of the Two-Level Method

Petia Boyanova, Svetozar Margenov

We consider a second-order elliptic problem in mixed form that has to be solved as
a part of a projection algorithm for unsteady Navier-Stokes equations. The use of
Crouzeix-Raviart non-conforming elements for the velocities and piece-wise constants
for the pressure provides a locally mass-conservative algorithm (see e.g. [2] and the
references therein). Then, the Crouzeix-Raviart mass matrix is diagonal, and the
velocity unknowns can be eliminated exactly. The reduced matrix for the pressure is
referred to as weighted graph-Laplacian. For a 2-D model problem and uniform mesh
of right triangles it corresponds to the T-shaped four point stencil shown in Fig. 1.

−1

−1

−2

4

Figure 1: Schur complement four point stencil for the pressure

We study the construction of optimal order preconditioners based on algebraic mul-
tilevel iterations (AMLI). The framework for this method was originally proposed in
[1]. AMLI is recursive generalization of two-level preconditioners that has optimal be-
havior due to a proper Schur complement stabilization using Chebyshev polynomials.
Regarding a hierarchical 2x2 block partitioning of the system matrix A(k) at level k

Â(k) = J (k)A(k)J (k)T =

[
Â

(k)
11 Â

(k)
12

Â
(k)
21 Â

(k)
22

]
}degrees of freedom added by refinement
}coarse mesh degrees of freedom

the AMLI method is defined as follows: C(0) = A(0) at the coarsest mesh level with
index 0;

C(k) = J (k)−1

[
Ĉ

(k)
11 0

Â
(k)
21 Ã(k−1)

][
I Ĉ

(k)−1

11 Â
(k)
12

0 I

]
J (k)−T

at successively refined levels k, where Ĉ
(k)
11 are symmetric positive definite approxi-

mations of Â
(k)
11 that satisfy vtÂ

(k)
11 v ≤ vtĈ

(k)
11 v ≤ (1 + b)vtÂ

(k)
11 v, and Ã(k−1)−1

=[
I − pβ

(
C(k−1)−1

A(k−1)
)]
A(k−1)−1

.
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The efficiency of the AMLI preconditioner depends on two things. First, the properties
of the two-level partitioning that is characterized by the constant γ in the strengthened
Cauchy-Bunyakowski-Schwarz (CBS) inequality. Second, the approximations used for
solving systems with the pivot blocks.
We define the hierarchical two-level transformations and corresponding 2x2 splittings
locally for macroelements associated with the edges of the coarse triangulation. The
local restriction of the global transformation matrix for a macroelement with node
numbering shown in Fig. 2

Figure 2: Macroelement of two adjacent coarse triangles with a common hypotenuse

is defined as:

Je =




1 p q q
1 q p q
1 q q p

1 p q q
1 q p q
1 q q p

r r r r
r r r r




,

where p, q are parameters, and each refined mesh is obtained by dividing the current
coarse triangles in four congruent ones by connecting the midpoints of the sides. As
shown in [4] this two-level hierarchical partitioning complies with the conditions of
the main theorem in AMLI theory (see [1]) when r =

√
2/2. The estimates for the

CBS constant: γ2 ≤ 0.73 for p = 1, q = −0.5, and γ2 ≤ 0.58 for p = 1, q = −0.1, are
derived there too.
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Table 1: Two-level method, no pivot approximation: number of PCG iterations

PCG stop criteria Number of degrees of freedom
128 512 2048 8192 32768

p = 1,
ǫ = 10−3 4 4 4 4 4
ǫ = 10−6 7 8 7 8 8

q = −0.5 ǫ = 10−9 10 11 11 12 12

p = 1,
ǫ = 10−3 4 4 4 4 4
ǫ = 10−6 6 7 7 7 7

q = −0.1 ǫ = 10−9 9 10 10 10 10

Table 2: Two-level method, simple diagonal pivot approximation: PCG iterations

PCG stop criteria Number of degrees of freedom
128 512 2048 8192 32768

p = 1,
ǫ = 10−3 10 10 10 10 10
ǫ = 10−6 20 21 21 21 21

q = −0.5 ǫ = 10−9 30 31 31 31 32

p = 1,
ǫ = 10−3 12 12 12 12 12
ǫ = 10−6 24 24 25 25 24

q = −0.1 ǫ = 10−9 35 36 37 37 37

Numerical results for the preconditioned conjugate gradient (PCG) number of itera-
tions for the two-level method with the two considered parameter sets are presented
in Table 1. They let us conclude that the proposed hierarchical splitting defines a
proper two-level preconditioner. The convergence rate behaves as theoretically ex-
pected – it does not depend on the number of unknowns but changes proportionally
when different stop criteria are applied. In Table 2 we present results for a two-level
method with a simple diagonal pivot block approximation – the computationally less

expensive case with respect to solving systems with Ĉ
(k)
11 . The number of iterations

increases substantially but the behaviour is still the same.
The nodes corresponding to the pivot block in the hierarchical splitting can be as-
sociated with the edges of the current coarse triangle. This means that an edge has
two related nodes. The macroelement pivot block is a dense matrix. There are two

things to take in consideration when defining Ĉ
(k)
11 – the relative condition number

κ(Ĉ−1
11 Â11) and the computational cost for solving systems with Ĉ

(k)
11 . One approach

for approximating Â11 is to preserve the links along lines with dominating anisotropy.
The corresponding pivot block preconditioner connectivity is shown in Fig. 3. The
local analysis for an approximation based on this idea leads to the following estimates:
κ(Ĉ−1

11 Â11) ≤ 13.2 for p = 1, q = −0.5, and κ(Ĉ−1
11 Â11) ≤ 46.6 for p = 1, q = −0.1.

These results, together with those in Table 1 and 2, imply that the hierarchical split-
ting parameters p and q have substantial influence both on γ and the pivot block
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conditioning and should be tuned carefully.

Figure 3: Pivot block preconditioner connectivity
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Prediction of Mycobacterium Tuberculosis (rpoB)
Nucleotide Sequences by Using Neural Networks

Paul Cristea, Valeri Mladenov, Georgi Tsenov, Rodica Tuduce

1 Introduction and background

The conversion of nucleotide sequences into digital signals (GS) [3,6] offers the possi-
bility to apply signal processing methods for the analysis of genomic data. Genomic
Signal Analysis (GSA) has been used to analyze large scale features of DNA se-
quences, at the scale of whole chromosomes, including both coding and non-coding
regions. The striking regularities of genomic signals reveal restrictions in the way
nucleotides and pairs of nucleotides are distributed along nucleotide sequences. This
methodology reveals surprising regularities, both locally and at a global scale [1,3].
Such regularities would be difficult to identify by using only statistical analysis and
pattern matching, as currently done for symbolic sequences. The approach is useful
for studying large scale features of chromosomes [11,12,16], detect mutations in small
and medium genomes such as those of pathogens [2,7,8,9,10], detect exogenous inserts
[5] and model some of ribosome functionalities [5,14].
The regularities in the distribution of nucleotides and pairs of nucleotides, reflected
in the low values and predictable variation of the nucleotide imbalance (cumulated
phase) and nucleotide pair imbalance (unwrapped phase) [3], show that a genome
has a multi-level ordered structure. Mutations, such as those in pathogen genomes,
tend to mutually compensate, so that overall regularities of the GS are conserved.
A consequence of this statistical regularity is that SNPs appear often in correlated
groups, sometimes placed at large distances along a nucleotide sequence [9]. The
regularity of genomic signals allows using techniques similar to time series prediction
[15,17] to estimate the nucleotides in a sequence, when knowing the preceding ones
[4,6]. Such experiments have a biologic significance, as they explore the possibility and
the theoretic efficiency of error correction in processes like replication, transcription
and translation. The paper analyzes the rpoB gene of Mycobacterium tuberculosis by
using Feed Forward Neural Network (FFNN), Radial Basis Functions Neural Network
(RBFNN) and Elman Neural Network (Elman NN) for prediction of the samples in
the structure.

2 Nucleotide representation

As detailed earlier [3] and presented here for convenience, the mapping we are using
for nucleotide representation is a one-to-one representation which attaches complex
numbers to adenine, cytosine, guanine and thymine nucleotides:

A = 1 + j, C = −1− j,G = −1 + j, T = 1− j (1)
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This mapping is unbiased, i.e., introduces no artifacts related to specific assumptions
on the types of interaction that characterize the nucleotides. Classes of nucleotides
can also be represented in this way, as illustrated in Table 1. The distribution of
nucleotides along a sequence is described by the nucleotide imbalance:

N = 3(nG − nC) + (nA − nT ) (2)

where nA, nC , nG and nT are the numbers of adenine, cytosine, guanine and thymine
nucleotides in the sequence, from the first to the current entry. The distribution of
nucleotide pairs is given by the nucleotide pair imbalance:

P = n+ − n− (3)

where n+ is the number of positive pairs (A→ G, G→ C, C → T , T → A), and n−
the number of negative pairs (A→ T , T → C , C → G, G→ A).

TABLE 1: THE DATA SET MAPPING USED FOR DATA PRESENTATION

Class IUPAC symbol Complex representation
Adenine A [1,1]
Guanine G [1,-1]
Cytosine C [-1,-1]
Thymine T [-1,1]
Week bond W [1,0]
Purines R [0,1]
Strong bond S [-1,0]
Pyrimidines Y [0,-1]

3 Mycrobacterium tyrbeculosis and prediction of

nucleotide sequences with neural networks.

Mycobacterium tuberculosis is the pathogen that causes tuberculosis. The genome of
the H37Rv strain was published in 1998. It’s size is about 4 million base pairs, with
3959 genes. 40% of these genes have had their function characterised, with possible
function postulated for another 44%. Within the genome there are also 6 pseudogenes.
The geneome contains 250 genes involved in fatty acid metabolism, with 39 of these
involved in the polyketide metabolism generating the waxy coat. Such large numbers
of conserved genes shows the evolutionary importance of the waxy coat to pathogen
survival. As shown in [6], the prediction of nucleotide sequences, in a way similar
to time series prediction, is also a theoretical investigation of the possibility to use
the redundancy in the genomic sequences to correct errors at the level of a ribosome.
Similar questions can be formulated about the DNA replication or the transcription
to mRNA.
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Figure1. Example of digi-
tal genomic sequence.

Figure2. The FFNN
structure used for time-
series prediction.

Figure3. The RBNN
structure used for time-
series prediction.

Data sequenced in 2006 and 2007 for 40 patients with multiple drug resistance have
been used. The data structure is shown in Figure2, where the first column is the
real and the second column is the imaginary part of the genomic sequence. The
set of data was divided in two parts -half for training the ANN’s and the second
to test their performance (successful prediction rate). To avoid contradictions and
conceptual difficulties, the model uses only the information from previous nucleotides
(15 in Figure 1). The possible fractional values at the output of the neural network
are rounded to integer values. The first ANN we used was a feed-forward neural
network (FFNN) with the number of input neurons equalling the prediction depth,
one hidden-layer with a number of neurons given by the Oja’s rule formula and one
output neuron, as shown in Figure 2. The second ANN was a radial basis neural
network (RBNN) as the one in Figure 3. The third ANN is a Elman neural network
(ELNN) as the one shown in Figure 4. For this ANN the number of the neurons in
the hidden layer was determined as for the FFNN by Oja’s rule of thumb.

Figure4. The ELNN structure used for time-series prediction

We found (Figure 5) that the prediction rate can reach 90%, compared to 25% for
the random case. The optimal length of the prediction depth, that gives maximal
prediction rates turned out to be in the 9 to 11 interval.
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Figure5. The successful prediction rate for different length of the prediction depth
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Sensitivity Analysis of Air Pollution Models

Ivan Dimov, Rayna Georgieva, Sofiya Ivanovska,
Tzvetan Ostromsky, Zahari Zlatev

1 Introduction

Environmental security is rapidly becoming a significant topic of present interest all
over the world. There are several important questions concerning environmental se-
curity: study of rate of dependence of pollutant concentrations on influenced factors,
apportioning the output uncertainty to the uncertainty in the input parameters, pos-
sibility for a reliable prediction of scenarios when the critical pollutant levels exceed.

Here we present a new mechanism for investigation the sensitivity of the concen-
tration levels of important pollutants (like ozone O3) due to variation of rates of
the involved chemical reactions in a real-life scenario of air pollution transport over
Europe with the Unified Danish Eulerian Model (UNI-DEM). Specifying the most
important chemical reactions for the model output using sensitivity analysis (SA)
techniques the specialists from various applied fields (chemistry, physics) may obtain
valuable information for an improvement of the model and thus it will lead to an
increase of reliability and robustness of predictions.

2 The Mathematical Model – UNI-DEM

The mathematical model∗ [5] gives the possibility to study the concentrations by time
of the main types of air pollutants – sulphur pollutants, nitrogen pollutants, ammonia-
ammonium, ozone, radicals and hydrocarbons. The model takes into account the
major physical processes – advection, diffusion, deposition, emissions, and chemical
reactions.

Chemical reactions play a significant role in the model – the equations in the model
are coupled through the chemical reactions and both non-linearity and stiffness of the
equations are mainly introduced by the chemistry (see [6]). UNI-DEM is one of the
models of atmospheric chemistry, where the chemical processes are taken into account
in a very accurate way. The chemical scheme used in the model is the condensed
CBM-IV (Carbon Bond Mechanism, [5]). It includes 35 pollutants and 116 chemical
reactions. The scheme is suitable and adequate to study cases of high concentrations
of chemical species.

∗UNI-DEM has been developed at the Danish National Environmental Research Institute
(http://www2.dmu.dk/AtmosphericEnvironment/DEM/).
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3 Sobol’ Global Sensitivity Study Concept

It is assumed that the mathematical model can be presented as a model function of
non-correlated input parameters with a joint probability density function. The indica-
tor measuring the importance of the influence of a given input parameter (normalised
between 0 and 1) is defined as a ratio of the variance of the conditional expectation
of the model function with respect to a given input parameter and the total variance
according to the model function. This indicator is named first-order sensitivity index
by Sobol’ [2] or correlation ratio by McKay. The total sensitivity index provides a
measure of the total effect of a given parameter onto the model output variability.

The Sobol’ method is one of the most often used variance-based methods [2]. An
important advantage of this method is that it allows to compute not only the first-
order indices, but also indices of a higher order in a way similar to the computation
of the main effects, the total sensitivity index can be calculated with just one Monte
Carlo integral per factor. The Sobol’ method for global SA applied here is based on
a decomposition of an integrable model function f in the d-dimensional factor space
into terms of increasing dimensionality. This representation is unique under certain
condition about its terms. The total variance of the model output is partitioned
into partial variances [2] (ANOVA-representation, [3]) in the analogous way as the
model function. The main sensitivity measures introduced in the Sobol’ approach
represent ratios between the corresponding partial variances and total variance (Sobol’
global sensitivity indices, [2, 3]). The basic assumption underlying the so called High
Dimensional Model Representation is that the major features of the model functions
describing typical real-live problems can be shown by low-order subsets of inputs –
constants, terms of first and second order. This means that one can use low-order
indices only, but should be able to control the contribution of higher order terms.

The mathematical treatment of the problem of providing global sensitivity analysis
consists in evaluating total sensitivity indices (in particular Sobol’ global sensitivity
indices of corresponding order). It leads to computing multidimensional integrals
(from the mathematical representation of variances) using Monte Carlo technique
(according to Sobol’ approach), where the integrand is an square integrable function
in the corresponding domain. The computational cost (in terms of model runs) for
estimating all first-order and total sensitivity indices using Sobol’ approach is pro-
portional to the sample size and the number of input parameters. It makes this
approach one of the most efficient variance-based methods from the point of view of
its computational complexity.

Two approaches for evaluating small sensitivity indices (to avoid loss of accuracy
because the analyzed database comes under this case) have been applied - reducing of
the mean value (proposed by I.M. Sobol’, 1990) and a combined approach (between
approach of reducing of the mean value and correlated sampling) suggested in [4]. It
should be noted that the variance of the second approach is smaller than the first
one under certain conditions specified in a proposition about the variances of the
corresponding estimators that has been proven in [4].
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Table 1: First-order S1, S2, S3 and total sensitivity indices Stotx1
, Stotx2

, Stotx3
of input

parameters obtained using different approaches for sensitivity analysis.

P
P

P
P

P
P

P
P

P
P

estimated
quantity

approach Standard (Sobol’) Approaches for small indices
red. of the m.v. combined

x ∈ [0.1; 2.0] x ∈ [0.6; 1.4] x ∈ [0.6; 1.4] x ∈ [0.6; 1.4]

integrand g(x) f(x) f(x) f(x)− c f(x)− c
c ∼ f0 =

∫
f(x)dx – – 0.51737 0.51737

g0 =
∫
g(x)dx 0.51520 0.51634 0.25145 0.25145

total variance D 0.26181 0.26446 0.07061 0.00530

S1 0.26386 0.26530 0.27354 0.52979
S2 0.26447 0.26359 0.26713 0.46142
S3 0.25348 0.25209 0.22406 0.00222

Stotx1
0.41592 0.41841 0.44195 0.53615

Stotx2
0.41667 0.41627 0.43395 0.46791

Stotx3
0.40281 0.40170 0.37938 0.00252

4 Discussion of Numerical Results

The idea of sensitivity tests with UNI-DEM performed in a previous study [1] is
based on the computation of standard deviations and skewness of the pollutants
concentrations under consideration.

For the present sensitivity study of the concentrations of one of the most important
pollutants – ozone, a representative summer month (July 1998) has been selected
because the concentrations of many chemical species achieve their annual maximum
in summer-time. The first stage of present study includes a generation of input data
obtained by using UNI-DEM (on SunFire E25000 supercomputer at the Technical
University of Denmark) for our procedure of providing SA. The model runs have been
done for the chemical rates variations with a fixed set of perturbation factors, where
each of them corresponds to a chemical rate among the set of chemical reactions. The
input data is a set of average values of pollutant concentrations normalized according
to the maximum mean value of the concentration of the corresponding pollutant.

We study numerically how the chemical rate constants (considered to be input param-
eters) influence the output results (the behavior of the pollutants concentrations) at
the second stage of computations. It consists of two steps: Approximation and Com-
puting of Sobol’ global sensitivity indices. Here we use polynomials of third and forth
degree as an approximation tool to produce an analytical form of the model function
on the basis of the table of values. Our numerical results showed that the squared
2-vector norm is more influenced by the domain than by the degree of the polynomial.
Since three chemical reactions have been chosen as the most important for the dis-
tribution of ozone concentrations, the domain of integration is a cube. According to
Table 1 the results for total sensitivity indices obtained using the combined approach
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for small indices are the most reliable – the values of total effects are fully consistent
with the expected tendencies according to results obtained on the first stage using
UNI-DEM.

A comparison of results obtained using the present scheme for SA (applying the
combined approach for small sensitivity indices) and results obtained using the avail-
able software tool for SA – R language and environment for statistical computing
(http://www.r-project.org/) has been done. The results are close with an exception
obtained with the R package using Sobol’& Saltelli approach, where we found a nega-
tive value for the total sensitivity index of the 3-rd input which is not acceptable. The
reason that one would prefer our approach is that we are able to control the accuracy
at each stage of the computations, i.e. at the stage of approximation of the mesh
function by changing the polynomial degree and computing total sensitivity indices
by applying the refined technique suitable for computing small sensitivity indices.

The obtained results have an important twofold role: for mathematical models ver-
ification and/or improvement, and/or for a reliable prediction the effects of high
pollution levels (a) on human health and (b) on losses of crops in the agriculture.
Most of the results can also be applied when other large-scale mathematical models
are used.
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On Error Detection with Block Codes

Rossitza Dodunekova

In error detection with block codes over symmetric memoryless channels the code
performance is measured by the probability of undetected error. This probability
depends on code characteristics and on ε, the symbol error probability of the channel.
When the undetected error probability behaves irregularly with respect to ε, difficul-
ties arise in finding a code appropriate for error detection over a channel with not
exactly known symbol error probability. Good and proper codes are to be preferred
in such cases. We present a survey of known methods and techniques for the study of
block codes with respect to properness and goodness, together with applications to
families of block codes, and some open problems.

Keywords: error detection, block code, proper code, good code.
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Intuitionistic Fuzzy Estimations of the Ant Colony
Optimization

Stefka Fidanova, Krasimir Atanasov, Pencho Marinov

1 Introduction

Combinatorial optimization is a branch of optimization. Its domain is optimization
problems which set of feasible solutions is discrete or can be reduced to a discrete
one, and the goal is to find the best possible solution. A combinatorial optimization
problem consists of objective function, which needs to be minimized or maximized,
and constraints. Examples of optimization problems are Traveling Salesman Problem
[5], Vehicle Routing [6], Minimum Spanning Tree [4], Knapsack Problem [3], etc.
They are NP-hard problems and in order to obtain solution close to the optimality
in reasonable time, metaheuristic methods are used. One of them is Ant Colony
Optimization (ACO) [2].
Real ants foraging for food lay down quantities of pheromone (chemical cues) marking
the path that they follow. An isolated ant moves essentially at random but an ant
encountering a previously laid pheromone will detect it and decide to follow it with
high probability and thereby reinforce it with a further quantity of pheromone. The
repetition of the above mechanism represents the auto-catalytic behavior of a real ant
colony where the more the ants follow a trail, the more attractive that trail becomes.
The ACO algorithm uses a colony of artificial ants that behave as cooperative agents
in a mathematical space where they are allowed to search and reinforce pathways
(solutions) in order to find the optimal ones. The problem is represented by graph
and the ants walk on the graph to construct solutions. The solutions are represented
by paths in the graph. After the initialization of the pheromone trails, the ants
construct feasible solutions, starting from random nodes, and then the pheromone
trails are updated. At each step the ants compute a set of feasible moves and select the
best one (according to some probabilistic rules) to continue the rest of the tour. The
structure of the ACO algorithm is shown by the pseudocode below. The transition
probability pi,j , to choose the node j when the current node is i, is based on the
heuristic information ηi,j and the pheromone trail level τi,j of the move, where i, j =
1, . . . . , n.

pi,j =
τai,jη

b
i,j∑

k∈Unused τ
a
i,kη

b
i,k

,

where Unused is the set of unused nodes of the graph.
The higher the value of the pheromone and the heuristic information, the more prof-
itable it is to select this move and resume the search. In the beginning, the initial
pheromone level is set to a small positive constant value τ0; later, the ants update
this value after completing the construction stage. ACO algorithms adopt different
criteria to update the pheromone level.

33



Ant Colony Optimization
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k=0 to number of ants
ant k choses start node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Update-pheromone-trails;

end while

Figure 1: Pseudocode for ACO

The pheromone trail update rule is given by:

τi,j ← ρτi,j + ∆τi,j ,

where ρ models evaporation in the nature and ∆τi,j is new added pheromone which
is proportional to the quality of the solution.
Our novelty is to use Intuitionistic Fuzzy Estimations (IFE see [1]) of start nodes with
respect to the quality of the solution and thus to better menage the search process.
We offer various start strategies and their combinations.

2 Start Strategies

The known ACO algorithms create a solution starting from random node. But for
some problems, especially subset problems, it is important from which node the search
process starts. For example if an ant starts from node which does not belong to the
optimal solution, probability to construct it is zero. Therefore we offer several start
strategies.
Let the graph of the problem has m nodes. We divide the set of nodes on N subsets.
There are different ways for dividing. Normally, the graph are randomly enumerated.
An example for creating of the subset, without lost of generality, is: the node number
one is in the first subset, the node number two ı̈¿1

2 in the second subset, etc. the node
number N is in the N − th subset, the node number N + 1 is in the first subset, etc.
Thus the number of the nodes in the separate subsets are almost equal. We introduce
estimations Dj(i) and Ej(i) of the node subsets, where i ≥ 2 is the number of the
current iteration and Dj(i) and Ej(i) are weight coefficients of j − th node subset
(1 ≤ j ≤ N), which we calculate by the following formulas:

Dj(i) =
i.Dj(i− 1) + Fj(i)

i
,
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Ej(i) =
i.Ej(i− 1) +Gj(i)

i
,

where i ≥ 1 is the current process iteration and for each j (1 ≤ j ≤ N):

Fj(i) =

{
fj,A

nj
if nj 6= 0

Fj(i− 1) otherwise
, (1)

Gj(i) =

{ gj,B

nj
if nj 6= 0

Gj(i− 1) otherwise
, (2)

and fj,A is the number of the solutions among the best A%, and gj,B is the number
of the solutions among the worst B%, where A+B ≤ 100, i ≥ 1 and

N∑

j=1

nj = n,

where nj (1 ≤ j ≤ N) is the number of solutions obtained by ants starting from
nodes subset j. Initial values of the weight coefficients are: Dj(1) = 1 and Ej(1) = 0.
Obviously, Fj(i), Gj(i), Fj(i) and Gj(i) ∈ [0, 1], i.e., they are IFEs.
We try to use the experience of the ants from previous iteration to choose the better
starting node. Other authors use this experience only by the pheromone, when the
ants construct the solutions. Let us fix threshold E for Ej(i) and D for Dj(i), than
we construct several strategies to choose start nod for every ant, the threshold E
increase every iteration with 1/i where i is the number of the current iteration:

1 If Ej(i) > E then the subset j is forbidden for current iteration and we choose
the starting node randomly from {j |j is not forbidden};

2 If Ej(i) > E then the subset j is forbidden for current simulation and we choose
the starting node randomly from {j |j is not forbidden};

3 If Ej(i) > E+ then the subset j is forbidden for K1 consecutive iterations and
we choose the starting node randomly from {j |j is not forbidden};

4 If E ≥ Ej(i) and D ≥ Dj(i) for K2 consecutive iterations, then the subset j
is forbidden for current simulation and we choose the starting node randomly
from {j |j is not forbidden};

5 Let r1 ∈ [0.5, 1) is a random number. Let r2 ∈ [0, 1] is a random number. If
r2 > r1 we randomly choose node from subset {j |Dj(i) > D}, otherwise we
randomly chose a node from the not forbidden subsets, r1 is chosen and fixed
at the beginning.

6 Let r1 ∈ [0.5, 1) is a random number. Let r2 ∈ [0, 1] is a random number.
If r2 > r1 we randomly choose node from subset {j |Dj(i) > D}, otherwise
we randomly chose a node from the not forbidden subsets, r1 is chosen at the
beginning and increase with r3 every iteration.
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Where 0 ≤ K1 ≤”number of iterations” is a parameter. If K1 = 0, than strategy 3 is
equal to the random choose of the start node. If K1 = 1, than strategy 3 is equal to
the strategy 1. If K1 =”maximal number of iterations”, than strategy 3 is equal to
the strategy 2.
We can use more than one strategy for choosing the start node, but there are strate-
gies which can not be combined. We distribute the strategies into three sets: St1 =
{strategy1, strategy2, strategy3}, St2 = {strategy4} and St3 = {strategy5,
strategy6}. The strategies from same set can not be used at once. Thus we can use
strategy from one set or combine it with strategies from other sets. Exemplary com-
binations are (strategy1), (strategy2; strategy5), (strategy3; strategy4; strategy6).
In this paper we address the modelling of the process of ant colony optimization
method by using fuzzy estimations, combining six start strategies. So, the start node
of each ant depends of the goodness of the respective region. In a future we will focus
on parameter settings which manage the starting procedure. We will investigate on
influence of the parameters to algorithm performance.

Acknowledgements

This work is partly supported by the Bulgarian NSF Grant VU-MI-204/2006.

References

[1] Atanassov, K., Intuitionistic Fuzzy Sets, Springer, Heidelberg, 1999.

[2] Dorigo M., Gambardella L.M., Ant Colony System: A Cooperative Learning Ap-
proach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary
Computation 1,53-66,1997.

[3] Fidanova S., Evolutionary Algorithm for Multiple Knapsack Problem, Int. Con-
ference Parallel Problems Solving from Nature, Real World Optimization Using
Evolutionary Computing, ISBN No 0-9543481-0-9,Granada, Spain, 2002.

[4] Reiman M., Laumanns M., A Hybrid ACO algorithm for the Capacitated Min-
imum Spanning Tree Problem, In proc. of First Int. Workshop on Hybrid
Metahuristics, Valencia, Spain, 2004, 1-10.

[5] Stutzle T. Dorigo M., ACO Algorithm for the Traveling Salesman Problem, In K.
Miettinen, M. Makela, P. Neittaanmaki, J. Periaux eds., Evolutionary Algorithms
in Engineering and Computer Science, Wiley, 163-183, 1999.

[6] Zhang T., Wang S., Tian W., Zhang Y., ACO-VRPTWRV: A New Algorithm for
the Vehicle Routing Problems with Time Windows and Re-used Vehicles based on
Ant Colony Optimization, Sixth International Conference on Intelligent Systems
Design and Applications, IEEE press, 2006, 390-395.

36



Numerical Investigation of Charged Black Holes in the
Scalar-Tensor Theories of Gravity with Massive Scalar Field

Daniela Georgieva, Ivan Stefanov,
Michail Todorov, Stoytcho Yazadjiev

Our aim is to study numerically Born-Infeld black holes in the Scalar-tensor theories
(STT) of gravity with massive scalar field.
Scalar-tensor theories of gravity are a generalization of General Relativity [1]. In STT
the gravitational interaction is described by two fields – one scalar field ϕ, and one
tensor field, namely, the metric gµν , µ, ν = 0, 1, 2, 3. In the Einstein frame the action
of STT has the form

S =
1

16πG∗

∫
d4x
√−g (R− 2gµν∂µϕ∂νϕ− 4V (ϕ)) + Sm[Ψm; A2(ϕ)gµν ] (1)

where R is the Ricci scalar curvature with respect to the metric gµν , G∗ is the bare
gravitational constant and Sm is the action of the matter fields. The function V (ϕ)
is the potential of the scalar field ϕ. For numerical calculations we will take the
potential in the form V (ϕ) = 1

2m
2
∗ϕ

2 where m∗ is the mass of the scalar field.
We will be searching for static, spherically symmetric, asymptotically flat black holes.
In this case the metric can be written in the form

ds2 = gµνdx
µdxν = −f(r)e−2δ(r)dt2 +

dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
,

with f(r) = 1−m(r)/r, r – the radial coordinate, and m(r) – the local gravitational
mass.
We will study magnetically charged black holes with Born-Infeld electrodynamics
described by the Lagrangian∗[2]

L(X) = 2
(
1−
√

1 +X
)
,

where X = [rA(ϕ)]−4P 2/2, and P is the magnetic charge of the black hole.
The action (1) in case of static, spherically symmetric space-time yields the following
system of ordinary differential equations (ODE)

dδ

dr
= −r

(
dϕ

dr

)2

, (2)

dm

dr
= r2

[
1

2
f

(
dϕ

dr

)2

+ V (ϕ)−A(ϕ)4L(X)

]
, (3)

d

dr

(
r2f

dϕ

dr

)
= r2

{
dV

dϕ
− 4α(ϕ)A4(ϕ) [L−X∂XL(X)]− rf

(
dϕ

dr

)3
}
. (4)

∗We use dimensionless quantities.
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where ∂X = ∂
∂X and α(ϕ) = d ln A(ϕ)

dϕ . For numerical investigation we will take

the function A(ϕ) in the form A(ϕ) = eαϕ, where α > 0. Hence, in this case,
α(ϕ) = α = const.
The positive zeros of the metric function f(r) correspond to the inner horizons of the
black hole, and the greatest of them – to the event horizon. The massive scalar field
admits the presence of inner horizons and extremal solutions: f(r) = f ′(r) = 0.
We aim at obtaining solutions that describe asymptotically flat black holes. We split
the problem in two sub-problems – in the exterior and in the interior region of the
black hole. For the exterior region we can formulate a boundary-value problem (BVP)
for (2)-(4) with the boundary conditions

f(rH) = 0,

on the event horizon r = rH and

lim
r→∞

m(r) = M, lim
r→∞

δ(r) = lim
r→∞

ϕ(r) = 0,

at infinity, where M is the mass of the black hole. Since the exterior solutions can
be continued inwards we can formulate an initial-value problem (IVP) for the interior
region.
The problem in the exterior domain is a BVP with free left-hand boundary [4]. Apart
from the unknown functions δ(r), m(r) and ϕ(r) the field equations also include one
unknown parameter, namely the event horizon r = rH . Since the radius rH is a priori
an unknown quantity we introduce a new shifted variable x = r− rH . As a result the
domain r ∈ [rH ,∞) maps to the domain with a fixed left boundary x ∈ [0,∞). After
this transformation the event horizon r = rH takes part in explicit form in the ODEs.
In this way, the so formulated BVP can be considered as nonlinear problem with a
spectral parameter rH . For the location of the event horizon the following condition
is used

(
df

dr
· dϕ
dr

)∣∣∣∣
r=rH

=

{
dV (ϕ)

dϕ
+ 4α(ϕ)A4(ϕ)[X∂XL(X)− L(X)]

}∣∣∣∣
r=rH

.

It describes the requirement that the event horizon must be regular point for the
sought functions.
For the numerical treating of the above posed BVP the Continuous Analogue of
Newton Method (CANM) is used [3]. After an appropriate linearization the original
BVP is rendered to solving two vector BVPs with regard to increments of the functions
δ(r), m(r), and ϕ(r). The linear ODE systems are solved numerically by means of
collocation scheme of fourth order of approximation. The corresponding matrix has
an almost block-diagonal structure.
A IVP for the field equations (2)-(4) can be formulated in the interior region r < rH a
posteriori. Since the values of the functions and their derivatives on the event horizon
are already obtained from the exterior problem the sought functions can be continued
inwards. The event horizon, however, is a singular point for the equation of the scalar
field (4). The coefficient r2f in front of the leading derivative ϕ′′ in the equation
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for the scalar field turns to zero on rH (because f(rH) ≡ 0) and the equation loses
its order. So, to pose a regular IVP we shift the initial point rH by small enough
ε > 0 and choose for initial point rH − ε instead rH . On the other hand the functions
in question are smooth in the interval (rH − ε, rH) and hence the following series
expansions hold

m(rH − ε) = m(rH)−m′(rH)ε+ o(ε2),

δ(rH − ε) = δ(rH)− δ′(rH)ε+ o(ε2),

ϕ(rH − ε) = ϕ(rH)− ϕ′(rH)ε+ o(ε2).

A similar shift is made also at the every inner horizon (if such is reached). The latter
admits an algorithmic sequence of IVPs for finding possible inner horizons. For the
numerical treating of the above posed IVP again CANM is used.

0 2 4 6 8 10
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20

inner horizon

 P = 6.0 
 P = 6.0 
 P = 0.3

rH

M

event horizon

Figure 1: The radii of the horizons of black holes as function of the mass M .

In Figure 1 the M − rH relation is presented for α = 0.01, m2
∗ = 0.8. On this figure

two graphs are plotted – one for P = 0.3 (for small values of P ) and one more for
P = 6.0 (for big values of P ). In the former case the black holes have a single non-
degenerate horizon. In the latter case for masses in the interval M ∈ [5.9804, 21.1] the
black holes have two regular horizons. The two horizons merge and an extremal black
hole occurs at M = 5.9804 when P/M ≈ 1. For masses M > 21.1 we observe black
holes with one horizon. The functions f(r), δ(r) and ϕ(r) for the solutions with two
horizons and one degenerated horizon are given in Figure 2. The results are presented
for values of the parameters α = 0.01,m2

∗ = 0.8, P = 6.0 and two different masses of
the black hole M = 5.9804 and M = 8.0. The radius of the extremal black hole is
designated with “©” while the two radii of the solution with M = 8.0 are designated
with “×”-es. We can see that δ(r) has an inflexion point in the extremum of ϕ(r).
As a result of the numerical investigation, the structure of the charged black holes
coupled to non-linear electrodynamics in STT with massive scalar field inside the
event horizon was studied.
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Figure 2: Solutions f(r), δ(r), ϕ(r) for α = 0.01,m2
∗ = 0.8, P = 6.0.
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Reductions and Soliton Solutions of Nonlinear Evolution
Equations on Symmetric Spaces

Vladimir Gerdjikov, Nikolay Kostov, Tihomir Valchev

Many integrable partial differential equations possessing a Lax pair are obtained after
imposing an additional algebraic constraint called reduction [1] on its Lax operators.
A well known example is the classical nonlinear Schrödinger equation (NLS)

iut + uxx + 2|u|2u = 0, (1)

whose scattering problem is Zakharov-Shabat’s system

Lψ ≡ (i∂x + q(x, t) − λσ3)ψ(x, t, λ) = 0, (2)

where

q(x, t) =

(
0 u∗(x, t)

u(x, t) 0

)
, σ3 =

(
1 0
0 −1

)
. (3)

Since the off-diagonal elements are complex conjugated the potential is Z2-reduced.
Another example is provided by the modified Korteweg-de Vries equation (mKdV)

ut + uxxx + 6u2ux = 0. (4)

Its scattering problem is the Zakharov-Shabat system (2) too but in this case the
function u is purely imaginary u = iu. In this case there are two Z2 reductions acting
simultaneously. From spectral point of view each reduction imposes symmetries on
the spectral data of L, and, in particular, on its discrete eigenvalues. For the Lax
operator associated with NLS they come in complex conjugated λ±k = µk±iνk, νk > 0.
In the case of mKdV we have an additional symmetry which means, that if λ±k is an
eigenvalue then −λ±k is also an eigenvalue. Therefore we have two different groups of
eigenvalues: ”doublets” of two imaginary eigenvalues {±iνk}nk=1 and quadruplets of
four eigenvalues {±(µk+iνk),±(µk−iνk)}nk=1. Soliton solutions are tightly connected
with the discrete part of spectrum of L — the group velocities of solitons are expressed
by the real and imaginary parts of the discrete eigenvalues. Since mKdV has two types
of eigenvalues it is natural to expect that it allows for two types of soliton solutions:
doublet solitons associated with 2 eigenvalues and quadruplets — with 4 eigenvalues.
This situation resembles that of the sin-Gordon equation which possesses topological
solitons and breathers.
Our purpose is twofold: i) to demonstrate how one can obtain multicomponent gen-
eralizations of NLS and mKdV, and ii) to explain how their soliton solutions can
be found. All equations under consideration are related to symmetric spaces of the
series BD.I according to Cartan’s classification [2]. This relation is realized by the
corresponding Lax representation. To clarify this suppose that it is given a symmetric
space G/K where G is simple complex Lie group and K is its subgroup. There exists
a splitting (grading) of the corresponding Lie algebra g in the form
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g = k +m, [k, k] ∈ k, [k,m] ∈ m, [m,m] ∈ k, (5)

where the subalgebra k corresponds to the subgroup K and m is the complement of k

to g, see [2, 3] for more details. There is an element J of the Cartan subalgebra h ∈ g

such that
k = {X ∈ g; [J,X ] = 0}.

Thus we can associate with any Lax operator of the form

L = i∂x + q(x, t) − λJ, lim
|x|→∞

q(x, t) = 0

a symmetric space G/K by simply choosing q ∈ m.
For example, the following system of coupled mKdV equations [4]:

q2,t + q2,xxx − 3(q2q3)xq3 + 3q3q
∗
2q3,x − 6q22q2,x = 0,

q3,t + q3,xxx + 3|q2|2xq3 − 3(q2q3)xq2 − 3(q∗2q3)xq
∗
2 − 3q23q3,x = 0.

represents the compatibility condition for generic Lax pair of the type

L = i∂x + q − λJ, (6)

M = i∂t + V0(x, t) + V1(x, t)λ+ q(x, t)λ2 − λ3J, (7)

V1 = iad J∂xq +
1

2
[ad Jq, q] , V0 = −∂2

xxq +
1

2
[ad Jq, [ad Jq, q]] + i [∂xq, q] .

Since

J = diag (1, 0, 0, 0,−1), q =




0 q2 q3 q4 0
p2 0 0 0 q4
q3 0 0 0 −q3
q4 0 0 0 q2
0 p4 −p3 p2 0



, (8)

this Lax representation is related to the symmetric space SO(5)/SO(2) × SO(3). In
order to derive the system above one has to impose the additional constraints

pk = qk k = 2, 3, 4; q4 = −q∗2 , q3 = −q∗3 , p4 = −p∗2, p3 = −p∗3.

In order to realize our second puspose we make use of Zakharov-Shabat’s dressing
technique [5]. A basic requirement which we stress on is that the dressing procedure
has to be compatible with the presence of reductions. The idea of the dressing method
consists in finding a solution q of a nonlinear problem startingfrom a known one q0 by
taking into account the existence of Lax representation. This is done by ”dressing” a
fundamental solution ψ0 of the auxiliary Zakharov-Shabat’s system
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L0ψ0 = i∂xψ0 + (q0 − λJ)ψ0 = 0 (9)

with a factor g as follows
ψ0 7→ ψ = gψ0.

It is assumed that ψ is a fundamental solution Zakharov-Shabat’s system

Lψ = i∂xψ + (q − λJ)ψ = 0 (10)

with a potential q to be found. We use dressing factors which are meromorphic
functions on λ, for example

g = 11 +
A

λ− λ+
+

B

λ− λ− , (11)

where the poles λ+ and λ− belong to the upper and lower halves of the complex λ-
plane. A more detailed analysis is required to show how q can be obtained from q0 and
the residues A and B. The residues in their turn depend on the so-called fundamental
analytic solutions χ+

0 and χ−
0 (see [6, 7] for a definition and a construction of these

quantities) of the initial linear problem. The poles of g are discrete eigenvalues of the
Lax operator L.
We apply the dressing procedure on the already dressed solution and thus obtain
another solution and so on. In particular, when q0 ≡ 0 the dressed solution is called
1-soliton solution.
In the case under consideration there exist two essentially different types of soliton
solutions: doublet solitons (2 eigenvalues ±iν of L) and quadruplet solitons (4 eigen-
values ±λ+,±(λ+)∗ of L). The doublet soliton is obtained by applying a dressing
procedure with a 2-poles factor in the form (11). It reads

q2(x, t) =
−iνeiδ0

cosh 2ν(x− ut− ξ0) + C

(
e−ν(x−ut−ξ0)F2 + eν(x−ut−ξ0)F4

)
,

q3(x, t) =
2iνF3e

iδ0 sinh ν(x − ut− ξ0)
cosh 2ν(x− ut− ξ0) + C

, C =
2Re (F2F

∗
4) + |F3|2
2

,

where

Fk =
F0,k√
|F0,1||F0,5|

, ξ0 =
1

2ν
ln
|F0,1|
|F0,5|

, u = ν2, δ0 =
lπ

2
.

In order to calculate the corresponding quadruplet soliton we use the dressing factor

g(x, λ) = 11 +
A(x)

λ− λ+
− KSA∗(x)SK

λ+ (λ+)∗
− SA(x)S

λ+ λ+
+
KA∗(x)K

λ− (λ+)∗
.
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The result reads

q2 =
2
√
|F0,1F0,2F0,4F0,5|
|a|2 + b2 − c2

{
a∗ cosh(φ−R − iφ−I )− b[cosh(φ−R + iφ+

I )

+ cosh(φ+
R − iφ−I )]− a cosh(φ+

R + iφ+
I ) + c[cosh(φ+

R + iφ−I )− cosh(φ−R − iφ+
I )]
}
,

q3 =
2i
√
|F0,1F0,5|

|a|2 + b2 − c2 Im {(b+ c) sinh(φR + iφI)− a∗ sinh(φR − iφI)}F0,3,

a =
|F0,1F0,5|
µ+ iν

(cosh 2(φR − iφ I) + Ca), Ca =
F 2

0,2 + F 2
0,3 + F 2

0,4

2|F0,1F0,5|
,

b =
i|F0,1F0,5|

ν
(cosh 2φR + Cb), Cb =

2Re (F ∗
0,2F0,4) + |F0,3|2
2|F0,1F0,5|

,

c =
|F0,1F0,5|

µ
(Cc − cos 2φ I), Cc =

(|F0,2|2 + |F0,4|2)− |F0,3|2
2|F0,1F0,5|

,

φR = ν (x− ut− ξ0) , φ I = µ (x− vt− argF0,5/µ)

φ±R = φR ±
1

2
ln(|F0,2|/|F0,4|), φ±I = φI ± argF0,4.

Similar treatment can be applied to equations of NLS type associated with other types
of symmetric space. The difference is in the form of M operator.
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Dynamics of Multilayered Josephson Junctions

Ivan Hristov, Stefka Dimova

Introduction

Stacks of long Josephson Junctions (JJs) were intensively studied during the past
years. In these systems both nonlinearity and interaction between subsystems play
an important role. Such structures make it possible to state and study new physical
effects that do not occur in single JJs. One of the most interesting experimental
results for two stacked JJs found in resent years is the so-called current locking (CL).
The essence of this phenomenon is as follows: there exists a range of the external
magnetic field where the different junctions switch to dynamic state simultaneously
when the external current exceeds some critical value. It was shown by means of
numerical simulation [2] that experimentally found CL for two stacked JJs can be
obtained and well explained in the framework of inductive coupling model [1]. In this
work we show that the transient process of switching from static to dynamic state in
symmetric three stacked JJs depends on the way of increasing the external current.

Mathematical model

The dynamics of the magnetic flux ϕ(x, t) = (ϕ1(x, t), . . . , ϕN (x, t))
T

in geometrically
symmetric N stacked JJs is described by the following system of perturbed sine-
Gordon equations [1]:

ϕtt + αϕt + J + Γ = L−1ϕxx, (1)

where α is the dissipation coefficient, J = (sinϕ1, sinϕ2, . . . , sinϕN )T is the vector
of the Josephson current density, Γ = γ (1, 1, . . . , 1)T is the vector of the external
current density and L = tridiag (1, s, 1), (−0.5 < s ≤ 0 for arbitrary N).
In this work we consider stacks of overlap geometry placed in external magnetic field
he, therefore the system (1) should be solved together with the boundary conditions:

ϕx(−ℓ) = ϕx(ℓ) = H, (2)

where H is the vector H = he (1, 1, . . . , 1)T .
The existence of Josephson current generates a specific magnetic flux. When the
external current is less then some critical value the junctions are in static state.
In order to obtain precise initial values to close the problem (1), (2) and to make
a correspondence between the loss of stability of a possible static distribution of
the magnetic flux and switching to dynamic state, we solve numerically the static
problem, i.e., the system of equations with time independent fluxes. To study the
global stability of a possible static solution the following Sturm-Liouville problem
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(SLP) is generated:

−L−1uxx +Q(x)u = λu, (3a)

ux(±l) = 0,

∫ l

−l
〈u, u〉 dx− 1 = 0, (3b)

where Q(x) = J ′
z(ϕ(x)). This is equivalent to study the positive definiteness of the

second variation of the potential energy of the system. The minimal eigenvalue λmin
determines the stability of the distribution under consideration. A minimal eigenvalue
equal to zero means a bifurcation caused by change of some parameter, in our case –
the external current γ.

Numerical method

The simplest generalizable model of stacked JJs is the case of three stacked JJs because
it takes into account the different behavior of the interior and exterior junctions. The
numerical results presented here are for the particular case of three stacked JJs.
In order to solve the mentioned above static nonlinear boundary value problem we
use an iterative algorithm [5], based on the continuous analog of Newton’s method
(CAMN) [3]. CANM gives a linearized boundary value problem at each iteration step.
The linear boundary value problem is solved numerically by means of Galerkin finite
element method (FEM) and quadratic finite elements. FEM is used also to reduce
the SLP (3) to a linear algebraic problem whose few smallest eigenvalues and the
corresponding eigenfunctions are found by the subspace iteration method [4]. To test
the accuracy of the above methods we have used the method of Runge by computing
the solutions on sequence of embedded meshes. The numerous experiments made
show a super-convergence of order four for both the static problem and SLP.
For symmetric three stacked JJs we consider solutions, which components ϕex for the
exterior junctions are of the same type. In this case we reduce the system of three
equations to a system of two equations (ϕin is the component of the solution in the
interior junction):

a11ϕ
ex
xx + a12ϕ

in
xx = ϕextt + αϕext + sinϕex + γ (4)

a21ϕ
ex
xx + a22ϕ

in
xx = ϕintt + αϕint + sinϕin + γ, (5)

where a11 = a22 = 1/(1− 2s2), a12 = −s/(1− 2s2), a21 = −2s/(1− 2s2).
To solve the system (4), (5) we use an implicit difference scheme. The difference
equations corresponding to equation (4) are:

0.5a11δŷ
ex
k−1 − (1 + a11δ + 0.5ατ)ŷexk + 0.5a11δŷ

ex
k+1 = −2yexk +

(1−0.5ατ)y̌exk −0.5a11δ(y̌
ex
k−1−2y̌exk + y̌exk+1)−a12δ(y

in
k−1−2yink +yink+1)+τ

2(sin yexk +γ)

Here h and τ are the steps in space and time respectively, δ = (τ/h)
2
. To check

the numerical stability and the order of accuracy we have made computations for
fixed time level and embedded meshes in space. The results show second order of
convergence in space and time.
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Numerical results

We briefly discuss the numerical result. For ”small” values of the external magnetic
field he and below the critical current γcr all the junctions are in Meissner state. In
order to verify the critical current found by solving the SLP (3) and to analyze the
transient process of switching to dynamic state we excite the solution in four different
ways (Fig.1). Excitation γ1(t) is under γcr. Excitations γ3(t) and γ4(t) are above γcr,
they have the same final value, but they differ in slope. Excitation γ2(t) is above γcr,
it has the same slope as γ4(t), but lower final value.
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Figure 1: Increasing the external current in different ways in vicinity of the critical
current of Meissner type solution at he = 0.5 for 2l = 10, α = 0.1, S = −0.3

As we have expected, for excitation γ1(t) all the junctions remain in Meissner state.
The numerical experiments confirmed also our expectation that if γcr is some how
exceeded, at least one of the junctions will switch to dynamic state. For excitation
γ4(t) all three junctions switch to resistive state (Fig.2,3) (a kind of dynamic state).
For γ2(t) and γ3(t) only the interior junction switches to resistive state (Fig.4,5). In
all these cases the transient process starts with penetration of fluxons in the interior
junction, i.e., the interior junction drives the transient process. In the case γ4(t)
the switching of the interior junction to resistive state triggers the switching of the
exterior ones, while in the cases γ2(t) and γ3(t) it does not.

Conclusions

A perfect agreement between the results found by solving the Sturm-Liouville prob-
lem and those found by solving the dynamic problem is established. The numerical
simulation shows that the switching from static to dynamic state in symmetric three
stacked JJs strongly depends on the way of increasing the external current.
Acknowledgments. This work is supported by Sofia University Scientific foundation
under Grant No 135/2008.
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Figure 2: γ4(t), instant voltage ϕext Figure 3: γ4(t), instant voltage ϕint

Figure 4: γ2(t), instant voltage ϕext Figure 5: γ2(t), instant voltage ϕint
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Integrable Models for Shallow Water Waves

Rossen Ivanov

The motion of inviscid fluid with a constant density ρ is described by the Euler’s
equations:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P + g,

∇ · v = 0,

where v(x, y, z, t) is the velocity of the fluid at the point (x, y, z) at the time t, P is
the pressure in the fluid, g = (0, 0,−g) is the constant Earth’s gravity acceleration.
Consider now a motion of a shallow water over a flat bottom, which is located at z = 0.
We assume that the motion is in the x-direction, and that the physical variables do
not depend on y. Let h be the mean level of the water and let η(x, t) describes the
shape of the water surface, i.e. the deviation from the average level. The pressure is

P = PA + ρg(h− z) + p(x, z, t),

where PA is the constant atmospheric pressure, and p is a pressure variable, measuring
the deviation from the hydrostatic pressure distribution.
On the surface z = h + η, P = PA and therefore p = ηρg. Taking v ≡ (u, 0, w) we
can write the kinematic condition on the surface as [1]

w =
∂η

∂t
+ u

∂η

∂x
on z = h+ η.

Finally, there is no horizontal velocity at the bottom, thus w = 0 on z = 0. Let
us introduce now dimensionless parameters ε = a/h and δ = h/λ, where a is the
typical amplitude of the wave and λ is the typical wavelength of the wave. Now we
can introduce dimensionless quantities, according to the magnitude of the physical
quantities, see [1, 2] for details: x → λx, z → zh, t → λ√

gh
t, η → aη, u → ε

√
ghu,

w → εδ
√
ghw, p → ερgh. This scaling is due to the observation that both w and p

are proportional to ε i.e. the wave amplitude, since at undisturbed surface (ε = 0)
both w = 0 and p = 0. The system in the new, dimensionless variables is

ut + ε(uux + wuz) = −px,
δ2(wt + ε(uwx + wwz)) = −pz,

ux + wz = 0,

w = ηt + εuηx, p = η, on z = 1 + εη,

w = 0 on z = 0.

We present now a derivation of the relevant form of the Green-Naghdi (GN) equa-
tions [3], which follows directly from the above system. We assume that u is not a
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function of z, an approximation valid for the leading-order problem. This assumption
is equivalent to the simplifying approximation used by Green and Naghdi (namely,
that w is linear in z in a single-layer model). Thus we have w = −zux, which satisfies
ux + wz = 0 and the bottom condition. The second equation gives

p = η − 1

2
δ2[(1 + εη)2 − z2](uxt + ǫuux − ǫu2

x),

which satisfies the pressure condition at the surface. This expression for p is now used
in the first equation, which is then integrated over all z to give

ut + εuux + ηx =
δ2/3

1 + εη
[(1 + εη)3(uxt + εuuxx − εu2

x)]x,

The first order in the small parameters is

ut −
δ2

3
uxxt + εuux + ηx = 0.

The condition on the surface gives

ηt + [(u(1 + εη)]x = 0.

One can demonstrate that the Green-Naghdi system can be related to the following
two component Camassa-Holm system (CH2) in the first order with respect to ε and
δ2 [4]:

mt + 2uxm+ umx + ρρx = 0,

ρt + (uρ)x = 0

where m = u − uxx. This system appears originally in [5] and its mathematical
properties have been studied further in many works.
The Camassa-Holm equation [6] can be obtained via the obvious reduction ρ ≡ 0.
The system is integrable, it can be written as a compatibility condition of two linear
systems (Lax pair) with a spectral parameter ζ:

Ψxx =
(
− ζ2ρ2 + ζm+

1

4

)
Ψ,

Ψt =
( 1

2ζ
− u
)
Ψx +

1

2
uxΨ.

The system is also bi-Hamiltonian. The first Poisson bracket is

{A,B} = −
∫ [ δA

δm
(m∂ + ∂m)

δB

δm
+
δA

δm
ρ∂
δB

δρ
+
δA

δρ
∂ρ
δB

δm

]
dx

for the Hamiltonian H = 1
2

∫
(um+ ρ2)dx; The second Poisson bracket is

{A,B}2 = −
∫ [ δA

δm
(∂ − ∂3)

δB

δm
+
δA

δρ
∂
δB

δρ

]
dx
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for the Hamiltonian H2 = 1
2

∫
(uρ2 + u3 + uu2

x)dx.
It has two Casimirs:

∫
ρdx and

∫
mdx.

Let us define

ρ = 1 +
1

2
εη − 1

8
ε2(u2 + η2).

The expansion of ρ2 in the same order of ε is ρ2 = 1 + εη − 1
4ε

2u2.
With this definition it is straightforward to write it in the form

(
u− δ2

3
uxx

)

t
+

3

2
εuux +

1

ε
(ρ2)x = 0

or, introducing the variable m = u− 1
3δ

2uxx, in the same order (i.e. neglecting terms
of order εδ2)

mt + εmux +
1

2
εumx +

1

ε
(ρ2)x = 0.

Next, using the fact that in linear approximation ut ≈ −ηx, ηt ≈ −ux, we have

ρt =
1

2
εηt +

1

4
ε2(ηu)x.

With these expressions for ρ and ρt the second GN equation can be written as

ρt +
ε

2
(ρu)x = 0.

The rescaling u→ 2
εu, x→ δ√

3
x, t→ δ√

3
t in GN equations gives the CH2 system.

The case with −ρρx term, which is considered in the most previous works on the
system, corresponds to a situation in which the gravity acceleration points upwards.
Concerning the occurrences of peakons, it was established that the only peakons of
the CH2 system arise when ρ ≡ 0 and u(x, t) = c e−|x−ct| for some wave speed c 6= 0.
Wave breaking is the only way that singularities arise in smooth solutions to the
system and that for the occurrence of breaking waves it is not necessary to require
that ρ ≡ 0, see [4]. The travelling waves and the peakon solutions of the CH2 system
are also discussed in [4].
The Kaup - Boussinesq system is another integrable system matching the GN equation
to the first order of the small parameters ε, δ. The first GN equation can be written
as

Vt + εV Vx + ηx = 0 where V = u− δ2

3
uxx,

The second GN equation - first order in ε, δ:

ηt + Vx +
δ3

3
Vxxx + ε(ηV )x = 0
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rescaling and shift in η leads to the Kaup - Boussinesq system

Vt + V Vx + ηx = 0

ηt + Vxxx + (ηV )x = 0,

which is integrable, with Lax pair

Ψxx =
(
(ζ − 1

2
V )2 − η

)
Ψ,

Ψt = −(ζ +
1

2
V )Ψx +

1

4
VxΨ.
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Numerical Solution of Elliptic and Parabolic Problems on
Disjoint Domains

Bosko Jovanovic, Miglena Koleva, Lubin Vulkov

1. Introduction. Let Ω1, . . . ,Ωm are disjoint bounded domains in RN(N = 1, 2, 3),
separated from each other by a transparent medium Ω0, see for example Figure 1.
A stationary heat process in a system of black bodies Ωi, i = 1, . . . ,m with different
materials properties is described by the elliptic problem [1, 2, 8]

(E)
Lu ≡ −div(A(x, u)∇u = f(x, u), x ∈ Ωi, i = 1, 2, . . . ,m,

(A(x, u)∇u, n(x)) +H(u) =
∫
∂Ω h(u(ξ))ϕ(ξ, x)dσ(ξ) + g(x), x ∈ ∂Ω,

where for the matrix A (ellipticity): k|ξ| ≤ (A(x, u)ξ, ξ) ∀ ξ ∈ RN , k = const > 0.
Existence and uniqueness of positive weak and strong solutions for 1D and 2D prob-
lems are reported in [1]. We also discuss the following parabolic problem [2],

(P)
ρ∂u∂t + Lu = f(x, t, u), (x, t) ∈ QT = Ω× (0, t),

(A(x, t,∇u), n(x)) +H(u(x, t)) =
∫
∂Ω h(u(ξ, t))ϕ(ξ, x, t)dσ(ξ) + y(x, t),

(x, t) ∈ S ≡ ∂Ω× (0, T ); u(x, 0) = u0(x), x ∈ Ω.

The problems (E) and (P) concern heat exchange that is a significant factor in modern
technology. In this field of industrial applications, for example crystal growth, has
motivated a lot of mathematical work on this topic. Here we discuss a simple physical
model of system Ω = Ω1 ∪ Ω2 (see Fig. 1) where Ω1 = (a1, b1) × (c1, d1) and Ω2 =
(d2, b2)×(c2, d2), that in fact is a union of two disjoint, conductive and opaque domains
in R2 surrounded by a transparent medium Ω0. They represent opaque bodies with
different material properties. We assume that all material are grey materials, see
[2]. Therefore, radiation only needs to be considered at the surface of the bodies
Ω1,Ω2 : ∂Rad = ∂Ω1 ∪ ∂Ω2. To this aim, a kernel w : ∂ΩRad × ∂ΩRad → R the so
called view factor, is introduced by

w(ξ, η) =

{
(n(ξ),η−ξ)(n(η),ξ−η)

bN (ξ−η)N+1 if [ξ, η] ∩ Ω = ∅
0 if [ξ, η] ∩ Ω = ∅,

where bN = mesSN−1/(N − 1), SN−1 is the unit sphere in RN−1, in particular
b2 = 2, b3 = π. The problem of radioactive transfer was first considered by A.
Tikhonov in [8]. He proved the unique solvability in ”small” of the IBVP for the heat
equation ∂u/∂u = △u. The next problem considers heat transfer in a wall consisting
of two parallel layers (Ω1 and Ω2) enclosing an air cave (Ω0) , see again Fig. 1 for a
cross section. The cavity is neither ventilated, nor heated. At the surfaces Γ10 and
Γ20 heat is transferred by convection from the layers to the air, which is assumed to
be at an a priori unknown temperature T (t) , uniformly throughout the cavity. The
radiation between the surfaces of the cavity is neglected. At parts Γi of the ”outer”

53



.

0

1

2

4

3

14

12

34

23

40

10 30

20

0

1 2

Figure 1: Domain Ω

boundary of Ωi, i = 1, 2, . . . there is a convective heat transfer to the surrounding
medium at temperature zero, while at the complementary parts Γ′

i of that outer
boundary the temperature is kept at the value zero. The initial temperature of the
layers is given.
The 2D mathematical problem reads: find the functions ui(x, y, t), for (x, y) ∈ Ωi(i =
1, 2), which obey the heat conduction equations (1), along with radiation boundary
conditions (2), (3), zero Dirichlet outer boundary conditions and some initial condi-
tions at assumptions (4)-(6).
There exist different physically important extensions of the above model problems that
could be treated theoretically in a similar way. For example, the composite structure
shown in Figure 1 (right), where the rectangles Ω1, . . . ,Ω4 enclose the rectangle Ω0,
corresponds to problem of type (1)-(5) with radiation boundary conditions

p1(b1, y)
∂u1

∂x
(b1, y, t) = h10(u1 − T ) on Γi0,

−p2(a2, y)
∂u2

∂x
(a2, y, t) = h20(u2 − T ) on Γ20, T (t) =

∫
Γ10

h10u1ds+
∫
Γ20

h20u2ds∫
Γ10

h10ds+
∫
Γ20

h20ds
,

with some jump (interface) conditions

ui|Γij
− uj |Γji

= 0, pi
∂ui
∂x
|Γij
− pj

∂uj
∂x
|Γij

= 0, i < j, i, j = 1, 2, 3, 4.

Numerical results of problems of the type described are obtained in the papers [3]-[7].

2. Iterative Processes. At appropriate nonlinearities f(·, u), H(u) and h(u), the
problems (E), (P) could be solved numerically by iterative processes, based on the
theory of lower (upper) solutions. Let us consider the iterative process for problem
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(P):

(L)
ρ(x)∂u

n+1

∂t − div(A(x)∇un+1) = f(x, t, un),

(A(x)∇un+1, n(x)) + z(x, un+1, u
n) =

∫
∂Ω
h(un(ξ))ϕ(ξ, x)dσ(ξ) + g(x, t).

Such a process is characterized by the choice of the function z and the initial guess
u0(x). The unknown function u(x, t) has the physical meaning of absolute temper-
ature, f(x, t) and g(x, t) are heat source and flux densities, H(x, u) = r(x, u) +
h(u), r(u), characterizes convective heat transfer while h(u) = σ0(u)

3u at u > 0 is
the surface radiation flux density and corresponds to Stefan-Boltzmann radiation law.
Let u ∈ H1

2 (Ω) and H(u) ∈ L1(∂Ω) . On the space v = H1
2 (Ω) ∩ L∞(Ω) We define

the linear functionals A(t, u), B(t, u) and J(t) setting:

〈A(t, u), v)〉Ω =
∫
Ω
(A(x, t)∇u,∇v)dx, 〈J(t), v)〉 = (f(t), v)Ω + (g(t), v)∂Ω,

〈B(t, u), v)〉 =
∫
∂Ω uvdσ −

∫ ∫
∂Ω×∂Ω u(ξ)ϕ(ξ, x)v(x)dσ(ξ)dσ(x).

Lower (upper) solution is defined as a function u for which the integral inequality

−
∫ T

0

(ρu(t), v)Ω
d

dt
η(t) +

∫ T

0

〈A(t, u), v〉 > η(t)dt
≤

(≥)
(ρu0, v)Ω +

∫ T

0

〈J(t), v〉η(t)η(0)

is valid for all V and all η ∈ C∞[0, T ] such that η(T ) = 0. In a work in progress of
the authors, existence of minimal and maximal solutions, convergence for sequences
lower and upper solutions and construction of function z(x, un+1, un) are studied.

3. A Linear Model Problem. As a model linear problem, corresponding to
(L), we consider the following initial-boundary-value problem (IBVP): Find functions
ui(x, y, t) in Ωi ≡ (ai, bi) × (c, d), i = 1, 2; t > 0 that satisfy the system of parabolic
equations

∂ui
∂t
− ∂

∂x

(
pi(x, y)

∂ui
∂x

)
− ∂

∂y

(
qi(x, y)

∂ui
∂y

)
+ ri(x, y)ui = fi(x, y, t), i = 1, 2, (1)

the nonlocal interface conditions

p1(b1, y)
∂u1

∂x
(b1, y, t) + α1(y)u1(b1, y, t) =

∫ d1

c1

β1(y, y
′)u2(a2, y

′, t) dy′, (2)

−p2(a2, y)
∂u2

∂x
(a2, y, t) + α2(y)u2(a2, y, t) =

∫ d2

c2

β2(y, y
′)u1(b1, y

′, t) dy′, (3)

with outer zero Dirichlet boundary conditions and given initial conditions. Through-
out the paper we assume that the input data satisfy the usual regularity and ellipticity
conditions

pi(x, y), qi(x, y), ri(x, y) ∈ L∞(Ωi), i = 1, 2, (4)

0 < pi0 ≤ pi(x, y), 0 < qi0 ≤ qi(x, y), 0 ≤ ri(x, y) a.e. in Ωi, i = 1, 2 (5)
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and
αi ∈ L∞(ci, di), βi ∈ L∞ ((c1, d1)× (c2, d2)) , i = 1, 2. (6)

In real physical problems (see [1, 2]) we also have αi > 0 , βi > 0, i = 1, 2.
In a new paper of the authors, well posedness of this problem in the space

W (0, T ) = {u| u ∈ L2((0, T ), H1
0 ),

∂u

∂t
∈ L2((0, T ), H−1)}

is established. Also, results for the rate of convergence of difference schemes are
obtained.
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On the Numerical Simulation of Surface Forces Acting on
AFM Tip

Natalia Kolkovska, Radomir Slavchov, Daniela Vasileva

AFM is a powerful tool for probing the surface double layer and surface electric
properties as a whole. It was used to test the surface charge densities of dielectric
surfaces, cell membranes and others [1]. The interpretation of AFM measurements
is, however, hindered by the complexity of surface forces acting between the AFM tip
and the analyzed surface. Main components of these forces are

1. the electrostatic forces due to effects from the overlapping of the AFM tip and
the investigated surface double layers;

2. the image forces due to the tip low dielectric permittivity, which also deforms
the double layers.

Most AFM tips carry little or no surface charge densities, so the second effect is
presumably of greater importance. The image forces for macroscopic objects are due
to differences in bulk dielectric permittivities of the interacting bodies in the system
investigated. However, when the sizes of the objects and the distances between them
becomes of the order of nanometers, as a general rule, it is not only the bulk but
also the surface properties which govern the behaviour of this microscopic system.
Therefore, one can expect at such small distances, the surface dielectric properties to
play a significant role.
This work is giving a detailed analysis of this statement. The main question it is trying
to answer is, can surface dielectric permittivities of tip-water and water-dielectric give
a strong addition to the image force pulling the AFM tip toward the dielectric surface
investigated. The surface dielectric permittivity was introduced in [2], and it was
shown that it may rise additional surface image forces in case of charges at small
distances to dielectric interfaces [3].

Mathematical model. In the case of an AFM tip, probing a dielectric, three sub-
domains are considered – the AFM tip, water and dielectric (see Fig.1). We suppose
that the AFM tip is a cone with a spherical end, and the problem is axisymmetric.
Then if cylindrical coordinates (r, φ, z) are used, the equation for the potential ϕ(r, z)
in each subdomain is

∇2ϕ =
1

r

∂

∂r
r
∂ϕ

∂r
+
∂2ϕ

∂2z
= k2ϕ,

where k is the reciprocal Debye length of the corresponding medium.
There are two interface surfaces – tip-water and water-dielectric. On each of them
the surface dielectric permittivities are modifying the conditions of the Gauss law:
the displacement field jump at each surface is given by

D+
N −D−

N + ∇
s ·Ds = ρs,
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where

D±
N = −ε±n·∇ϕ± = −ε± 1√

1 + z′s
2

(
∂ϕ±

∂z
− z′s

∂ϕ±

∂r

)
,

∇
s ·Ds = − εs

r
√

1 + z′s
2

d

dr


 r√

1 + z′s
2

dϕs

dr


 ,

the surface is defined by z = zs(r), ϕ
s(r) := ϕ(r, zs(r)) = ϕ+(r, zs(r)) = ϕ−(r, zs(r))

is the restriction of the potential over the surface, ε+, ε−, εs are non-negative con-
stants, and ρ may be a constant or a function of ϕ.
On the water-dielectric surface z′s = 0 and the corresponding interface condition
becomes

−ε+∂ϕ
+

∂z
+ ε−

∂ϕ−

∂z
− εs 1

r

d

dr
r
dϕs

dr
= ρs.
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Numerical method. The finite difference method on a non-uniform grid, aligned
with both interfaces, is used (see Fig.2). The main peculiarities of the difference
scheme are

• In the subdomains, standard 5-points stencils are used (see [4] for approximation
in cylindrical coordinates);

• on the interfaces, first order approximation for normal derivatives is used, i.e.,
the grid points, included in the standard 5-points stencils;

• in order to approximate the ”surface” part ∇
s ·Ds in the interface conditions,

we use two additional points – the neigbours, lying on the surface (see Fig.2);

• in order to approximate the equations on the left boundary (r = 0) we use that

lim
r→0

∂ϕ(r, z)

r
=

∂2ϕ(0, z)

∂r2
(see [4]) and then the natural symmetric boundary

condition is imposed;

• on the bottom and the right boundaries the exact solution of the problem with-
out the AFM tip is used;
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• on the top boundary
∂ϕ
∂τ = 0 is imposed, where τ is tangential to the AFM tip

surface.

The linear system obtained after discretisation, is solved using ILU preconditioned
BiCGStab method.

Results. Let the end of the tip be a sphere with a radius 10 nm, k = 0, ε = 2nm in
the AFM tip subdomain, k = 0.07 nm−1, ε = 80nm in the water, k = 0, ε = 2nm in
the dielectric.

Example 1. Let the distance between the tip and the dielectric be 0.1 nm. First
we solve a problem neglecting the surface dielectric permittivities, i.e., εs = 0, ρ = 0
on the tip-water surface, εs = 0, ρ = 0.224V/nm on the water-dielectric surface.
After that we consider two cases, where the surface dielectric permittivities on both
interfaces are set to εs = 10nm and εs = 100nm correspondingly. In Table 1 we
compare results for the maximum of the potential (it is on the dielectric surface – at
(r, z) = (0, 0)), obtained on a sequence of embedded grids (l = 0, 1, 2, . . . , 5 denotes the
number of the grid, starting from the coarsest, presented in Fig.2, with 16× 21 = 336
grid points). The factor

α = log2

ϕl−1 − ϕl−2

ϕl − ϕl−1

shows first order of convergence. In the last row of the table the value of ϕ, obtained
by extrapolation from the last two levels, is given. It is seen that the surface dielectric
permittivities influence essentially the potential, and the difference between the solu-
tions without and with accounting for the surface dielectric permittivities is greater
for greater values of εs.

Table 1

εs = 0 εs = 10nm εs = 100nm
l #points ϕ(0, 0) ϕl−1 − ϕl α ϕ(0, 0) ϕl−1 − ϕl α ϕ(0, 0) ϕl−1 − ϕl α
0 336 1.36e-1 9.69e-2 6.46e-2
1 1271 1.05e-1 3.09e-2 8.65e-2 1.04e-2 6.14e-2 3.26e-3
2 4941 9.67e-2 8.31e-3 1.9 8.27e-2 3.81e-3 1.5 6.00e-2 1.34e-3 1.3
3 19481 9.34e-2 3.22e-3 1.4 8.09e-2 1.81e-3 1.1 5.93e-2 6.77e-4 1.0
4 77361 9.19e-2 1.53e-3 1.1 8.00e-2 8.94e-4 1.0 5.90e-2 3.37e-4 1.0
5 308321 9.11e-2 7.52e-4 1.0 7.96e-2 4.43e-4 1.0 5.88e-2 1.66e-4 1.0
extrapolated 9.04e-2 7.91e-2 5.87e-2

Example 2. Let the distance between the tip and dielectric be 1 nm, and all other
parameters be as in Example 1. The results shown in Table 2 confirm the first order
of convergence of the solutions. The surface dielectric permittivities influence the
potential, but as the distance between the tip and dielectric is larger, the influence is
weaker.
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Table.2

εs = 0 εs = 10nm εs = 100nm
l #points ϕ(0, 0) ϕl−1 − ϕl α ϕ(0, 0) ϕl−1 − ϕl α ϕ(0, 0) ϕl−1 − ϕl α
0 336 7.71e-2 7.33e-2 5.95e-2
1 1271 7.11e-2 6.32e-3 6.80e-2 5.24e-3 5.67e-2 2.80e-3
2 4961 6.84e-2 2.38e-3 1.4 6.60e-2 2.06e-3 1.4 5.56e-2 1.14e-3 1.3
3 19481 6.72e-2 1.14e-3 1.1 6.50e-2 1.01e-3 1.0 5.50e-2 5.73e-4 1.0
4 77361 6.67e-2 5.65e-4 1.0 6.45e-2 5.03e-4 1.0 5.47e-2 2.87e-4 1.0
5 308321 6.64e-2 2.80e-4 1.0 6.42e-2 2.50e-4 1.0 5.46e-2 1.43e-4 1.0
extrapolated 6.61e-2 6.40e-2 5.45e-2

Conclusion. The results show that the surface dielectric permittivities influence
essentially the potential, and so the image forces acting at the AFM tip and dielectric
surfaces. This influence is stronger when the distance between the AFM tip and the
dielectric surface is smaller.
Future work includes

• Testing other shapes for the end of the AFM tip;

• Comparison with experiments;

• Second order approximation;

• Applying immersed interface method or finite element method;

• Solving 3D problems – the tip is usually a pyramid;

• Local refinement;

• Fast solvers for the linear system;

• Simulating moving tip and moving membrane.
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Intelligent Approaches for Radiolocational Monitoring

Milena Kostova, Valerij Djurov

1 Introduction

The radiolocational monitoring (RM) performs exploration, watching and recognition
of dynamic objects, in order to ensure control of the civil aviation, air terrorist attack
prevention, and in a military situation, helping the anti-aircraft defence (AAD). The
implementation of RM is made by radiolocational stations (RS) with phased antenna
grid (PAG), working with complicated, wide band, coherent signals. In the modern
RS are set the principals of radioholography are set. According to the geometrical
theory of Keler‘s diffraction, and the radiolocational model of Dilano, the object
is being presented as a combination of shining elementary transmitters, found in
a different kinematic condition over the surface of the monitored object. In most
cases the coherent RS working in S, X and K frequency band (according to NATO‘s
standards), give a possibility for the reception of high quality radioholograms. A
number of various methods and means for reconstruction of holograms exist, leading
to 2D images (radioholographic images). The images received through the processing
of complex radioholograms registered at ground monitoring radiolocational stations,
are distinguished with their specific features. They have an outline character, and its
quality depends on the parameters of the sound (out) monitoring impulse and from
the implementation (construction) of the observed object (coating, shape, trajectory
parameters).
With the development of the modern nanotechnologies are created a number of pre-
conditions for the construction of new materials, which have new properties and
qualities. The electrical and magnetic constants are being changed; the reflection co-
efficient; the ferrite properties of the materials. This calls for developing methods and
algorithms for recognition of objects with complicated geometry, but with standard
technical accomplishment, and also of dynamic objects with a low efficiency reflection
surface (Stealth technologies, meta-materials, cold plasma coating). In the modern
developments on the basis of the aperture synthesis in the classic modern RS with a
high allowing ability with a step changing of the frequency in packets, a realization
of a high quality monitoring even in some objects with non-standard accomplishment
is possible. Generally speaking, the radioholographic methods cannot always lead to
a receiving of an image of the object. This calls for an implementation of other signs
of recognition, which to add the great number of signs connected with the silhouette
of the object. One approach is the using of the polarisation as a reason of a radio-
holographic recognition, i.e. the negative reflection coefficients are possible only over
the horizontal or vertical (line).
No matter the approach for the RM, the input data have a fuzzy and inaccurate
character. This leads to the usage of ”intelligent” modules to the systems for RM,
which to process data in real time from objects with a complicated geometry and
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non-standard technology.

2 Intelligent block for recognition of dynamic ob-

jects with a standard and non-standard technol-

ogy of implementation

It is being proposed a mathematical model of a block for the recognition of a dynamic
object with an application of forms of artificial intelligence (expert system (ES), fuzzy
logic (FL), cellular neural network (CNN), probability neural network (PNN). The
intelligent block consists of two modules and a module for the recognition of dynamic
objects with a complicated geometry and standard implementation, and a module
for the recognition of dynamic objects with non-standard implementation technology.
The block is made on the principals of ES. The quality of the radiohologram is being
determined by the level of the reflected signals entering in the reception trac.t (At
the information is being lead to the module for processing of objects with a standard
implementation. At ¡ the information is being lead to the module for processing of
objects with a non-standard implementation.

2.1 An intelligent block for the recognition of a dynamic ob-

ject with a standard technology

The application of radioholographic approaches at the recognition of dynamic objects
with a complicated geometry, but traditional technological implementation leads to
a receiving of a radioholographic image with a good quality. The image is being
put over an additional processing, connected with filtration of the common noise
background, and impulse noise, receiving a b/w image and taking a contour of the
object. An intelligent module is being synthesized for processing and recognition of
a radioholographic image, which consists a cellular neural network in the quality of
a digital filter with masks MERIAN and DIFFUS. The segmentation is made with
an adaptive threshold level defining itself by Otsu‘s method. The outline is extracted
by a gradient operator according to Roberts method. The module consists two clas-
sifiers on the basis of fuzzy logic and probability neural network, which can classify
32 types of aircrafts in three classes – specific, military and transport depending on
the quantity characteristics of three informative geometric signs: (A,α, L1). A is the
width to length ratio of the object; α - a slope toward the fuselage axis of the straight
line connecting the geometrical center and the most distant point of one of the wing,
L1 – the difference ”geometric middle – geometric center”. The module makes an
additional classification of the transport aircrafts in seven groups An with 2,4 and 6
engines, Boeing with 2 and 4 engines and Airbus with 2 and 4 engines, depending
on the quantity characteristic of the forth geometrical sign – L2 (wing length). The
classifier on the fuzzy logic basis for military aircrafts achieves 60% correct classifica-
tion and it does not classify 40%, and for transport aircrafts achieves 100% correct
classification. Three of the correctly classified transport aircrafts recognizes as other
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type. The classifier on the basis of probability neural network for military aircrafts
achieves 95% correct classification. One aircraft is classified incorrectly. It is achieved
a 100% correct classification of transport aircrafts. Three of the correctly classified
aircrafts are been recognized as another type.

2.2 Recognition of a dynamic object with a non-standard tech-

nology

2.2.1 Common characteristics of non-standard technologies

- Stealth technologies
A Stealth implementation is a combination of measures for realization of a form of
coating with an aim for reducing of the radiolocational visibility of the objects on the
radar.
- Metamaterial technologies
The main ability of the metamaterial technologies is the inclusion of precious mate-
rials – gold and silver in the composition of articles for causing a negative reflection
coefficient. The distance and sizes of the gold and silver are influenced by the length
of the wave, which sounds (out) the object
- Plasma coating
The usage of plasma coating is very important for the reduction of the radiolocational
reflection in a wide frequency range of 20Hz – 20GHz. In an exact volume is made
a cloud of highly concentrated concentric charges, which are moving chaotically but
they are subordinated in some order.

2.2.2 An expert system for the recognition of a dynamic object with a
non-standard technology

The low level of reflected signal requires confronting of the polarization vertically
AV and horizontally AH . Depending the correlation AH

AV
is being determined the

specification of the non-standard technology.
At |AH

AV
| ≥ 0, 3 the object is with a metamaterial implementation. The reading of such

objects is made by changing the polarisation, which changes around 30% vertically
towards horizontally and reverse. The coefficient of depolarisation δp is also being
reviewed. Expert knowledge is needed for substantiation and analysis of diffraction
and absorption of waves resonant to short waves in a dielectric medium. In this case
is possible a recognition of the object through its one dimension radiohologram.
If |AH

AV
| < 0, 3 the object could be with a plasma or Stealth implementation. The

approach requires a multi frequency reading on the reflected signals with a step ∆λ =
1cm. If Ai =

√
A2
H +A2

V for λi and
∑n
i=1

√
A2
H +A2

V ≥ σlim we have got an object
with Stealth implementation.
At linear frequency changing sound (out) signal for Stealth objects implementation
is possible to be seen contour outlines, giving the possibility for processing and anal-
ysis of the objects. The expert knowledge for the types of Stealth technologies are
connected with a reverse aperture synthesis, theory of FAR, complex signals, multi
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frequency sound (out) impulses etc. At high allowing ability of the sound (out) signal
(0.3 - 0.5m) can be reported multiple reflertion points of the surface of the aircraft
(object). If we note, that a STEALTH implementation is a type of ”flying wing”, it
is enough to be readed only points of parts of the object, as at statistical processed
data are established the regression models for an object type ”flying wing” at certain
angles of azimuth place at the change of the angle over azimuth with a certain length
of the sound (out) signal λ.
If
∑n

i=1

√
A2
H +A2

V < σlim we have got an object with a plasma coating. The
reflected signals from the monitored object at deposition give a spot, which could
be processed with algorithms on the basis of the fractal theory. This approach gives
a possibility of indirect defining of the size of the object through the number of
reiterations of the own kind’s fractal structures. It could be said, that the disorder
is in a defined stability connected with the movement of the observed object. The
changes of the atractor is connected with the speed of the dynamic object.
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Efficient Solution of µFEM Elasticity Problems in the Case
of Almost Incompressible Materials

Nikola Kosturski, Svetozar Margenov, Yavor Vutov

The presented study is motivated by the development of methods, algorithms, and
software tools for µFE (micro finite element) simulation of human bones. The voxel
representation of the bone micro structure is obtained from a high resolution computer
tomography (CT) image.
Linear elasticity models at micro and macro lev-

Figure 1: Structure of a human
bone

els are applied. The reference volume element
(RVE) has a strongly heterogeneous micro struc-
ture composed of solid and fluid phases (see Fig-
ure 1). Here, we consider a model of the RVE
in which the fluid phase is treated as an almost
incompressible elastic material.
Let Ω ⊂ IR3 be a bounded domain with bound-
ary Γ = ΓD ∪ ΓN = ∂Ω and u = (u1, u2, u3)
the displacements in Ω. The components of the
small strain tensor are

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, 1 ≤ i, j ≤ 3

and the components of the Cauchy stress tensor are

σij = λ

(
3∑

k=1

εkk

)
δij + 2µεij , 1 ≤ i, j ≤ 3.

Here λ and µ are the Lamé coefficients, which can be expressed by the elasticity
modulus E and the Poisson ratio ν ∈ (0, 0.5) as follows

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2 + 2ν
.

Now, we can introduce the Lamé’s system of linear elasticity (see, e.g., [1])

3∑

j=1

∂σij
∂xj

+ fi = 0, i = 1, 2, 3 (1)

equipped with boundary conditions

ui(x) = gi(x), x ∈ ΓD ⊂ ∂Ω,∑3
j=1 σij(x)nj(x) = hi(x), x ∈ ΓN ⊂ ∂Ω.
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The weak formulation of (1) can be written in the form (see, e.g., [2]): for a given f
find u such that for each v

a(u,v) = −
∫

Ω

(f ,v)dx +

∫

ΓN

(h,v)dx.

Crouzeix–Raviart (C.–R.) nonconforming linear finite elements are used to discretize
the Lamé system of elasticity. Let us note that the C.–R. elements (after a proper
modification of the related bilinear form) provide a locking-free approximation of
almost incompressible elasticity problems.
The bilinear form a can be written as

a(u,v) =

∫

Ω

(Cd(u), d(v)) =

∫

Ω

(C∗d(u), d(v)) = a∗(u,v), (2)

where

d(u) =

(
∂u1

∂x1
,
∂u1

∂x2
,
∂u1

∂x3
,
∂u2

∂x1
,
∂u2

∂x2
,
∂u2

∂x3
,
∂u3

∂x1
,
∂u3

∂x2
,
∂u3

∂x3

)T

and the matrices C and C∗ are

C =




λ+ 2µ 0 0 0 λ 0 0 0 λ
0 µ 0 µ 0 0 0 0 0
0 0 µ 0 0 0 µ 0 0
0 µ 0 µ 0 0 0 0 0
λ 0 0 0 λ+ 2µ 0 0 0 λ
0 0 0 0 0 µ 0 µ 0
0 0 µ 0 0 0 µ 0 0
0 0 0 0 0 µ 0 µ 0
λ 0 0 0 λ 0 0 0 λ+ 2µ




,

C∗ =




λ+ 2µ 0 0 0 λ+ µ 0 0 0 λ+ µ
0 µ 0 0 0 0 0 0 0
0 0 µ 0 0 0 0 0 0
0 0 0 µ 0 0 0 0 0

λ+ µ 0 0 0 λ+ 2µ 0 0 0 λ+ µ
0 0 0 0 0 µ 0 0 0
0 0 0 0 0 0 µ 0 0
0 0 0 0 0 0 0 µ 0

λ+ µ 0 0 0 λ+ µ 0 0 0 λ+ 2µ




.

Let us note, that the equality (2) holds when the condition

∫

Ω

∂ui
∂xj

∂uj
∂xi

dx =

∫

Ω

∂ui
∂xi

∂uj
∂xj

dx

is fulfilled. More details can be found in [2]. This is known to be the case when
the boundary value problem has pure Dirichlet boundary conditions. However, the
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same modification of the bilinear form holds true for RVE with constant Dirichlet
boundary conditions on the normal displacements, which is exactly the case of the
applied numerical upscaling scheme.
The following numerical tests illustrate the robustness (locking-free approximation)
of the C.–R. FEM approximation in the case of almost incompressible materials.
We consider a simple model problem in the unit cube [0, 1]3 with Dirichlet boundary
conditions on the whole boundary and a given exact solution u1(x, y, z) = x3+sin(y+
z), u2(x, y, z) = y3 + z2 − sin(x− z), u3(x, y, z) = x2 + z3 + sin(x − y). The relative
stopping criterion for the Preconditioned Conjugate Gradient (PCG) method is

rTkC
−1rk ≤ ε2rT0 C−1r0, ε = 10−6. (3)

Table 1: Relative error on a fixed 32× 32× 32 mesh for ν → 0.5

ν ‖r‖∞ ‖f‖∞ ‖r‖∞/‖f‖∞
0.4 0.033733 214407 1.57331E-7

0.49 0.052206 1381450 3.77904E-8
0.499 0.551943 13125600 4.20509E-8

0.4999 5.551980 1.31E+008 4.24652E-8
0.49999 55.552900 1.31E+009 4.25009E-8

The results, given in Table 1, fully confirm the locking-free property of the applied
FEM discretization.
Now, let us turn our attention to the applied nu-

Figure 2: Upscaling problem
boundary conditions

merical upscaling scheme. Our goal is to replace
the complex heterogeneous structure of the RVE
with a homogenized material and to determine
the corresponding elasticity parameters. For this
purpose we consider a boundary value problem
with normal zero displacements on five of the
faces of the cube and a small nonzero normal
displacement on the sixth face (see Figure 2).
As we already mentioned, the modified bilinear
form can be used in combination with the ap-
plied boundary conditions.
Here, we suppose that the stress and the strain
tensors of the homogenized cube have zero shear
components, and therefore the following relation between the homogenized normal
stress and strain components holds:



σx
σy
σz


 =

E(1− ν)
(1 + ν)(1 − 2ν)




1 ν
1−ν

ν
1−ν

ν
1−ν 1 ν

1−ν
ν

1−ν
ν

1−ν 1





εx
εy
εz


 .

The nonzero constant displacements are applied in the z direction, and therefore
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εx = εy = 0 and

σx = σy =
Eν

(1 + ν)(1− 2ν)
εz and σz =

E(1 − ν)
(1 + ν)(1 − 2ν)

εz.

From these relations we can directly calculate the homogenized elasticity coefficients
as follows:

ν =
1

1 + p
, E =

(1 + ν)(1 − 2ν)

1− ν r,

where
p =

σz
σx

=
σz
σy
, r =

σz
εz
.

Finally, we present some preliminary numerical results on the performance of the used
linear solver. BoomerAMG is used to precondition the linear system. BoomerAMG
is a parallel algebraic multigrid implementation from the package Hypre, developed
in LLNL, Livermore [3]. The PCG stopping criterion is (3) with ε = 10−3.

Table 2: Numbers of PCG iterations for the upscaling problem

P
P

P
P

P
P

PP
Mesh

ν
0.4 0.49 0.499 0.4999 0.49999

16× 16× 16 8 10 18 17 9
32× 32× 32 9 11 18 20 11
64× 64× 64 12 14 23 28 22

The preliminary results, given in Table 2 are subject of possible future improvements.
However, the question whether the numbers of iterations can be fully stabilized, with
respect to both the Poisson ratio and the problem size remains open up to now.
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Classification of (28,8,2,3) Superimposed Codes

Mladen Manev

Definition 1. A binary N×T matrix C = (cij) is called an (N,T,w, r) superimposed
code (SIC) if for any pair of subsets W,R ⊂ {1, 2, . . . , T} such that |W | = w, |R| = r
and W ∩ R = ∅ there exists a row i ∈ {1, 2, . . . , N} such that cij = 1 for all j ∈ W
and cij = 0 for all j ∈ R. We say also that C is a (w, r) superimposed code of length
N and size T .

The (N,T, 1, r) superimposed codes was introduced by Kautz and Singleton [2]. A
natural generalization of the (N,T, 1, r) superimposed codes was done by Mitchell
and Piper [5], which discussed the (N,T,w, r) superimposed codes in a connection
with cryptographic problems.
The trivial code is a simple example for an (N,T,w, r) superimposed code. The length

N of the trivial code is
(
T
w

)
and its rows are all possible binary vectors of weight w.

Definition 2. Two (N,T,w, r) superimposed codes are equivalent if one of them can
be transformed into the other by a permutation of the rows and a permutation of the
columns.

Let N(T,w, r) be the minimum length of an (N,T,w, r) superimposed code for given
values of T, w and r and T (N,w, r) be the maximum size of an (N,T,w, r) superim-
posed code for given values of N, w and r. (N,T,w, r) superimposed codes of length
N = N(T,w, r) or size T = T (N,w, r) are called optimal.
The problem of determining the exact values of N(T,w, r) and T (N,w, r) is com-
pletely solved only for w = r = 1. According to the Sperner Theorem [6] T (N, 1, 1) =(

N
⌊N/2⌋

)
. Kim and Lebedev give the following values of N(T, 2, 3)[3].

T 5 6 7 8 9
N(T, 2, 3) 10 15 21 24− 28 26− 30

The trivial (10, 5, 2, 3), (15, 6, 2, 3) and (21, 7, 2, 3) superimposed codes are the unique
optimal (10, 5, 2, 3), (15, 6, 2, 3) and (21, 7, 2, 3) superimposed codes, respectively. It is
proved in [4] that the trivial (28, 8, 2, 3) superimposed code is optimal. In this paper
we prove that the trivial (28,8,2,3) superimposed code is the unique optimal (28,8,2,3)
superimposed code and that 29 6 N(9, 2, 3) 6 30.
The results have been obtained using the author’s computer programs for the gen-
eration of superimposed codes and the program Q-extension [1] for code equivalence
testing. First we generate all inequivalent (7, 7, 1, 3), (8, 7, 1, 3), (9, 7, 1, 3), (10, 7, 1, 3),
(11, 7, 1, 3), (14, 7, 2, 2), (15, 7, 2, 2), (16, 7, 2, 2) and (22, 7, 2, 3) superimposed codes.
Then, using the codes obtained, we construct all inequivalent (28, 8, 2, 3) superim-
posed codes and prove the following theorem:

Theorem 1. The trivial (28, 8, 2, 3) superimposed code is the unique optimal
(28, 8, 2, 3) SIC.
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We try to extend the unique (28, 8, 2, 3) superimposed code to a (28, 9, 2, 3) superim-
posed code but this is impossible. Therefore:

Theorem 2. 29 6 N(9, 2, 3) 6 30.

References

[1] I. Bouyukliev, What is Q-extension?, Serdica J. Computing, 1, 2007, 115–130.

[2] W.H. Kautz and R.C. Singleton, Nonrandom binary superimposed codes, IEEE
Trans. Inform. Theory, 10, 1964, 363–377.

[3] H.K. Kim and V.S. Lebedev, On optimal superimposed codes, J. Combin. De-
signs, 12, 2004, 79–91.

[4] M. Manev, Optimality of the trivial (28,8,2,3) superimposed code, Proc. Eleventh
International Workshop on Algebraic and Combinatorial Coding Theory, Pam-
porovo, Bulgaria, June 16-22, 2008, 140–143.

[5] C.J. Mitchell and F.C. Piper, Key storage in secure network, Discrete Applied
Mathematics, vol. 21, 215–228, 1988.

[6] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Mathematische
Zeitschrift, 27, 1928, 544–548.

70



Secret Sharing Schemes and Error Correcting Codes

Svetla Nikova

1 Introduction

The goal of this talk is to present a survey on certain recent developments in the theory
of unconditional Multi Party Computation (MPC) and Secret Sharing Schemes (SSS)
related to Error Correcting Codes. In 1979 Shamir [1] and Blakley [2] proposed
independently secret sharing schemes (SSS) as a tool to share a secret between set of
participants (players) Pi, 1 ≤ i ≤ n. Let F be a finite field and let the secret s ∈ F.
Access Structure. Denote the set of all players by P = {P1, . . . , Pn} and the dealer
of the scheme by D. Let us call the groups which are allowed to reconstruct the secret
qualified and the groups which should not be able to obtain any information about
the secret forbidden (unqualified). The set of qualified groups is denoted by Γ and
the set of forbidden groups by ∆. The set Γ is monotone increasing and the set ∆ is
monotone decreasing. The tuple (Γ,∆) is called an access structure if Γ ∩∆ = ∅. If
any set is ether in Γ or in ∆ (i.e., Γ is equal to ∆c, the complement of ∆), then it is
said that the access structure (Γ,∆) is complete and we denote it just by Γ, in this
case the SSS is called perfect.
The tuple (Γ⊥,∆⊥) is defined on P as follows Γ⊥ = {A : P \ A ∈ ∆} and ∆⊥ = {A :
P \A ∈ Γ}. Then (Γ⊥,∆⊥) is called the dual access structure of (Γ,∆).
Secret Sharing Schemes. A secret sharing scheme based on an access structure
(Γ,∆) is a pair (Share, Reconstruct) of protocols (phases) namely, the sharing phase,
where dealer D shares to the players a secret s, and the reconstruction phase, where
the players try to reconstruct s, such that the following access structure rules hold:

• Privacy: The players of any set B ∈ ∆ learn nothing about the secret s as a
result of the sharing phase. Hence we call ∆ a privacy structure.

• Correctness: The secret s can be computed by any set of players A ∈ Γ. Anal-
ogous we call Γ a reconstruction structure.

When the size of the share for each participant is equal to the size of the secret we
speak about ideal SSSs and ideal access structures. Linear Secret Sharing Schemes
are those SSS which use linear operations.
Error Correcting Codes. Any non-empty subset C of F

n is called a code, n is the
length of the code. Each vector in C is called codeword of C; The minimum distance of
a code C is defined as dmin = mina,b.∈C, a 6=b d(a,b); Code C with minimum distance
dmin can correct e ≤ ⌊(dmin − 1)/2⌋ errors. More generally, a code C can correct b
errors and c erasures as long as 2b + c < dmin. A linear code C can be described by
its generator matrix G or by its parity check matrix H .
A code C is denoted by [n, k, d], where n is the code length, k the dimension and d
the minimum distance. The dual of an [n, k, d] code C is [n, n− k, d⊥] code C⊥. Note
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that the generator matrix G of the code C is a parity check matrix of the dual code
C⊥ and vice versa the parity check matrix H of C is a generator matrix for the dual
code. In other words HGT = GHT = 0 holds.
Codes that satisfy the Singleton bound (for an [n, k, d] code: d ≤ n − k + 1) with
equality are called Maximum Distance Separable (MDS) codes, i.e. [n, k, n + 1 − k]
codes. Singleton bound can be written in the following equivalent form: d+d⊥ ≤ n+2.
Note that the dual of an [n, k, d] MDS code is an [n, n− k, k+ 1] MDS code and that
any k columns of a generator matrix of MDS code C are linearly independent.

2 Coding Theoretic Approach to SSS

In 1981, just a few years after the invention of SSS, McEliece and Sarwate [3] have
found a fruitful link between SSS and error correcting codes. After that one-to-one
relation between threshold SSS and MDS codes has been proven and an approach
how to construct ideal SSS from an error-correcting code has been established.
McEliece and Sarwate have reformulated Shamir’s scheme in terms of Reed-Solomon
codes instead of polynomials. This approach allows the authors to show that the
scheme presented in this way has in addition error-correcting properties.
It could be seen that MDS codes (not only Reed-Solomon code) can provide cheating
detection to SSS.

Theorem 1. [3] Consider an [n + 1, k + 1, d] MDS code C and select at random
any codewords c = (c0, c1, . . . , cn) with c0 = s. The dealer gives ci as a share to
participant Pi, 1 ≤ i ≤ n.
If k + 1 + 2ka or more participants pool together their shares, and at most ka of
these values are incorrect, then the secret s can be recovered correctly and the lying
participants can be identified.
If k + 2ka or less participants pool together their shares, and precisely ka of these
values are incorrect, then the secret s can not be recovered correctly. In fact, each
value of s is equally likely.

The general relationship between linear codes and secret sharing schemes has been
established by Massey in 1993 [4]. In fact, the coding theoretic approach can be
reformulated as the vector space construction introduced by Brickel in 1989 [5]. It
has been shown that the coding theoretic approach fully describes the ideal SSS case.
There are two approaches to generate perfectly secure SSS starting from a code:
The first approach uses an [n, k + 1, d] linear code C with generator matrix G
(F(k+1)×n). The dealer D chooses a random information vector x ∈ F

k+1, subject to
x1 = s - the secret. He then calculates the codeword y = xG, (y ∈ F

n). D gives yj
to player Pj to be his share.

The second approach uses an [n+ 1, k + 1, d] linear code C̃ with generator matrix G̃

(F(k+1)×(n+1)). The dealer D calculates the codeword y as y = xG̃, (y ∈ F
n+1), from

a random information vector x ∈ F
k+1, subject to y0 = s - the secret. Then D gives

yj to player Pj to be his share.
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For both constructions a set of shares belonging to group A of players will determine
the secret if and only if the first column (or vector ε) is a linear combination of the
columns with indices in A. These two approaches for generating SSS are related, in
the first approach all the shares form a complete codeword of the code, while in the
second, all the shares form only part of a codeword. By transforming the matrices of
the codes, G̃ = (ε | G), the code C can be considered as obtained from the code C̃ by
puncturing i.e. by deleting a coordinate.

3 Generalizing the Coding Theory Approach by

Means of Monotone Span Programs

Karchmer and Wigderson [6] introduced in 1993 a linear algebra computational model
called monotone span program (MSP) to study certain complexity theory problems.
In 2000 Cramer et al. [7] have shown that MSPs are in one-to-one correspondence
with any general (i.e., non ideal and perfect) SSS. Here is a formal definition for an
MSP.

Definition 1. [6] A Monotone Span Program (MSP) M is a quadruple
(F,M, ε, ψ), where F is a finite field, M is a matrix (with m rows and d ≤ m
columns) over F, ψ : {1, . . . ,m} → {1, . . . , n} is a surjective labeling function and
ε = (1, 0, . . . , 0)T ∈ F

d is called a target vector.

An MSP is said to compute a (complete) access structure Γ when ε ∈ im(MT
A ) ⇐⇒

A is a member of Γ. It is said that a set A is accepted by M ⇐⇒ A ∈ Γ, otherwise
we say A is rejected by M.
In 2003 a class of Error-Correcting Codes were proposed [8], which have as a generator
matrix an MSP and this approach led to generalized codes called Error-Set Correcting
Codes.
For any vector x the set P defines a partition by mapping each player Pi to one or
more coordinates of the vector. Define P-support of vector x: supP(v) = {i : vi 6= 0}.
Obviously δP(x,y) = supP(x− z)
The idea is to work in a new metric replacing Numbers with Sets, i.e. replacing
monotone properties defined by numbers into similar properties defined over sets. For
any x,y ∈ F

N

d(x,y) = |{i : xi 6= yi}| → δP(x,y) = {i : xi 6= yi}
wt(x) = |{i : xi 6= 0}| → supP(x) = {i : xi 6= 0}

We will use δP(x,y) instead of the Hamming distance and will explore the properties
of the so defined space.

Definition 2. [8] For a code C define the set of possible (allowed) distances: Γ(C)
= {A : there exist a,b in C, a 6= b such that δP(a,b) ⊆ A}; forbidden distances:
∆(C) = Γ(C)c. The so-defined codes are called error-set correcting codes.
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Theorem 2. [8] An error-set correcting code C with set of forbidden distances ∆(C)
can correct all errors in ∆ if and only if ∆ ⊎∆ ⊆ ∆(C) (⊎ - element-wise union).

A link can be established between a perfect general access structure SSS and Error-
Set Codes. The following theorems are a generalization of the results by Massey [4]
and Van Dijk [9] for the ideal SSS case.

Theorem 3. [8] Let M be an MSP program computing Γ, and M⊥ be an MSP
computing the dual access structure Γ⊥. Let code C⊥ have the parity check matrix
H⊥ = (ε | (M⊥)T ) and let code C have the parity check matrix H = (ε | MT ).
Then for any MSP M there exists an MSP M⊥ such that C and C⊥ are dual.

Theorem 4. [8] Let M = (F,M, ε, ψ) be an MSP computing an access structure Γ.

Let C̃ be an error-set correcting code, with a set of forbidden distances ∆(C̃) and with

a generator matrix G̃ of the form G̃ = (ε | MT ). Then the P-minimal codewords for

C̃ are the vectors of the form (1, c) and supP(c) ∈ Γ⊥.
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Integral and Spectral Geometry of Liouville Billiard Tables

Georgi Popov, Peter Topalov

Integral geometry is related to the notion of a Radon transformation. There are two
important results obtained in the beginning of the twentieth century which can be
considered as a starting point of the modern integral geometry. In 1916 Funk observed
that continuous even functions on the sphere are uniquely determined by the integrals
on the great circles. In 1917 Radon proved that a continuous even function with a
compact support in R

2 is uniquely determined by its integrals on the lines. The main
problem of the integral geometry can be stated as follows: Let (X, g) be a smooth
manifold and let G be a suitable group of isometries. Given a continuous function
f on X , let us define the Radon transform Rf as a map, assigning to each closed
geodesic γ the integral Rf (γ) of f on γ. Does Rf ≡ 0 imply f ≡ 0 for any continuous
function which is invariant with respect to G?

1 Liouville billiard tables and Radon transform

A billiard table is a smooth compact Riemannian manifold (X, g), dimX = n ≥ 2,
equipped with a smooth Riemannian metric g and with a C∞ boundary Γ := ∂X 6= ∅.
The elastic reflection of geodesics at Γ determines continuous curves on X called bil-
liard trajectories as well as a discontinuous dynamical system on T ∗X – the billiard
flow which induces a discrete dynamical system on an open subset of the coball
bundle B∗Γ of Γ called billiard ball map. Let µ be a positive density on B∗Γ (for
example µ = 1). We are interested in the following problems.

Problem A. Let K be a continuous function on Γ such the mean value of Kµ on
any periodic orbit of the billiard ball map is zero. Does it imply K ≡ 0?

Since periodic orbits of the billiard ball map can be regarded as discrete closed
geodesics, the analogy with the classical Radon transformation becomes clear. We
show below that Problem A holds true for a class of Liouville billiard tables for any
K which is invariant with respect to the corresponding group of symmetries. A Li-
ouville billiard table (shortly L.B.T.) of dimension n ≥ 2 is a completely integrable
billiard table admitting n commuting integrals of the billiard flow which are quadratic
forms in the momentum and functionally independent a.e. (see [4]). Such a billiard
table can be viewed as a 2n−1-folded branched covering of the cylinder T

n−1× [−a, a].
An important subclass of L.B.T.s are those of classical type having an additional
symmetry and for which the boundary is strictly geodesically convex. The group of
isometries of a L.B.T. of classical type is isomorphic to (Z/2Z)n. Moreover, the group
of isometries of (X, g) induces a group of isometries G on Γ which is isomorphic to
(Z/2Z)n. The billiard ball map of a L.B.T. is also completely integrable and its phase
space is foliated by invariant tori. Almost any torus Λ of this foliation is regular,
which means that Λ is a Lagrangian submanifold of B∗Γ diffeomorphic to T

n−1 and
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it is invariant with respect to the symplectic map P = Bm for some m ≥ 1. Such tori
are also called Liouville and more generally Kronicker tori. An important example of
a L.B.T. is the interior of the n-axial ellipsoid.
The map assigning to each periodic orbit of B the mean value of Kµ on it can be
considered as a Radon transformation of K. Another Radon transformation of K can
be defined as follows. Given a continuous function K on Γ and a regular invariant
torus Λ ⊂ B∗Γ of the billiard ball map, we denote by RK(Λ) the mean value of the
integral of Kµ on Λ with respect to the Leray form. The map Λ 7→ RK(Λ) will be
called a Radon transform of K as well.

Problem B. Let K be a continuous function on Γ which is invariant with respect to
the corresponding group of symmetries and such that RK ≡ 0. Does it imply K ≡ 0?

2 Isospectral deformations

Substantial progress in the inverse spectral problem has been done recently due to the
wave-trace formula and the semi-classical trace formulae. The wave-trace formula,
known in physics as the Bilian-Bloch formula and treated rigorously by Colin de
Verdière and Duistermaat and Guillemin, as well its semi-classical analogue - the
Gutzwiller trace formula relate the spectrum of the operator with different invariants
of the corresponding closed geodesics such as their lengths and the spectrum of the
linear Poincar̈ı¿1

2 map. The Birkhoff Normal Form (BNF) of certain non-degenerate
closed geodesics can be extracted from the singularity expansions of the wave-trace
which can be used to reconstruct the boundary of analytic planar domains, as it was
shown recently by Zelditch.
Given K ∈ C(Γ,R), denote by ∆K the Laplace-Beltrami operator in L2(X) with
Robin boundary conditions ∂u

∂ν |Γ = Ku|Γ, where ν(x), x ∈ Γ, is the inward unit
normal to Γ. Let X be the interior of an ellipse Γ in R

2 and let Symm(Γ) be the space
of C∞ real-valued functions on Γ which are invariant with respect to the symmetries
of the ellipse. Guillemin and Melrose [1] proved that the map K → Spec∆K is
one-to-one on Symm(Γ). This result has been generalized in the case of L.B.T.s
of dimension 2 by Popov and Topalov [2]. The main tool is again the wave-trace
formula. The wave-trace approach to inverse spectral problems works well if we
suppose simplicity of the length spectrum (a non-coincidence condition) and non-
degeneracy of the corresponding closed geodesic and its iterates.
We propose here another method which avoids the wave-trace formulae and works
without assuming any non-coincidence or non-degeneracy conditions. Consider a con-
tinuous family of real-valued functions Kt ∈ C∞(Γ,R), t ∈ [0, 1], and set ∆t = ∆Kt

.
Fix c > 0 and d > n/2, and consider an infinite union of intervals

(H1) I := ∪∞k=1 [ak, bk], where ak+1 − bk ≥ cb−dk , and lim ak = lim bk =∞,
lim(bk − ak) = 0.

Impose the following “weak isospectral assumption”:
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(H2) There is a > 0 such that for any t ∈ [0, 1], Spec (∆t) ∩ [a,+∞) ⊂ I.

We suppose also that there is a Kronicker torus of B, which means that

(H3) There is an embedded submanifold Λ of B∗Γ diffeomorphic to T
n−1 and invari-

ant with respect to P = Bm for some m ≥ 1 such that P |Λ : Λ→ Λ is C∞ con-
jugated to the rotation with a Diophantine vector of rotation ω, i.e. R2πω(ϕ) =
ϕ− 2πω (mod 2π)

Then Λ is Lagrangian. Moreover, P is uniquely ergodic on Λ, i.e. there is an
unique probability measure dµ on Λ which is invariant under P . Set Λj = Bj(Λ),
j = 0, 1, . . . ,m− 1, and dµj = (B−j)∗(dµ). Then Λj is also a Kronicker invariant
torus of P with a vector of rotation 2πω and dµj is the unique probability measure on
it which is invariant with respect to P . Given (x, ξ) ∈ B∗Γ, we denote by ξ+ ∈ T ∗

xX
the corresponding outgoing unit co-vector and by 0 ≤ θ(x, ξ) ≤ π/2 the angle defined
by the pairing cos(θ(x, ξ)) = 〈ξ+, ν(x)〉.
Theorem 1. (Iso-spectral invariants) Let Λ be an invariant torus of P = Bm sat-
isfying (H3). Let [0, 1] ∋ t 7→ Kt ∈ C∞(Γ,R) be a continuous family of real-valued
functions on Γ such that ∆t satisfy the weak isospectral condition (H1)− (H2). Then

φ(t) :=

m−1∑

j=0

∫

Λj

Kt

cos θ
dλj ≡ φ(0). (1)

The proof of the theorem is based on a quasi-mode construction. In the case of
Liouville billiard tables the Kronicker tori Λ are invariant tori either of P = B (m = 1)
or of P = B2 (m = 2). Then (1) means that the Radon transform RKt,µ(Λ) is
independent of t for any regular torus Λ, where µ(x, ξ) = 1/ cos(θ(x, ξ)).

3 Injectivity of the Radon transform and spectral

rigidity

Let (X, g) be a Liouville billiard table of dimension n = 2, 3. Denote by Symmℓ
G(Γ)

the space of Cℓ real-valued functions on Γ, which are invariant with respect to the
group of symmetries G of Γ. Fix the density µ by µ ≡ 1 or by µ(x, ξ) = 1/ cos(θ(x, ξ)).
Our main result is:

Theorem 2.. Let (X, g), n = 2, 3, be a Liouville billiard table of classical type and
let K ∈ Symm0

G(Γ). Suppose that RK,µ ≡ 0. Then K = 0.

The billiard ball map of a L.B.T. is said to be non-degenerate if the corresponding
frequency map is non-degenerate.

Theorem 3.. Let (X, g), dimX = 3, be a Liouville billiard table of classical type
such that the corresponding billiard ball map is non-degenerate. Let Kt, t ∈ [0, 1], be
a continuous family of real-valued functions in C∞(Γ,R) such that ∆t satisfy (H1)−
(H2). If K0,K1 ∈ Symm∞

G (Γ), then K1 ≡ K0.
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By Theorem 1, RK,µ(Λ) = 0 for any torus Λ with a Diophantine vector of rotation,
where µ(x, ξ) = 1/ cos(θ(x, ξ)). Since the billiard ball map is nondegenerate the
Radon transforms of K1 and K0 are the same on any regular torus and the claim
follows from Theorem 2. In the same way we prove

Theorem 4.. Let (X, g), dimX = 3, be a Liouville billiard table of classical type such
that the corresponding billiard ball map is non-degenerate. Let K be a continuous
function on Γ invariant with respect to G and such that the mean value of K on any
periodic orbit of the billiard ball map is zero. Then K ≡ 0.

The following result provides sufficient conditions for the non-degeneracy of the bil-
liard ball map.

Theorem 5.. Let (X, g), dimX = 3, be an analytic Liouville billiard table of classical
type. Suppose that there exists at least one non-periodic geodesic on its boundary
(Γ, g|Γ). Then the billiard ball map of (X, g) is non-degenerate.

For example the interior of the ellipsoid is a non-degenerate Liouville billiard table.
The main results are proved in [3-5]. The construction of Liouville billiard tables is
given in [4].
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Travelling Waves in Newell-Whitehead Cellular
Neural Networks Model

Angela Slavova, Victoria Ivanova

1 Introduction

Reaction-diffusion type of equations are widely used to describe phenomena in differ-
ent fields, as biology-Fisher model [1], FitzHugh-Nagumo nerve conduction model [1],
Vector-disease model, chemistry - Brusselator model, physics - Sine-Gordon model
[10], etc.
In his pioneering work, Fisher [1] used a logistic-based reaction-diffusion model to
investigate the spread of an advantageous gene in a spatially extended population.
The FitzHugh-Nagumo system with two coupled partial differential equations (PDEs)
and two diffusion coefficients is a simplification of the Hodgkin-Huxley model and
describes the control of the electrical potential accross cell membrane by the change of
flow of the ionic channels but also can be used to model electrical waves of the heart [1].
The generalized diffusion equation with a nonlinear source term which encompasses
the Fisher, Newell-Whitehead and Fitzhugh-Nagumo equations as particular forms
and appears in awide variety of physical and engineering applications. Modulation
equations play an essential role in the description of systems which exibit patterns
of nearly periodic nature. The so called Newell-Whitehead equation is derived to
describe the envelope of modulated roll-slotions with two large extended or unbounded
space direction.
In this paper we shall study the Newell-Whitehead equation of the form:

∂u

∂t
=
∂2u

∂x2
+ au− bu3, (1)

where a and b are positive parameters. This equation is a second-order parabolic
PDE.
Spatial and spatio-temporal patterns occur widely in physics, chemistry and biology.
In many cases, they seem to be generated spontaneously. These phenomena have
motivated a great deal of mathematical modelling and the analysis of the resultant
systems has led to a greater understanding of the underlaying mechanisms. Partial
differential equations of diffusion type have long served as models for regulatory feed-
backs and pattern formation. Such systems cause some difficulty, since both existence
and behavior of the solutions are more difficult to establish. Many aspects of quali-
tative behavior have to be investigated numericallly. For this purpose we apply the
Cellular Neural Networks (CNN) approach for studying such models.

79



2 Newell-Whitehead CNN model

It is known that some autonomous CNNs represent an excellent approximation to
nonlinear partial differential equations (PDEs). In this paper we will present the
receptor-based model by a reaction-diffusion CNNs. The intrinsic space distributed
topology makes the CNN able to produce real-time solutions of nonlinear PDEs.
There are several ways to approximate the Laplacian operator in discrete space by a
CNN synaptic law with an appropriate A-template.
We will map u(x, t) into a CNN layer such that the state voltage of a CNN cell uj(t)
at a grid point j is associated with u(jh, t), h = ∆x. Therefore, an one-dimensional
Laplacian template will be in the following form:

A1 = (1,−2, 1),

and the CNN model in this case is:

duj
dt

= (uj−1 − 2uj + uj+1) + auj − bu3
j , (2)

j = 1, . . . , n, n = M.M , where we have M ×M cells.

3 Travelling waves in the Newell-Whitehead CNN

model

Our objective in this section is to study the structure of travelling wave solutions of
Newell-Whitehead CNN model.
Let us consider our CNN equation (2). The travelling wave solutions will be presented
in the following form:

uj(t) = u(η), 1 ≤ j ≤ n, (3)

where η = t − jh, h > 0 is a parameter. Note that η is the coordinate moving along
the array with a velocity equal to c = 1/h. Substituting (3) in (2) we obtain

u̇ = u(η − h)− 2u(η) + u(η + h) + N(u),

where the dot denotes differentiation with respect to η, N(u) = au(η)− bu3(η). The
two difference terms [u(η−h)−u(η)]− [u(η)−u(η+h)] can be replaced approximately
by the first derivatives: −u̇/h and +u̇/h, respectively. Hence, we obtain

u̇ =
1

1 + 2c
N(u). (4)

Clearly, u ≡ 0 and u ≡ ±
√

a
b are solutions of the stationary problem. So there

are three equilibria E0 = (0, 0) and E1 = (
√

a
b , 0), E2 = (−

√
a
b , 0). The following

theorem for the travelling waves of the Newell-Whitehead CNN model (2) hold:
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Theorem 1. For the Newell-Whitehead CNN model (2), there exists c > 0, such that
there is a
1). heteroclinic orbit connecting the equilbria E0 and E1 and the travelling wave u(η)
is strictly monotonically increasing;
2). heteroclinic orbit connecting the equilbria E0 and E2 and the travelling wave u(η)
is strictly monotonically decreasing.

Remark 1. There are exact solutions of the Newell-Whitehead equation (1) for a > 0
and b > 0 [8]

w(x, t) = ±
√
a

b

C1exp(
1
2

√
2ax)− C2exp(− 1

2

√
2ax)

C1exp(
1
2

√
2ax) + C2exp(− 1

2

√
2ax) + C3exp(− 3

2at)
,

w(x, t) = ±
√
a

b
[

2C1exp(
√

2ax) + C2exp(
1
2

√
2ax− 3

2at)

C1exp(
√

2ax) + C2exp(
1
2

√
2ax− 3

2at) + C3

− 1],

where C1, C2 and C3 are arbitrary constants.

The following simulations of our CNN model are made for different values of cell
parameters.
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Fig.1. Simulations of our CNN model.
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On the Solution of the System of ODEs Governing the
Polarized Stationary Solutions of CNLSE

Michail D. Todorov, Christo I. Christov

Consider the coupled system of Nonlinear Schrodinger Equations (CNLSE):

iψt =β△ψ + [α1|ψ|2 + (α1 + 2α2)|φ|2]ψ
iφt =β△φ+ [α1|φ|2 + (α1 + 2α2)α2|ψ|2]φ

where β is the dispersion coefficient, α1 describes the self-focusing of a signal for pulses
in birefringent media, and α2 governs the nonlinear coupling between the equations.
For further convenience we consider the case β = 1. All other cases can be reduced
to this one by means of simple scaling. CNLSE possess solutions that are localized
envelopes (see, for example [3, 8]). It is easy to see that if one of the components,
say φ, is trivially equal to zero, then the system reduces to single scalar NLSE for
the other function, ψ. Such a solution of CNLSE is called ‘linearly polarized’. The
sech-solution of the single NLSE, say for ψ-profile, is given by

ψ(x, t) = Aψsech[bψ(x−X − cψt)] exp
{
i
[ cψ
2β

(x −X − cψt)− nψ
]}

(1)

b2ψ =
1

β

(
nψ +

1

4β
c2ψ
)
; Aψ = bψ

√
2β/α1; uc = 2nψβ/cψ,

which means that for given phase speed, cψ, and carrier frequencies, nψ, the solution
of the above type is fully specified. The localized solution is identified by the presence
of a spatial point, x = X − cψt (‘center’) which moves with a given phase speed
cψ. The same initial relationships hold for φ-profile when ψ = 0. The center is
common for both components ψ and φ. The above type of analytical initial condition
evidently requires the restriction 4β bψ,φ > −c2ψ,φ. It should be noted here, that for
the Manakov case [3] when α2 = 0, a solution of type of Eq. (1) can be found for
circular polarization of kind ψ(x, t) = χ(x, t) cos δ, φ(x, t) = χ(x, t) sin δ, by replacing
α1 by 2α1.
The initial conditions play important role in investigation of soliton interaction de-
scribed by CNLSE. It has been shown in different works of the present authors
[1, 4, 6, 7] that linearly polarized initial conditions, after the interaction invariable
lead to solitons for which both ψ, φ 6= 0, and have in general elliptic polarizations.
This means that a numerical solution for the general case is needed in order to pro-
vide initial conditions with elliptic polarization which is the goal of the present work.
A numerical solution for elliptic polarized stationary propagating solitons had been
provided in [5]. In order to be able to use a numerically computed initial condition,
one must have a code that gives the solution. Here we propose a different numerical
method to find the solution to be used in our future work on interaction of solitons.
Simultaneously, we can verify both our solution and the solution of [5].
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The elliptically polarized solution has the form

ψ(x, t), φ(x, t) = Aψ,φ(x−X − cψ,φt) exp
{
i
[
nψ,φ−

cψ,φ
2

(x−X − cψ,φt) + δψ,φ
]}

(2)

where nψ, nφ are the carrier frequencies and δψ, δφ are the phases for the two compo-
nents. Generally nψ 6= nφ, while nψ = nφ only for circular polarization. The general
polarization angle is defined as θ = arctan(max{Aφ}/max{Aψ}).
After some straightforward manipulations we get the following system of conjugated
real ordinary differential equations for the real-valued amplitudes Aψ , Aφ:

~F ( ~A) ≡
(
A

′′

ψ + (nψ + 1
4c

2
ψ)Aψ + [α1A

2
ψ + (α1 + 2α2)A

2
φ]Aψ

A
′′

φ + (nφ + 1
4c

2
φ)Aφ + [α1A

2
φ + (α1 + 2α2)A

2
ψ ]Aφ

)
=

(
0

0

)
, (3)

where ~A = [Aψ(x−X − cψt), Aφ(x−X − cφt)]T is the unknown vector function.
The above system has to be solved with the asymptotic boundary conditions

lim
x→±∞

A′
ψ,φ(x−X − cψ,φt) = lim

x→±∞
Aψ,φ(x−X − cψ,φt) = 0. (4)

Thus we are faced with solving the bifurcation boundary-value problem (BVP) (3),
(4) for the possible nontrivial solution. Introducing a fictitious time τ ≥ 0 let assume
that the relationship holds

∂ ~F

∂ ~A
~α+

∂ ~F

∂ ~A′′
~α′′ + ~F = ~0, with ~α ≡ ∂ ~A

∂τ
. (5)

It is proved in [2] that the iteration

~Ak+1 = ~Ak + ∆τk~α
k, ∆τk =

||~F k||
||~F k||+ ||~F k+1||

, k = 0, 1, 2, ...

is quadratically convergent in the vicinity of the solution of (3),(4). In the last formula
|| · || stands for the L2-norm. It is convenient to use cubic Hermitean splines on the
uniform mesh

xi = −x∞ + ih, h =
2x∞
N

, i = 0, ..., N,

and the Gaussian points 1/2±
√

3/6 in [0, 1] to be the the collocation nodes.

We use sech-like function as an initial approximation, i.e., A
(0)
ψ,φ ∝ sech(bψ,φx) and

solve the above auxiliary BVP for given nψ,φ, cψ,φ, α1 and α2 with spatial step
h = 10−2 and “actual” infinity x∞ = 15÷ 20. Taking seven to eight iterations proves
to be sufficient to reach the approximate nontrivial solution with L2-norm of the error
lesser than 10−12.
In Fig. 1 we present three cases of elliptic polarization when the carrier frequency of
the ψ-component is fixed (nψ = −0.5) and the carrier frequency of the φ-components
nφ ∈ [−0.7,−0.39]. We were able to generate solutions with all possible angles of
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Figure 1: Amplitudes Aψ and Aφ for cl = −cr = 1, α1=0.75, α2 = 0.2, nψ = −0.5. Left:
nφ = −0.68; middle: nφ = −0.55; right: nφ = −0.395.

0.6

0.40.4

0.2

0

-0.2

-0.4

-10 -5  0  5  10

δψ=0o 
δφ=0o 

Re ψ
Im ψ
Re φ
Im φ

0.6

0.40.4

0.2

0

-0.2

-10 -5  0  5  10

δψ=45o 
δφ=45o 

Re ψ
Im ψ
Re φ
Im φ

0.6

0.40.4

0.2

0

-0.2

-10 -5  0  5  10

δψ=90o 
δφ=90o 

Re ψ
Im ψ
Re φ
Im φ

Figure 2: Real and imaginary parts of the amplitudes, ℜψ, ℑψ, ℜφ, ℑφ, from the case
shown in the middle panel of Fig. 1 and the dependence on phase angle.

polarization in θ ∈ [0◦, 90◦] including the cases of circular and linear polarization. In
this way we found out that the elliptically polarized solitons do exist even for those
values of the carrier frequency and phase velocity, for which the linearly polarized sech-
solutions do not exist. Note that the latter are limited by the condition nψ,φ+c

2
ψ,φ/4 >

0. Fig. 1 shows that by varying the carrier frequency one can produce solitons that
have different supports. We mention here that as far as it can be judged by the graph,
our shapes are in good quantitative agreement with the solution of [5].
Another dimension of complexity is introduced by the phases δψ,φ of the different
components (see Eq. (2)) although these do not affect the amplitudes Aψ,φ. As
shown in [7], the initial difference in phases can have a profound influence on the
polarizations of the solitons after the interaction. In Fig. 2 we present a case with
given amplitudes of envelops but with different phases. Naturally, we present both
the real and imaginary parts, because their relative shift is what matters in this case.
In the end, we present in Fig. 3 the interaction of two initial solitons with different
polarizations. The left one has a circular polarization, while the right one has elliptic
polarization. The above mentioned exchange of polarizations is clearly seen. The
stability of the computations are ensured by the conservative scheme we employ, but
the lack of oscillations and dispersion testifies that the initial conditions are with high
accuracy compatible with the equations.
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Scalability Tests of Two Parallel PCG Solvers on Blue
Gene/P

Yavor Vutov

In this work we study the performance of two PCG solvers on IBM Blue Gene/P
massively parallel computer.
Our test problem is µFE (micro finite element) elasticity simulation of human bones.
A voxel representation of the bone structure based on micro computer tomogra-
phy (CT) images is used to formulate the problem. The computational domain is
a strongly heterogeneous composition of solid and fluid phases. The structure of the
bone is shown on Fig. 1. The solid phase has darker color.
Non-conforming Rannacher-Turek [1] FEs were

Figure 1: Structure of a human
bone

used for discretization of the problem. The ob-
tained linear system is large, with a sparse, sym-
metric and positive definite matrix. This implies
the use of iterative solvers based on the pre-
conditioned conjugate gradient (PCG) method
[2]. The elasticity stiffness matrix has a cou-
pled block structure corresponding to a separable
displacement ordering of the unknowns. Here,
the performance of the following two basic pre-
conditioning codes, incorporated in a displace-
ment decomposition framework, is studied. The
first one is the modified incomplete factorization,
MIC(0), and the second is the algebraic multi-
grid, AMG. The MIC(0) code is developed in
IPP-BAS, Sofia, while the AMG one is the BoomerAMG module of the software
system Hypre developed at LLNL, Livermore.
The MIC(0) preconditioner is constructed in two steps. First, displacement decom-
position [3] of the stiffness matrix is used. Then MIC(0) factorization is applied to a
proper auxiliary M-matrix to get an approximate factorization of the obtained block-
diagonal matrix. The auxiliary matrix has a special block structure - its diagonal
blocks are diagonal matrices. This allows the solution of the preconditioning system
to be performed efficiently in parallel. For more information see [7, 8]
BoomerAMG contains sequential and parallel implementations of algebraic multigrid
methods [4]. It can be used as a solver or as a preconditioner. Various different
parallel coarsening techniques and relaxation schemes are available. See [5, 6] for
a detailed description of the coarsening algorithms, the interpolation and numerical
results.
Version 2.4.0 of the Hypre library was used for the performed tests.
The following coarsening techniques are available:

• the Cleary-Luby-Jones-Plassman (CLJP) coarsening;
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• various variants of the classical Ruge-Stüben (RS) coarsening algorithm;

• the Falgout coarsening which is a combination of CLJP and the classical RS
coarsening algorithm;

• PMIS coarsening - a parallel coarsening algorithm using independent sets, gen-
erating lower complexities than CLJP;

• HMIS-coarsening - uses one pass Ruge-Stueben on each processor independently,
followed by PMIS using the interior C-points generated as its first independent
set;

The following relaxation techniques are available:

• Jacobi relaxation,

• hybrid Gauss-Seidel / Jacobi relaxation scheme,

• symmetric hybrid Gauss-Seidel / Jacobi relaxation scheme, and

• Gauss-Seidel relaxation.

The PMIS coarsening was used in the presented tests. In order to reduce grid and
operator complexities (which reduces the RAM consumption) we used an aggressive
coarsening at the first two levels. A V(1,1)-cycle with hybrid symmetric Gauss-Seidel
smoothing was performed. The related AMG strength threshold is 0.5. Inner PCG
iterations with BoomerAMG were used to approximate the DD block-diagonal matrix.
The number of inner iterations was fixed to 4.
The compute nodes of Blue Gene/P contain four PowerPC 450 processors with 2
GB of shared RAM and runs a lightweight kernel to execute user-mode applications
only. Each compute node has six connections to the torus network at 3.4 Gbps per
link, three connections to the global collective network at 6.8 Gbps per link, four
connections to the global interrupt network and one connection to the control net-
work (JTAG). The input/output operations from the compute nodes are forwarded
to special IO nodes. They run an embedded Linux kernel with minimal packages
required to support a Network File System (NFS) client and Ethernet network con-
nections. To achieve a high level of integration and quantity of micro-processors with
low power consumption, the system was developed based on a processor with mod-
erate frequency. The system uses system-on-a-chip (SoC) technology to allow a high
level of integration, low power, and low design cost. The chip constitutes the Compute
Node. The next building blocks are the compute and I/O cards. A single Compute
Node attached to a processor card with the memory (RAM) creates the compute and
I/O cards. The compute cards and I/O cards are plugged into a node card. There can
be up to two I/O cards per node card. A midplane consists of 16 node cards stacked
in a rack. A rack holds two midplanes, for a total of 32 node cards. The midplane
(512 compute nodes) is the smallest entity for which the torus network topology is
available. Only mesh topology is available utilizing less then 512 compute nodes At

88



our disposal was a Blue Gene/P system at the Bulgarian Supercomputing Center,
which consists of two racks 2048 compute nodes or total of 8192 processors.
The compute nodes of a Blue Gene/P system can be utilized in three modes:

• SMP mode - One MPI process per compute node and up to 4 threads (OpenMP
or pthread) per MPI process

• DUAL mode - Two MPI processes per compute node and up to 2 threads
(OpenMP or pthread) per MPI process

• VN mode - Four MPI processes per compute node - no additional threads al-
lowed.

We used SMP mode for our experiments with OpenMP employed for the parallelism
within the compute node. The Hypre library was compiled with OpenMP enabled,
and linked to a parallel (SMP) version of the Engineering and Scientific Subroutine
Library (ESSL), which provides routines from both BLAS and LAPACK.

Table 1: Parallel Tests

MIC(0) AMG
n N p T [s] nit T [s] nit

32 2 396 160 8 201 336 271 31
64 19 021 824 64 473 630 312 30

128 151 584 768 512 1 164 894 345 26
64 19 021 824 16 1 485 633 1 045 28

128 151 584 768 128 2 605 893 1 081 26
256 1 210 318 848 1024 4 618 945

In Table 1 are shown the results from parallel experiments. The complete description
of the settings of the tests can be found in [8]. The stopping criterion in all considered
tests was (C−1rNit , rNit)/(C−1r0, r0) < 10−6, where ri is the current residual and C
stands for the used preconditioner. In the table, n stands for the number of voxels
in each spatial dimension, p for the number of used processors, N is the number
of unknowns of the linear system of equations, T is the solution time in seconds
and nit - the number of iterations (outer ones in the case of AMG). The tests were
performed with the following scheme: Starting with a relatively small problem and
given number of processors with each further test the problem sized is increased and
the computational resources are increased proportionally to the problem size. Two
sets of experiments were performed in this way. The first one starts with a problem
of 32 × 32× 32 voxels on 8 processors, and the other – of 64 × 64 × 64 voxels on 16
processors. The run of the largest problem (n=256) with BoomerAMG preconditioner
could not be performed due to insufficient RAM.
What we see is that the number of MIC(0) iterations increases with the problem size,
representing the heterogeneous bone structures. Let us remind that for homogeneous
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materials nit = O(
√
n). The AMG preconditioner manages to sustain the number

of iterations for different problem sizes. The time for the MIC(0) increases with the
problem size, while the AMG preconditioner is almost scalable. Some advantage of
MIC(0) is the smaller memory requirements. This allows solving the largest problem
with 1 210 318 848 degrees of freedom.
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