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Abstract

Novel parallel algorithms for the solution of large FEM linear systems arising from second order elliptic partial differential
equations in 3D are presented. The problem is discretized by rotated trilinear nonconforming Rannacher–Turek finite elements.
The resulting symmetric positive definite system of equations Ax = f is solved by the preconditioned conjugate gradient algorithm.
The preconditioners employed are obtained by the modified incomplete Cholesky factorization MIC(0) of two kinds of auxiliary
matrices B that both are constructed as locally optimal approximations of A in the class of M-matrices. Uniform estimates for the
condition number κ(B−1 A) are derived. Two parallel algorithms based on the different block structures of the related matrices B
are studied. The numerical tests confirm theory in that the algorithm scales as O(N 7/6) in the matrix order N .
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider the elliptic boundary value problem

−∇ · (a(x)∇u(x)) = f (x) in Ω ,

u = 0 on ΓD,

(a(x)∇u(x)) · n = 0 on ΓN ,

(1.1)

where Ω is a polyhedral domain in R3 with axially parallel faces, ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN 6= ∅, and a(x) > 0 is a
piecewise smooth function on Ω . The problem (1.1) can be discretized in various ways. Among the most popular and
frequently used methods of approximation are the finite volume method, the Galerkin finite element method (FEM),
and the mixed FEM. Many engineering problems need very accurate velocity (flux) determinations in the presence
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of heterogeneities and large jumps in the coefficient a(x). This can be achieved through the mixed FEM. However,
the technique of the mixed FEM leads generally to an algebraic saddle point problem that is more difficult and
more expensive to solve. An important discovery of Arnold and Brezzi [1] is that the Schur system for the Lagrange
multipliers can be obtained also as a discretization of (1.1) by a Galerkin method using nonconforming elements. The
application of rotated trilinear hexahedral FEs is studied in this paper.

There are two general approaches to constructing parallel preconditioners, based respectively on (a) domain
decomposition, and (b) (block) incomplete factorization. The second approach does not lead to optimal
preconditioners in terms of the problem size, but produces highly parallel and efficient preconditioners. Here, we
first modify the stiffness matrix A locally to obtain an auxiliary matrix B. Then, the preconditioner is obtained by
means of a point-wise modified incomplete Cholesky factorization (MIC(0)) of the matrix B. This is a 3D extension
of the preconditioning technique first proposed in 2D for skewed five point stencil discretization (see e.g. [2]). Related
methods for nonconforming Crouzeix–Raviart and for rotated bilinear FE systems were introduced in [3,4], and in
[5,6], respectively. Some earlier ideas and numerical results about 3D case can be found in [7,8].

The reminder of the paper is organized as follows. A brief description of the rotated trilinear nonconforming FEs
and the related MIC(0) preconditioning strategies is given in Section 2. The construction of locally optimized parallel
MIC(0) preconditioners and the corresponding condition number estimates are presented in Section 3. The next two
sections contain respectively the analysis of the parallel algorithms and the related numerical tests.

2. FEM discretization and preconditioning strategies

The weak formulation of problem (1.1) reads as follows: given f ∈ L2(Ω), find u ∈ V ≡ H1
D(Ω) = {v ∈ H1(Ω) :

v = 0 on ΓD}, satisfying

A(u, v) = ( f, v) ∀v ∈ H1
D(Ω), where A(u, v) =

∫
Ω

a(x)∇u(x) · ∇v(x)dx. (2.1)

Let the domain Ω be discretized by the hexahedral partition Th . We assume that Th is aligned with the discontinuities
of the coefficient a(x) such that in each element e ∈ Th , a(x) is a smooth function. The variational problem (2.1)
is then discretized using the finite element method, i.e., the continuous space V is replaced by a finite dimensional
subspace Vh , leading to the following finite element formulation: find uh ∈ Vh , satisfying

Ah(uh, vh) = ( f, vh) ∀vh ∈ Vh, where Ah(uh, vh) =

∑
e∈Th

a(e)
∫

e
∇uh · ∇vhdx. (2.2)

Here, a(e) > 0 is a piecewise constant function, defined by the integral averaged value of a(x) over each element
from Th . We note that this approach admits strong coefficient jumps across element interfaces. The resulting discrete
problem to be solved is then a linear system of equations

Ahuh = fh, (2.3)

where Ah , uh , and fh denote the global stiffness matrix, the vector of unknown degrees of freedom, and the global
right hand side, respectively. Here h indicates the discretization parameter (mesh size) for the underlying partition Th
of Ω . The aim of this paper is to investigate scalable parallel preconditioners for solving (2.3).

2.1. Rotated trilinear nonconforming FEM

Nonconforming finite elements based on rotated multilinear shape functions were introduced by Rannacher and
Turek [9] as a class of simple elements for the Stokes problem. More generally, the recent activities in the development
of efficient solution methods for nonconforming finite element systems are inspired by their attractive properties as a
stable discretization tool for ill-conditioned problems. The cube [−1, 1]

3 (see Fig. 1) is used as a reference element ê
to define the isoparametric rotated trilinear element e ∈ Th .

Let Ψe : ê → e be the corresponding trilinear one-to-one transformation, and let the nodal basis functions be
determined by the relation

{φi }
6
i=1 = {φ̂i ◦ Ψ−1

e }
6
i=1, {φ̂i } ∈ span{1, x, y, z, y2

− x2, x2
− z2

},
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Fig. 1. Node numbering of the reference rotated trilinear hexahedral element ê and connectivity pattern of the related element stiffness matrix Ae .

where (x1, x2, x3) ≡ (x, y, z), ‘◦’ denotes the composition of functions φ̂i and Ψ−1
e . For the variant MP (mid point),

{φ̂i }
6
i=1 are defined by the point-wise interpolation condition

φ̂i (b
j
Γ ) = δi j ,

where b j
Γ , j = 1, 6 are the centers of the faces of the cube ê. So,

φ̂1(x, y, z) =

(
1 − 3x + 2x2

− y2
− z2

)
/6, φ̂2(x, y, z) =

(
1 + 3x + 2x2

− y2
− z2

)
/6,

φ̂3(x, y, z) =

(
1 − x2

− 3y + 2y2
− z2

)
/6, φ̂4(x, y, z) =

(
1 − x2

+ 3y + 2y2
− z2

)
/6,

φ̂5(x, y, z) =

(
1 − x2

− y2
− 3z + 2z2

)
/6, φ̂6(x, y, z) =

(
1 − x2

− y2
+ 3z + 2z2

)
/6.

Alternatively, for the variant MV , the face average interpolation operator is applied in the form

|Γ j
ê |

−1
∫
Γ

j
ê

φ̂i dΓ
j

ê = δi j ,

where Γ j
ê , j = 1, 6 are faces of the cube ê, leading to

φ̂1(x, y, z) =

(
2 − 6x + 6x2

− 3y2
− 3z2

)
/12, φ̂2(x, y, z) =

(
2 + 6x + 6x2

− 3y2
− 3z2

)
/12,

φ̂3(x, y, z) =

(
2 − 3x2

− 6y + 6y2
− 3z2

)
/12, φ̂4(x, y, z) =

(
2 − 3x2

+ 6y + 6y2
− 3z2

)
/12,

φ̂5(x, y, z) =

(
2 − 3x2

− 3y2
− 6z + 6z2

)
/12, φ̂6(x, y, z) =

(
2 − 3x2

− 3y2
+ 6z + 6z2

)
/12.

2.2. MIC(0) preconditioning

In this section, we recall some facts about the modified incomplete factorization, see [10,11], or [12] for an
alternative approach. Let us decompose the real N × N matrix A = (ai j ) into the form

A = D − L − LT ,

where D is the diagonal and (−L) is the strictly lower triangular part of A. Then we consider the approximate
factorization of A which has the following form:

CMIC(0) = (X − L)X−1(X − L)T ,

where X = diag(x1, . . . , xN ) is a diagonal matrix determined such that A and CMIC(0) have equal row sums. For the
purpose of preconditioning, we restrict ourselves to the case when X > 0, i.e., when CMIC(0) is positive definite. In
this case, the MIC(0) factorization is called stable. Concerning the stability of the MIC(0) factorization, we have the
following theorem [10].
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Theorem 2.1. Let A = (ai j ) be a symmetric real N × N matrix and let A = D − L − LT be the splitting of A. Let
us assume that (in an elementwise sense)

L ≥ 0,

Ae ≥ 0,

Ae + LT e > 0, e = (1, . . . , 1)T
∈ RN ,

i.e., that A is a weakly diagonally dominant matrix with nonpositive off-diagonal entries and that A + LT
= D − L

is strictly diagonally dominant. Then the relation

xi = ai i −

i−1∑
k=1

aik

xk

N∑
j=k+1

ak j > 0 (2.4)

holds and the diagonal matrix X = diag(x1, . . . , xN ) defines a stable MIC(0) factorization of A.

Remark 2.2. The numerical tests presented in the last section are performed using the perturbed version of MIC(0)
algorithm, where the incomplete factorization is applied to the matrix Ã = A + D̃. The diagonal perturbation
D̃ = D̃(ξ) = diag(d̃1, . . . d̃N ) is defined as follows:

d̃i =

{
ξai i , if ai i ≥ 2wi ,

ξ1/2ai i , if ai i < 2wi ,

where 0 < ξ < 1 is a constant and wi = −
∑

j>i ai j .

It is well known that the number of iteration steps the Preconditioned Conjugate Gradient (PCG) method takes
until convergence is k = O(κ(C−1 A)1/2) [13]. For the case when C = CMIC(0)(A) is used with second order model
elliptic problems, Gustafsson [14] and Blaheta [10] give the estimate

κ(C−1 A) = κ(A)1/2. (2.5)

Many numerical experiments indicate that (2.5) holds for a wider range of problems. For the problem (1.1) we have
κ(A) = O(n2) = O(N 2/3) and thus, we expect that the iteration count k = O(N 1/6).

2.3. Parallel preconditioning strategies

The standard MIC(0) preconditioning is inherently sequential due to the recursive solution of the involved triangular
systems. The idea of our approach is to apply MIC(0) factorization to a modified sparse matrix B, the special block
structure of which allows for a scalable parallel implementation. This is based on the experience in developing MIC(0)
algorithms for 2D problems (see [5,6,2,3]). Following the standard FEM assembling procedure, we write A in the form

A =

∑
e∈ωh

T T
e AeTe, (2.6)

where Ae is the element stiffness matrix, Te stands for the restriction mapping of the global vector of unknowns to the
local one corresponding to the current element e. The matrix Ae is dense and can be written in the form

Ae =


a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56
a61 a62 a63 a64 a65 a66

 ,

where the node numbering and connectivity pattern is displayed in Fig. 1.
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Lemma 2.1. Let us introduce the auxiliary global matrix B in the form

B =

∑
e∈ωh

λ(1)
e T T

e BeTe, (2.7)

where Be is a symmetric positive semidefinite matrix with nonpositive off-diagonal entries such that Bee = Aee,
eT

= (1, 1, 1, 1, 1, 1), and where {λ
(i)
e }

5
i=1 are the nontrivial eigenvalues of B−1

e Ae ordered to be monotonically
increasing. Then

(i) the matrix B satisfies the conditions of Theorem 2.1 for a stable MIC(0) factorization, and
(ii) the local condition number analysis is applicable,

κ(B−1 A) ≤ max
e

κ(B−1
e Ae).

Proof. The auxiliary matrix B is constructed as an M-matrix. Then, the proof of condition (i) follows
straightforwardly, subject to a standard lexicographic global node numbering.

For the second statement, let v ∈ RN , N is the size of the global matrix, and let ve ∈ R6 be the restriction of v on
the current element e ∈ Th . Then,

(Bv, v) =

∑
e

λ(1)
e (Beve, ve) ≤

∑
e

(Aeve, ve) = (Av, v),

and therefore the minimal eigenvalue λm is bounded below by

λm(B−1 A) ≥ 1.

Similarly,

(Bv, v) =

∑
e

λ(1)
e (Beve, ve) ≥

∑
e

λ
(1)
e

λ
(5)
e

(Aeve, ve) ≥ min
e

λ
(1)
e

λ
(5)
e

∑
e

(Aeve, ve) = min
e

λ
(1)
e

λ
(5)
e

(Av, v),

and thus, for the maximal eigenvalue of B−1 A we have

λM (B−1 A) ≤ max
e

λ
(5)
e

λ
(1)
e

,

which completes the proof. �

Now we will introduce the structure of two variants for local approximations Be under the assumption that the
conditions of Lemma 2.1 are satisfied. They will later be referred to as Variant B1 and Variant B2.

Variant B1

Be =


b11 b13 b14 b15 b16

b22 b23 b24 b25 b26
b31 b32 b33 b35 b36
b41 b42 b44 b45 b46
b51 b52 b53 b54 b55
b61 b62 b63 b64 b66



Variant B2

Be =


b11 b12 b13 b14 b15 b16
b21 b22 b23 b24 b25 b26
b31 b32 b33
b41 b42 b44
b51 b52 b55
b61 b62 b66

 .

The definitions of the introduced sparse approximations Be correspond to the local numbering shown in Fig. 2. Here
the dashed lines represent the connectivity pattern of Variant B1 (left) and Variant B2 (right). Notice that the condition
Bee = Aee prevents the selection of a diagonal Be.

At this point we introduce the preconditioner C of A which is defined as the MIC(0) factorization of B; that is,

C = CMIC(0)(B).

Recall that the definition of B ensures a stable MIC(0) factorization. The locally optimized construction of the element
matrices Be for both variants B1 and B2, and for both cases of Rannacher–Turek elements, MV and MP, will be
studied in the next section.



2202 P. Arbenz et al. / Computers and Mathematics with Applications 55 (2008) 2197–2211

Fig. 2. Node numbering of a rotated trilinear hexahedral element and connectivity pattern of Be .

The sparsity patterns of the Be will ease the parallelization of the MIC(0) preconditioned PCG considerably. The
auxiliary matrices B will have a special block structure where the diagonal blocks are diagonal matrices. These blocks
correspond to nodal lines and plains for variants B1 and B2, respectively.

3. Locally optimized approximation of the stiffness matrix

Let us consider the finite element problem (2.2) in the case of mesh isotropy. Then, the related element stiffness
matrices for the Rannacher–Turek elements MP and MV read as follows,

AMP
e =

2hae

9


17 −1 −4 −4 −4 −4
−1 17 −4 −4 −4 −4
−4 −4 17 −1 −4 −4
−4 −4 −1 17 −4 −4
−4 −4 −4 −4 17 −1
−4 −4 −4 −4 −1 17

 , AMV
e = 2hae


3 1 −1 −1 −1 −1
1 3 −1 −1 −1 −1

−1 −1 3 1 −1 −1
−1 −1 1 3 −1 −1
−1 −1 −1 −1 3 1
−1 −1 −1 −1 1 3

 .

(3.1)

The problem we state in this section is to construct element matrices which satisfy the assumptions of Lemma 2.1
such that the relative condition numbers

κ
((

BMP
e

)−1
AMP

e

)
and κ

((
BMV

e

)−1
AMV

e

)
are minimal for both variants B1 and B2.

3.1. Theoretical background

The following two simple lemmas will be used in our analysis.

Lemma 3.1. Let A and B be symmetric and positive semidefinite matrices such that ker(A) = ker(B), and let P be a
symmetric permutation matrix, i.e., PT P = P2

= I , such that PAP = A. Let us assume that B has a minimal relative
condition number κ(B−1 A) = κm in the class of matrices with nonpositive off-diagonal elements. Then, there exists
a matrix B̃ from the same class, such that P B̃ P = B̃ and κ(B̃−1 A) = κm .

Proof. If Av = λBv, then assumption PAP = A implies that Av̂ = λ(PBP)v̂, v̂ = Pv. Let us denote by λm and λM
respectively the minimal and maximal eigenvalues of the generalized eigenproblem

Av = λBv, v 6∈ ker(A).

Then the following relations hold,

λm B ≤ A ≤ λM B,

λmPBP ≤ A ≤ λM PBP,

λm B̃ ≤ A ≤ λM B̃,
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where

B̃ =
B + PBP

2
.

Here the inequalities are understood in the sense of positive semidefinite matrices. The last from the above inequalities
implies

κ(B̃−1 A) =
λM

λm
= κm .

It is readily seen that the off-diagonal entries of B̃ are nonpositive. To complete the proof we note that

P B̃ P =
PBP + PPBPP

2
=

B + PBP

2
= B̃. �

Lemma 3.2. Let

Ae =


2b12 + a1 −a1 −b1 −b1 −b2 −b2

−a1 2b12 + a1 −b1 −b1 −b2 −b2
−b1 −b1 2b13 + a2 −a2 −b3 −b3
−b1 −b1 −a2 2b13 + a2 −b3 −b3
−b2 −b2 −b3 −b3 2b23 + a3 −a3
−b2 −b2 −b3 −b3 −a3 2b23 + a3

 (3.2)

with bi j = bi + b j . Then

AeVe = Ve Le, (3.3)

with

Ve =



1 0 2 1 0 0
1 0 2 −1 0 0
1

√
3 −1 0 1 0

1
√

3 −1 0 −1 0
1 −

√
3 −1 0 0 1

1 −
√

3 −1 0 0 −1


and

Le =



0 0 0 0 0 0
0 b12 + 4b3

√
3(b2 − b1) 0 0 0

0
√

3(b2 − b1) 3b12 0 0 0
0 0 0 2(b12 + a1) 0 0
0 0 0 0 2(b13 + a2) 0
0 0 0 0 0 2(b23 + a3)

 .

Proof. The proof is by verification. �

Remark 3.1. We have chosen the basis of the invariant subspace spanned by the second and third columns of Ve
such that the nonzero off-diagonal elements in Le vanish if b1 = b2. This will be the case in our applications such
that Le is diagonal and has the eigenvalues of Ae in its diagonal. In particular, by setting b1 = b2 = b3 = 4 and
a1 = a2 = a3 = 1, we have

AMP
e Ve = Ve LMP

e LMP
e =

2hae

9
diag(0, 24, 24, 18, 18, 18). (3.4)

and, by setting b1 = b2 = b3 = 1 and a1 = a2 = a3 = −1, we get

AMV
e Ve = Ve LMV

e LMV
e = 2hae diag(0, 6, 6, 2, 2, 2). (3.5)
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3.2. Model local analysis

Lemma 3.1 states that it suffices to investigate locally optimal approximations Be preserving the isotropy of the
element stiffness matrix Ae if applicable.

Variant B1: In this case, a straightforward application of Lemma 3.2 leads to the following

Lemma 3.3. For Variant B1, the matrix

BMP
e = BMV

e =


4b −b −b −b −b

4b −b −b −b −b
−b −b 4b −b −b
−b −b 4b −b −b
−b −b −b −b 4b
−b −b −b −b 4b

 , b > 0,

is a locally optimal approximation of AMP
e and AMV

e . For any positive b, we get the bounds

κ
((

BMP
e

)−1
AMP

e

)
= 9/8, and κ

((
BMV

e

)−1
AMV

e

)
= 2. (3.6)

Proof. With a1 = a2 = a3 = 0 and b1 = b2 = b3 = b, we get

BeVe = Ve diag(0, 6b, 6b, 4b, 4b, 4b).

Therefore, with (3.4), the eigenvalues of the stencil (AMP
e , Be) restricted to span(e)⊥, e = [1, 1, 1, 1, 1, 1]

T , are (up
to the factor 2hae/9)

4/b, 4/b, 9/2b, 9/2b, 9/2b

and, by consequence, κ(AMP
e , Be) = 9/8.

Similarly, the eigenvalues of the stencil (AMV
e , Be) restricted to span(e)⊥ are (up to the factor 2hae)

1/b, 1/b, 1/2b, 1/2b, 1/2b.

Thus, κ(AMV
e , Be) = 2. �

Variant B2: Here, we will apply Lemma 3.2, together with the isotropy arguments. The result is given by the next
lemma.

Lemma 3.4. For Variant B2, the locally optimal approximations BMP
e and BMV

e can be found in the form

Be =


4b + a −a −b −b −b −b

−a 4b + a −b −b −b −b
−b −b 2b
−b −b 2b
−b −b 2b
−b −b 2b

 , a ≥ 0, b > 0, (3.7)

with the following uniform estimates for the condition numbers,

κ
((

BMP
e

)−1
AMP

e

)
≤ 3, and κ

((
BMV

e

)−1
AMV

e

)
≤ 6. (3.8)

Proof. For the version MP the approximate matrix Be corresponds to the matrix in (3.3) with b1 = b2 = b, a1 = a,
and b3 = a2 = a3 = 0. The values b and a shall be determined such that the condition number of B−1

e AMP
e is

minimized. We have

BeVe = Ve diag(0, 2b, 6b, 4b + 2a, 2b, 2b).
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Thus, the eigenvalues of the stencil (AMP
e , Be) restricted to span(e)⊥ are (up to the factor 2hae/9)

12
b

,
9

a + 2b
,

4
b
,

9
b
,

9
b
.

Hence,

κ(B−1
e Ae) = max

(
3,

4(a + 2b)

3b

)
= max

(
3,

8
3

+
4a

3b

)
.

In particular, if we set a = 1 and b = 4 as in (3.1) then the condition number equals 3. Choosing a = 0 is also
possible. This does not change the condition number but the nonzero pattern of the global matrix B. This completes
the case MP.

A similar consideration is applied to the MV version of the Rannacher–Turek element. The eigenvalues of the
stencil (AMV

e , Be) restricted to span(e)⊥ are (up to the factor 2hae)

3
b
,

1
b
,

1
2b + a

,
1
b
,

1
b
.

Thus,

κ(B−1
e AMV

e ) = max
(

3,
3(a + 2b)

b

)
= 6 +

3a

b
.

Setting a = 0, we get the minimal κ(B−1
e AMV

e ) = 6 for any positive b, in particular b = 1 as in (3.1) which completes
the proof of the lemma. �

Now, we assume that the global matrices BMP and BMV are defined by (2.7), and applying Lemmas 2.1, 3.3 and
3.4 we get the global condition number estimates

κ
((

BMP)−1
A
)

≤ 3, κ
((

BMV)−1
A
)

≤ 6,

for both variants B1 and B2. These bounds are uniform with respect to the mesh size h as well as to possible jumps
of the coefficients a(e).

4. Parallel MIC(0) algorithms

4.1. Description of the algorithms

The PCG algorithm is used for the solution of the linear system (2.3). The MIC(0) factorization of B is chosen as
the preconditioner. Let us assume that the rectangular domain Ω is decomposed into n1 × n2 × n3 nonconforming
hexahedral elements. The degrees of freedom in both discretization types MV and MP can be associated with the
midpoints of the finite element faces. The structure of B is shown in Fig. 4 for both variants B1 and B2. Lexicographic
node numbering is used. See Fig. 3 for a comparison with the structure of the original matrix A. Notice that for
both variants B1 and B2, the diagonal blocks of the matrix B are diagonal. For the Variant B1 each diagonal block
corresponds to a line of nodes; for the Variant B2 each such block corresponds to a plane of nodes. The sizes of these
blocks vary. They are n3 or n3 + 1 for Variant B1 and n2n3 or n2(n3 + 1) + (n2 + 1)n3 for Variant B2.

To handle the system with the preconditioner

CMIC(0)(B)w ≡ (X − L) X−1
(

X − LT
)

w = v (4.1)

one has to solve systems L̃y ≡ (X − L)y = v, X−1z = y and L̃T w = z, where L is the strictly lower triangular part of
the matrix B. The triangular systems are solved using standard forward or backward recurrences. This can be done in
kB1 = n1(2n2 + 1)+ n2 and kB2 = 2n1 + 1 stages for variants B1 and B2, respectively. Within stage i the block yi is
computed. Since the blocks L̃ i i , are diagonal, the computations of each component of yi can be performed in parallel.
Let the p ≤ n3 + 1 processors be denoted by P1, P2, . . . , Pp. We distribute the entries of the vectors corresponding to
each diagonal block of B among all processors. This can be done as shown in Fig. 5 for both variants B1 and B2. A 2D
projection on each “layer” of finite elements is used. Since the “layers” have common interfaces, the nodes that belong
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Fig. 3. Sparsity pattern of the original matrix A for a division of Ω into 2 × 2 × 6 hexahedrons. Non-zero elements are indicated by small squares.

Fig. 4. Sparsity pattern of the matrix B for a division of Ω into 2 × 2 × 6 hexahedrons. Variant B1 on the left and Variant B2 on the right. Non-zero
elements are indicated by small squares.

Fig. 5. Data distribution: p = 3, n1 = 2, n2 = 2, n3 = 6. Communication scheme for the matrix–vector multiplication.
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Fig. 6. Communication scheme for the solution of lower triangular systems in the preconditioner. Variant B1 on the left and Variant B2 on the right.

to those sides appear twice (once on each 2D projection). Each processor Pj receives a strip of the computational
domain. These strips have almost equal size. Elements of all vectors and rows of all matrices that participate in the
PCG algorithm are distributed in the same manner. The processor Pj takes care of the local computations on the
j-th strip.

Further, we briefly describe how the operations in the PCG algorithm are performed, and what kind of
communications are required.

In each PCG iteration, besides solving a system with the preconditioning matrix CMIC(0)(B), one matrix vector
multiplication with the original matrix A, two inner products, and three linked vector triads of the form v := αv + u
have to be executed. The number of operations per iteration for the PCG algorithm is N PCG

it ≈ 27N for the Variant
B1, andN PCG

it ≈ 25N for the Variant B2. Here, N = 3n1n2n3 +n1n2 +n1n3 +n2n3 is the total number of unknowns.
For the triads, each processor calculates its part of the vector v. No communication is required. After computing the

inner products corresponding to their parts of the vectors, the processors have to perform a global reduction operation
to sum up the final result.

To obtain the components of the matrix–vector multiplication Av for which the processor Pi is responsible, it needs
to receive from the processors Pi−1 and Pi+1 some components of the vector v. The number of these components is
4n1n2 + n1 + n2. Because of the even distribution of nodes that lie on the splitting planes between the strips, half of
that number is to be received from each of the processors Pi−1 and Pi+1. On Fig. 5, the elements to be transferred
to P2 are marked with the sign ×. While these communications are in progress, the components of Av which do not
depend on the components of v in the neighbouring processors can be computed. These components are marked by
the sign �.

Let us return to the solving with the preconditioner (4.1). The solution of a system with a diagonal matrix is trivial
and does not require any communication. As we mentioned, the solution of the triangular systems can be done in kB1
or kB2 stages. During each stage, the part of the solution corresponding to one vertical line of nodes for Variant B1
and corresponding to the related plane of nodes for Variant B2 is computed. Before each stages, the processors have to
exchange some components in order the computations to be performed. Three distinct patterns of transfer are required
for Variant B1 and two for Variant B2. For the case with a lower triangular matrix they are depicted in Fig. 6. The
rectangles dashed with the same pattern bound the elements to be computed on a single stage. The transfers shown
with the arrows in that pattern are to be performed prior the computations. For Variant B1 a transfer of one or two
components between each pair of nodes in both directions is required per each vertical line. For Variant B2 transfers of
either n2 or 3n2 + 2 elements are needed between the stages. Again, computations for the inner components, marked
with sign �, can be overlapped with the communications.
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4.2. Parallel execution times

Estimations of the parallel execution times are derived with the following assumptions: (a) executing M
arithmetical operations on one processor lasts T = Mta , where ta is the average unit time to perform one arithmetical
operation on a single processor, (b) the time to transfer M data items between two neighbouring processors can be
approximated by T comm

= ts + Mtc, where ts is the startup time and tc is the incremental time for each of the M
elements to be transferred, and (c) send and receive operations between each pair of neighbouring processors can be
done in parallel. We get the following expressions for communication times:

T comm(Av) ≈ ts + 2n1n2tc,

T comm(C−1
B1 v) ≈ 6n1n2ts + 8n1n2tc,

T comm(C−1
B2 v) ≈ 2n1ts + 8n1n2tc.

The above communications are completely local and do not depend on the number of processors. The inner product
needs one broadcasting and one gathering global communication, but they do not contribute to the leading terms of the
total parallel time. The parallel properties of the algorithm do not depend on the number of iterations, so it is enough
to evaluate the parallel time per iteration, and use it in the speedup and efficiency analysis. As the computations
are almost equally distributed among the processors, assuming there is no overlapping of the communications and
computations one can write for the total time per iteration on p processors the following estimates:

Variant B1:

T i t
p ≈

27Nta
p

+ T comm
B1 (C−1v) + T comm(Av)

=
27Nta

p
+ (6n1n2 + 1)ts + 10n1n2tc

Variant B2:

T i t
p ≈

25Nta
p

+ T comm
B2 (C−1v) + T comm(Av)

=
25Nta

p
+ (2n1 + 1)ts + 10n1n2tc.

The relative speedups Sp = T1/Tp are thus
Variant B1:

Sp ≈
27Nta

27Nta
p + (6n1n2 + 1)ts + 10n1n2tc

≈
p

1 +
2ts p

27n3ta
+

10tc p
81n3ta

,

and Variant B2:

Sp ≈
25Nta

25Nta
p + (2n1 + 1)ts + 10n1n2tc

≈
p

1 +
2ts p

75n2n3ta
+

2tc p
15n3ta

,

respectively. Here N ≈ 3n1n2n3 is used. The speedup, and therefore the efficiency E p = Sp/p, will grow with n3 in
both variants up to their theoretical limits Sp = p and E p = 1. Since on a real computer ts � tc and ts � ta , we can
expect good efficiencies only when n3 � p ts/ta . The speedup of Variant B2 is expected to be much better than the
speedup of Variant B1, because about 3n2 times fewer messages are sent.

Generally, when computations and communications overlap, parallel execution times decrease. Overlapping
computation and communication can notably reduce the influence of high network latencies and low bandwidths.
Of course this requires a large amount of computation per communication.

In Variant B2, about 3n2 times fewer messages are sent than in Variant B1. So, during the application of the
preconditioner, n2 times more arithmetic operations can be overlapped with communication, thus vastly improving
the parallel performance.
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Table 1
Variant B1

p n
Iter C1 C2 C3

Tp Sp E p Tp Sp E p Tp Sp E p

1

31
22

1.08 1.28 0.70
2 0.94 1.15 0.57 0.93 1.38 0.69 0.65 1.07 0.54
4 0.91 1.19 0.30 0.83 1.55 0.39 0.45 1.57 0.39
8 1.14 0.95 0.12 1.12 1.15 0.14 0.37 1.90 0.24

16 1.28 0.84 0.05 1.11 1.15 0.07 0.37 1.89 0.11

1

63
31

9.87 12.90 7.07
2 6.98 1.41 0.71 8.56 1.51 0.75 4.44 1.59 0.79
4 5.91 1.67 0.42 6.39 2.02 0.50 3.54 2.00 0.50
8 5.46 1.81 0.23 7.12 1.81 0.23 2.77 2.55 0.32

16 5.83 1.69 0.11 11.9 1.08 0.07 2.40 2.94 0.18

1

127
44

95.3 134.2 78.1
2 63.2 1.51 0.75 84.2 1.59 0.80 43.4 1.80 0.90
4 48.5 1.96 0.49 54.2 2.47 0.62 29.2 2.67 0.66
8 36.9 2.59 0.32 45.0 2.98 0.37 20.3 3.84 0.48

16 34.2 2.79 0.17 74.8 1.79 0.11 16.2 4.83 0.30

1

255
64

1147 1474a 859a

2 659 1.74 0.87
4 361 3.18 0.79 551 2.67a 0.67a 277 3.10a 0.78a

8 287 4.00 0.50 432 3.41a 0.42a 173 4.97a 0.62a

16 264 4.34 0.27 397 3.71a 0.23a 123 6.98a 0.43a

a Estimated.

5. Parallel numerical tests

The variants B1 and B2 for parallel preconditioning were implemented in C++ using the MPI message passing
library. The communications and the computations were overlapped wherever possible.

We present parallel execution times, speedups and efficiencies from experiments performed on three parallel
computing platforms, referred to below as C1, C2 and C3. Platform C1 is an “IBM SP Cluster 1600” consisting
of 64 p5-575 nodes interconnected with a pair of connections to the Federation HPS (High Performance Switch).
Each p5-575 node contains 8 Power5 SMP processors at 1.9 GHz and 16 GB of RAM. The network bandwidth is
16 Gb/s. Platform C2 is an IBM Linux Cluster 1350, made of 512 dual-core IBM X335 nodes. Each node contains
2 Xeon Pentium IV processors and 2 GB of RAM. Nodes are interconnected with a 1Gb Myrinet network. Platform
C3 is a “Cray XD1” cabinet, fully equipped with 72 2-way nodes, totalling 144 AMD Opteron processors at 2.4 GHz.
Each node has 4 GB of memory. The CPUs are interconnected with the Cray RaidArray network with a bandwidth of
5.6 Gb/s. The key feature of C3 is the extremely small network latency. The processors on C1 are capable of executing
4 double precision floating point operations per clock cycle, while those of C2 and C3 are capable only of 2.

We consider the model Poisson equation in a unit cube with homogeneous Dirichlet boundary conditions on the
right side of the domain. The partitioning is uniform; let n1 = n2 = n3 = n. The size of the discrete problem is
N = 3(n3

+ n2). A relative stopping criterion,

(C−1ri , ri )

(C−1r0, r0)
< 10−9,

is used in the PCG algorithm, where ri stands for the residual at the i-th iteration step. Since the parallel properties
of the algorithm do not depend on the discretization type, results from runs of only the Variant MP are presented.
In Table 1, the mesh size parameter n, the iteration count Iter, execution times Tp in seconds, speedups Sp and
efficiencies E p are presented for the Variant B1 on platforms C1, C2 and C3. Here p is the number of processors. The
corresponding quantities for Variant B2 are collected in Table 2.

Tests with n = 255 could not be run on platforms C2 and C3 with p = 1 and p = 2 due to lack of main memory
available on a single node. For the same reason, experiments on C2 with n = 255 were run on 4 nodes, utilizing only
one CPU per computing node. The presented sequential execution times are based on a simple extrapolation. They are
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Table 2
Variant B2

p n
Iter C1 C2 C3

Tp Sp E p Tp Sp E p Tp Sp E p

1

31
22

0.60 1.00 0.65
2 0.30 2.00 1.00 0.65 1.54 0.77 0.39 1.68 0.84
4 0.20 3.05 0.76 0.44 2.27 0.57 0.27 2.37 0.59
8 0.17 3.58 0.45 0.31 3.29 0.41 0.16 4.02 0.50

16 0.08 7.09 0.44 0.27 3.65 0.23 0.11 5.78 0.36

1

63
31

6.03 11.14 7.48
2 3.09 1.95 0.97 6.67 1.67 0.83 3.88 1.92 0.96
4 1.68 3.58 0.89 3.97 2.80 0.70 2.35 3.18 0.79
8 0.94 6.42 0.80 2.58 4.32 0.54 1.49 5.00 0.63

16 0.57 10.57 0.66 2.55 4.36 0.27 1.09 6.87 0.42

1

127
44

74.0 127.0 95.9
2 38.1 1.94 0.97 74.5 1.70 0.85 50.0 1.92 0.96
4 20.8 3.56 0.89 41.1 3.10 0.77 25.0 3.83 0.96
8 10.7 6.94 0.86 23.9 5.31 0.66 13.8 6.97 0.87

16 5.63 13.14 0.82 18.8 6.74 0.42 8.6 11.11 0.69

1

255
61

910 1397a 1055a

2 458 1.99 0.99
4 206 4.4 1.10 470 2.97a 0.74a 291 3.62a 0.90a

8 111 8.21 1.02 253 5.52a 0.69a 154 6.85a 0.85a

16 61 14.88 0.92 149 9.38a 0.58a 85 12.41a 0.77a

a Estimated.

used for the estimation of the parallel speedups and efficiencies. Programs for Variants B1 and B2 access the memory
in a different pattern. This explains the different behaviours of sequential times, comparing Variants B1 and B2 on
different machines. The tables well illustrate the different properties of the computing platforms used. The network
on platform C3 has extremely small latencies, and we see that Variant B1 performs better on C3 than on C1, although
C1 has 8 processors per node — and so no messages have to be passed if p ≤ 8.

As expected, one can observe that the iteration count is of order O(n1/2) = O(N 1/6), and the total time grows
as O(n7/2) = O(N 7/6). As a general rule, for a given number of processors the speedup and efficiency grow with
the problem size. Conversely for fixed n, the efficiency decreases with the number of processors. This is true for all
platforms and confirms our analysis.

For Variant B1, reasonable efficiencies are obtained only when n/p is sufficiently large. And again, as we expected,
for a given p and n Variant B2 performs far better even for smaller ratios n/p. It is clearly seen how reducing
the number of communication steps in the solution of the preconditioner improves the parallel performance. The
advantages of overlapping the computations and communications are also better expressed in Variant B2.

The efficiencies larger than 1 could be explained by the somehow slower sequential run. Possible reasons for this
slowdown might be a worse cache utilization or a heavy load on the memory subsystem caused by other processes
running on the same node.
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