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Abstract. A new parallel preconditioning algorithm for 3D noncon-
forming FEM elasticity systems is presented. The preconditioner is con-
structed in two steps. First displacement decomposition of the stiffness
matrix is used. Than MIC(0) factorization is applied to a proper auxil-
iary M-matrix to get an approximate factorization of the obtained block-
diagonal matrix. The auxiliary matrix has a special block structure – its
diagonal blocks are diagonal matrices themselves. This allows the solu-
tion of the preconditioning system to be performed efficiently in parallel.
Estimates for the parallel times, speedups and efficiencies are derived.
The performed parallel tests are in total agreement with them. The ro-
bustness of the proposed algorithm is confirmed by the presented exper-
iments solving problems with strong coefficient jumps.
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1 Introduction

We consider the weak formulation of the linear elasticity problem in the form:
find u ∈ [H1

E(Ω)]3 = {v ∈ [H1(Ω)]3 : vΓD
= uS} such that

∫

Ω

[2µε(u) : ε(v) + λdivudivv]dΩ =

∫

Ω

f tvdΩ +

∫

ΓN

gtvdΓ, (1)

∀v ∈ [H1
0 (Ω)]3 = {v = [H1(Ω)]3 : vΓD

= 0}, with the positive constants λ and
µ of Lamé, the symmetric strains ε(u) := 0.5(∇u+ (∇u)t), the volume forces f ,
and the boundary tractions g, ΓN ∪ ΓD = ∂Ω. Nonconforming rotated trilinear
elements of Rannacher-Turek [1] are used for the discretization of (1).

To obtain a stable saddle-point system one usually uses a mixed formulation
for u and divu. By the choice of non-continuous finite elements for the dual
variable, it can be eliminated at the macroelement level, and we get a symmetric
positive definite FEM system in displacement variables. This approach is known
as reduced and selective integration(RSI) technique, see [2].

Let ΩH = wH
1 ×wH

2 ×wH
3 be a regular coarser decomposition of the domain

Ω ⊂ IR3 into hexahedrons, and let the finer decomposition Ωh = wh
1 ×wh

2 ×wh
3

be obtained by a regular refinement of each macro element E ∈ ΩH into eight
similar hexahedrons. The cube ê = [−1, 1]3 is used as a reference element in
the parametric definition of the rotated trilinear elements. For each e ∈ Ωh, let



ψe : ê → e be the trilinear 1–1 transformation. Then the nodal basis functions
are defined by the relations {φi}

6
i=1 = {φ̂i ◦ψ

−1
e }6

i=1, where φ̂i ∈ span{1, ξj , ξ
2
j −

ξ2j+1, j = 1, 2, 3}. Mid-point (MP) and integral mid-value (MV) interpolation
conditions can be used for determining the reference element basis functions
{φ̂i}

6
i=1. This leads to two different FEM spaces V h, referred as Algorithm MP

and Algorithm MV.

The RSI FEM discretization reads as follows: find uh ∈ V h
E such that

∑

e∈Ωh

∫

e

[

2µε∗(uh) : ε∗(vh) + λ divuh divvh
]

de =

∫

Ω

f tvhdΩ +

∫

ΓN

gtvhdΓ,

(2)

∀vh ∈ V h
0 , where ε∗(u) := ∇u − 0.5IQH

L [∇u − (∇u)t], V h
0 is the FEM space,

satisfying (in nodalwise sense) homogeneous boundary conditions on ΓD, the

operator IQH

L denotes the L2–orthogonal projection onto QH , the space of piece-
wise constant functions on the coarser decomposition ΩH of Ω. Than a standard
computational procedure leads to a system of linear equations
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 . (3)

Here the stiffness matrix K is written in block form corresponding to a separate
displacements components ordering of the vector of nodal unknowns. Since K
is sparse, symmetric and positive definite, we use the preconditioned conjugate
gradient method (PCG) to solve the system (3). PCG is known to be the best
solution method for such systems [3].

2 DD MIC(0) Preconditioning

Let us first recall some well known facts about the modified incomplete factor-
ization MIC(0). Let us split the real N ×N matrix A = (aij) in the form

A = D − L− LT ,

where D is the diagonal and (−L) is the strictly lower triangular part of A. Then
we consider the approximate factorization of A which has the following form:

CMIC(0)(A) = (X − L)X−1(X − L)T ,

where X = diag(x1, . . . , xN ) is a diagonal matrix determined such that A and
CMIC(0) have equal row sums. For the purpose of preconditioning we restrict
ourselves to the case when X > 0, i.e., when CMIC(0) is positive definite. In this
case, the MIC(0) factorization is called stable. Concerning the stability of the
MIC(0) factorization, we have the following theorem [4].



Theorem 1. Let A = (aij) be a symmetric real N × N matrix and let A =
D − L− LT be a splitting of A. Let us assume that (in an elementwise sense)

L ≥ 0, Ae ≥ 0, Ae + LT e > 0, e = (1, · · · , 1)T ∈ IRN ,

i.e., that A is a weakly diagonally dominant matrix with nonpositive offdiagonal
entries and that A + LT = D − L is strictly diagonally dominant. Then the
relation

xi = aii −
i−1
∑

k=1

aik

xk

N
∑

j=k+1

akj > 0 (4)

holds and the diagonal matrix X = diag(x1, · · · , xN ) defines a stable MIC(0)
factorization of A.

Remark 1. The numerical tests presented in this work are performed using the
perturbed version of MIC(0) algorithm, where the incomplete factorization is
applied to the matrix Ã = A + D̃. The diagonal perturbation D̃ = D̃(ξ) =
diag(d̃1, . . . d̃N ) is defined as follows: d̃i = ξaii if aii ≥ 2wi, and d̃i = ξ1/2aii

otherwise, where 0 < ξ < 1 is a constant and wi = −
∑

j>i aij .

We use PCG with a isotropic displacement decomposition (DD) MIC(0) factor-
ization preconditioner in the form:

CDDMIC(0)(K) =





CMIC(0)(B)
CMIC(0)(B)

CMIC(0)(B)





Matrix B is a modification of the stiffness matrix A corresponding to the bilinear
form

a(uh, vh) =
∑

e∈Ωh

∫

e

E

(

3
∑

i=1

∂uh

∂xi

∂vh

∂xi

)

de.

Here E is the modulus of elasticity. Such DD preconditioning for the coupled
matrix K is theoretically motivated by the Korn’s inequality which holds for the
RSI FEM discretization under consideration [5]. The auxiliary matrix B is con-
structed element-by-element: Following the standard FEM assembling procedure
we write A in the form A =

∑

e∈Ωh LT
e AeLe, where Le stands for the restriction

mapping of the global vector of unknowns to the local one corresponding to the
current element e and Ae = {aij}

6
i,j=1 is the element stiffness matrix The local

node numbering and connectivity pattern is displayed in Fig. 1 (a). Now we will
introduce the structure of two variants for local approximations Be. They will
later be referred to as Variant B1 and Variant B2.
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Fig. 1. (a) Local node numbering and connectivity pattern; (b) Sparsity pattern of the
matrices A and B (both variants) for a division of Ω into 2x2x6 hexahedrons. Non-zero
elements are drawn with boxes: � non-zero in A and B (both variants), � non-zero in
A and B Variant B1, � non-zero only in A. With thicker lines are bordered blocks in
the matrix B Variant B2.

The matrices Be are symmetric and positive semidefinite, with nonpositive off-
diagonal entries, such that Bee = Aee, eT = (1, 1, 1, 1, 1, 1). Then we construct

the global matrix B =
∑

e∈Ωh
λ

(1)
e LT

e BeLe, where {λ
(i)
e }5

i=1 are the nontriv-

ial eigenvalues of B−1
e Ae in ascending order. The matrix B is a M-matrix and

has a special block structure with diagonal blocks being diagonal matrices, see
Fig. 1(b). These blocks correspond to nodal lines and plains for variants B1 and
B2, respectively. Lexicographic node numbering is used. This allows a stable
MIC(0) factorization and efficient parallel implementation. It is important, that
A and B are spectrally equivalent, and the relative condition number κ(B−1A)
is uniformly bounded [6].

3 Parallel Algorithm

3.1 Description

The PCG algorithm is used for the solution of the linear system (3). Let us
assume that the parallelogram domain Ω is decomposed into n × n × n equal
nonconforming hexahedral elements. The size of the resulting nonconforming
FEM system is N = 9n2(n+ 1). To handle the systems with the preconditioner
one has to solve three times systems L̃y ≡ (X − L)y = v, X−1z = y and
L̃T w = z, where L is the strictly lower triangular part of the matrix B. The
triangular systems are solved using standard forward or backward recurrences.
This can be done in kB1 = 2n2 + 2n and kB2 = 2n + 1 stages for variants B1



and B2, respectively. Within stage i the block yi is computed. Since the blocks
L̃ii, are diagonal, the computations of each component of yi can be performed
in parallel. Let the p ≤ n/2 processors be denoted by P1, P2, . . . , Pp. We
distribute the entries of the vectors corresponding to each diagonal block of B
among the processors. Each processor Pj receives a strip of the computational
domain. These strips have almost equal size. Elements of all vectors and rows of
all matrices that participate in the PCG algorithm are distributed in the same
manner. Thus the processor Pj takes care of the local computations on the j-th
strip.

3.2 Parallel Times

On each iteration in the PCG algorithm one matrix vector multiplication Kv,
one solution of the preconditioner system Cx = y, two inner products and three
linked triads of the form x = y+αz are computed. The matrix vector multiplica-
tion can be performed on the macroelement level. In the case of rectangular brick
mesh, the number of non-zero elements in the macroelement stiffness matrix is
1740. The number of operations on each PCG iteration is:

N it = N (Kx) + N (C−1x) + 2N (< ., . >) + 3N (x = y + αz)

N it ≈ 24N + N (C−1x) + 2N + 3N, N it
B1 ≈ 40N, N it

B2 ≈ 38N

An operation is assumed to consist of one addition and one multiplication. Es-
timations of the parallel execution times are derived with the following assump-
tions: a) executing M arithmetical operations on one processor lasts T = Mta,
b) the time to transfer M data items between two neighboring processors can
be approximated by T comm = ts + Mtc, where ts is the startup time and tc is
the incremental time for each of the M elements to be transferred, and c) send
and receive operations between each pair of neighboring processors can be done
in parallel. We get the following expressions for the communication times :

T comm(Kv) ≈ 2ts +
4

3
N2/3tc,

T comm(C−1
B1v) ≈

2

3
N2/3ts +

8

3
N2/3tc, T comm(C−1

B2v) ≈
2

9
N1/3ts +

8

3
N2/3tc.

Two communication steps for the matrix vector multiplication are performed to
avoid duplication of the computations or extra logic. For the solution of the trian-
gular systems, after each nodal column (variant B1) or each nodal plain (variant
B2) of unknowns is commputed some vector components must be exchnged.

The three systems of the preconditioner (one for each displacement) are
solved simultaneously. Thus no extra communication steps for different displace-
ments are required. The above communications are completely local and do not
depend on the number of processors. The inner product needs one broadcasting
and one gathering global communication but they do not contribute to the lead-
ing terms of the total parallel time. The parallel properties of the algorithm do
not depend on the number of iterations, so it is enough to evaluate the parallel



Table 1. Algorithm MP

J = 1 J = 10 J = 100 J = 1000

n N B0 B1 B2 B0 B1 B2 B0 B1 B2 B0 B1 B2

32 304 128 161 147 113 186 173 130 227 253 189 361 343 247
64 2 396 160 264 223 162 284 262 186 428 391 271 565 523 357

128 19 021 824 367 331 230 424 389 264 638 581 385 843 780 509
256 151 584 768 486 327 570 377 852 542 1 148 725

time per iteration, and use it in the speedup and efficiency analysis. As the com-
putations are almost equally distributed among the processors, assuming there
is no overlapping of the communications and computations one can write for the
total time per iteration on p processors the following estimates:

T it
B1(p) =

40N

p
+

2

3
N2/3ts + 4N2/3tc, T it

B2(p) =
38N

p
+

2

9
N1/3ts + 4N2/3tc

The relative speedup S(p) = T (1)/T (p) and efficiency E(p) = S(p)/p, will grow
with n in both variants up to their theoretical limits S(p) = p and E(p) = 1.
Since on a real computer ts ≫ tc and ts ≫ ta we can expect good efficiencies
only when n ≫ p ts/ta. The efficiency of Variant B2 is expected to be much
better than the one of Variant B1, because about 3n times fewer messages are
sent.

4 Benchmarking

4.1 Convergence Tests

The presented numerical tests illustrate the PCG convergence rate of the studied
displacement decomposition algorithms when the size of the discrete problem and
the coefficient jumps are varied.

The computational domain isΩ = [0, 1]3 where homogeneous Dirichlet bound-
ary conditions are assumed at the bottom face. An uniform mesh is used. The
number of intervals in each of the coordinate directions for the finer grid is n.

A relative stopping criterion (C−1ri, ri)/(C−1r0, r0) < ε2 is used in the
PCG algorithm, where ri stands for the residual at the i-th iteration step,
and ε = 10−6. The interaction between a soil media and a foundation ele-
ment with varying elasticity modulus is considered. The foundation domain
is Ωf = [3/8, 5/8] × [3/8, 5/8] × [1/2, 1]. The mechanical characteristics are
Es = 10MPa, νs = 0.2 and Ef = J10MPa, νf = 0.2 for the soil and foundation
respectively. Experiments with jump J ∈ {1, 10, 100, 1000} are performed. The
force acting on the top of the foundation is 1MN. In Table 1 and Table 2 are
collected the number of iterations for both variants B1 and B2 for Algorithms
MP and MV respectively. In Table 1 also is added Variant B0 corresponding to
the application of the MIC(0) factorization directly to the matrix A. Note that



Table 2. Algorithm MV

J = 1 J = 10 J = 100 J = 1000

n N B1 B2 B1 B2 B1 B2 B1 B2

32 304 128 173 255 197 280 313 348 405 411
64 2 396 160 295 648 310 744 486 904 630 1069

128 19 021 824 471 916 536 1 053 778 1 281 1 013 1 517
256 151 584 768 730 1 282 857 1 486 1 198 1 813 1 600 2 154

this is possible only for the Algorithm MP (because of the positive offdiagonal
entries in A in algorithm MV) and only in a sequential program. One can clearly
see the robustness of the proposed preconditioners. The number of iterations
is of order O(n1/2) = O(N1/6). It is remarkable that for Algorithm MP, the
number of iterations for Variants B2 are less than that number for Variant B1
which are even less than the iterations obtained without the modification of the
matrix A.

4.2 Parallel Tests

Here we present execution times, speedups and efficiencies from experiments
performed on three parallel computing platforms, referred to further as C1, C2
and C3. Platform C1 is an “IBM SP Cluster 1600” consisting of 64 p5-575 nodes
interconnected with a pair of connections to the Federation HPS (High Perfor-
mance Switch). Each p5-575 node contains 8 Power5 SMP processors at 1.9GHz
and 16GB of RAM. The network bandwidth is 16Gb/s. Platform C2 is an IBM
Linux Cluster 1350, made of 512 dual-core IBM X335 nodes. Each node contains
2 Xeon Pentium IV processors and 2GB of RAM. Nodes are interconnected with
a 1Gb Myrinet network. Platform C3 is a “Cray XD1” cabinet, fully equipped
with 72 2-way nodes, totaling in 144 AMD Opteron processors at 2.4GHz. Each
node has 4GB of memory. The CPUs are interconnected with the Cray RaidAr-
ray network with a bandwidth of 5.6Gb/s.

Since the parallel properties of the algorithm do not depend on the discretiza-
tion type and the number of iterations , experiments only for Algorithm MP and
for the case with the strongest coefficient jumps are performed. In Table 3 are
shown sequential execution times T (p) in seconds. The relative speedups S(p)
and efficiencies E(p) different n and different number of processors p are col-
lected in Table 4. Results both for Variant B1 and for Variant B2 are included.
For a given number of processors the speedup and efficiency grow with the

problem size. Conversely for fixed n, the efficiency decrease with the number of
processors. This is true for all platforms and confirms our analysis.

For Variant B1, reasonable efficiencies are obtained, only when n/p is suffi-
ciently large. And again, as we expected, for a given p and n Variant B2 performs
far better even for smaller ratios n/p. It is clearly seen, how reducing the num-
ber of communication steps in the solution of the preconditioner improves the
parallel performance.



Table 3. Sequential Times

Variant B1 Variant B2

n C1 C2 C3 C1 C2 C3

32 52.18 30.87 29.47 28.16 18.61 21.18

64 578.4 336.8 347.6 336.1 228.4 224.2

128 6596 3793 3556 3887 2556 2610

Table 4. Parallel Speedups and Efficiencies

Variant B1 Variant B2

C1 C2 C3 C1 C2 C3

n p S(p) E(p) S(p) E(p) S(p) E(p) S(p) E(p) S(p) E(p) S(p) E(p)

32 2 1.49 0.74 1.31 0.66 1.77 0.88 1.93 0.96 1.33 0.66 1.97 0.99
4 1.83 0.45 1.49 0.37 2.40 0.60 3.53 0.88 2.08 0.51 3.25 0.81
8 2.11 0.26 1.22 0.15 3.34 0.42 5.78 0.72 3.07 0.38 5.20 0.65

16 1.61 0.10 0.92 0.06 3.22 0.20 9.45 0.59 3.93 0.25 7.63 0.48

64 2 1.68 0.84 1.38 0.69 2.02 1.01 2.02 1.01 1.35 0.68 1.77 0.88
4 2.46 0.61 1.98 0.49 3.17 0.79 3.92 0.98 2.49 0.62 3.50 0.87
8 3.27 0.41 1.93 0.24 4.26 0.53 7.38 0.92 4.21 0.52 5.91 0.73

16 3.78 0.23 2.06 0.13 6.03 0.38 12.83 0.81 6.53 0.40 8.64 0.54

128 2 1.82 0.91 1.51 0.76 1.56 0.78 2.00 1.00 1.49 0.74 1.93 0.96
4 2.96 0.74 2.40 0.60 2.73 0.68 3.90 0.98 2.54 0.63 3.72 0.93
8 4.50 0.56 2.70 0.34 5.34 0.67 7.33 0.92 4.59 0.57 7.30 0.91

16 5.83 0.36 3.64 0.23 7.64 0.48 12.73 0.80 7.51 0.47 12.21 0.76
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