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Abstract. Numerical modeling of electrochemical process in Li-Ion prob-
lems is an emerging topic of great practical interest. In this work we
present a Finite Volume discretization of electrochemical diffusive pro-
cesses occurring during the operation of Li-Ion batteries. The system of
equations is a nonlinear, time-dependent diffusive system, coupling the
Li concentration and the electric potential. The system is formulated at
length-scale in which two different types of domains are distinguished,
one for electrolyte and one for each electrode. The domains can be of
highly irregular shape, with the electrolyte occupying the pore space of
a porous solid electrode. The material parameters in each domain differ
by several orders of magnitude and can be nonlinear. Moreover, special
interface conditions are imposed at the boundary separating the elec-
trolyte from an electrode. The field variables are discontinuous across
such an interface and the coupling is highly nonlinear, rendering direct
iteration methods ineffective for such problems. We formulate a New-
ton iteration for the coupled system. A series of numerical examples are
presented for different type of electrolyte/electrode configurations and
material parameters. The convergence of the Newton method is charac-
terized both as function of nonlinear material parameters as well as the
nonlinearity in the interface conditions.

1 Introduction

The Li-Ion battery system is described mathematically as a coupled system of
differential equations for the concentration c(x, t)

[
mol
cm3

]
and the electric potential

φ(x, t) [V ] in the domain Ω [3, 2]. The domain is occupied by electrolyte and
active particles. Their respective subdomains are denoted Ωe and Ωs, with Ω =
Ωe ∪Ωs and Ωe ∩Ωs = ∅. The field equations can be written as:

∂c

∂t
−∇ · (α (c, φ)∇c+ β (c, φ)∇φ) = 0 in Ωs or Ωe, (1a)

−∇ · (λ(c, φ)∇c+ κ (c, φ)∇φ) = 0 in Ωs or Ωe, (1b)



where κ (c, φ) is the ionic conductivity, a prescribed function. The remaining
coefficients are given by:

α (c, φ) := ν+De (c, φ) +
RT

ν+z+F 2

t+(c)κD (c, φ)
c

,

[
cm2

s

]
, (2a)

β (c, φ) := κ (c, φ)
t+(c)
ν+z+F

,

[
mol

V · cm · s

]
, (2b)

λ (c, φ) :=
RT

F

κD (c, φ)
c

,

[
A · cm2

mol

]
. (2c)

The dimensionless parameters n = 1, s+ = −1, z+ = 1, z− = −1, ν+ = ν− = 1
indicate a single ionization state. Next, κD is defined as follows:

κD(c, φ) := κ (c, φ) t+ (c, φ) . (3)

a detailed thermodynamic justification of this constitutive relationship is given
in [1]. It should be noted that model used is different from the classical model
of Newman, [2, 4], where one has:

κD(c, φ) := κ (c, φ) (ν+ + ν−)
(
s+
nν+

+
t+(c)
z+ν+

− s0c

nc0

)(
1 +

∂ ln f+
∂ ln c

)
. (4)

The transference function t+ allows us to distinguish between electrolyte and
active particles. In an active particle, one has t+ ≡ 0. In the electrolyte, t+ is
nonzero, typically an empirically measured function of c [4].

The system (2) is not complete without conditions on the interface Γ =
∂Ωe ∩ ∂Ωs between active particles and electrolyte. The flux of Li ions, which is
implied by the model (1), is:

N := − (α(c, φ)∇c+ β(c, φ)∇φ) , (5)

and the flux of the electric potential is, i.e. the current, is

J := −λ(c, φ)∇c+ κ(c, φ)∇φ. (6)

At the interface between a solid particle and electrolyte, one has a discontinuous
concentration c and potential φ. We denote values on the electrolyte part of
the interface with subscript e and on the solid part with subscript s. The type
of interface conditions to be imposed is subject to active research [2]. In this
paper we follow [1], where two interface conditions, for each of the fluxes (5)
and (6) are proposed. One is that the normal component of each of the fluxes
is continuous across an interface. Moreover, it is required that the value of the
normal component of the flux is given by a nonlinear relationship of all the
variables ce, cs, φe, φs, that is:

Nsn = Nen = N (ce, cs, φe, φs), (7)
Jsn = Jen = J (ce, cs, φe, φs), (8)



where the scalar functions N and J are defined as follows:

η = φs − φe − U0 (9)

J = k

(
ce
c0e

)αa
(
cs
c0s

)αa
(

1− cs
cs,max

)αc
(

exp
(
αaF

RT
ηs

)
− exp

(
−αcF
RT

ηs

))
(10)

N =
J
F
. (11)

Note that when t+ is constant in the electrolyte (it is always constant in the
active particles), the divergence of the current is identically, zero, which allows
to simplify the first equation in (1). As a result, the system (1)-(2) takes the
following simplified form in either subdomain:

∂c

∂t
−∇ · (ν+De (c, φ)∇c) = 0, (12a)

−∇ · (λ(c, φ)∇c+ κ (c, φ)∇φ) = 0. (12b)

If De is not a function of φ, the system (12) becomes completely decoupled
in each subdomain. Note however, that the interface conditions imply that the
system is always coupled and always nonlinear, regardless of the coefficients.

2 Discretization

We present here the discretization of the general case, that is, the system (1) is
discretized by cell centered finite volumes. Let the domainΩ be partitioned into a
polygonal mesh, e.g. Ω =

∑N
i=1 ei, with each cell ei being a polygon/polyhedron.

It is further required that this mesh is suitable for finite volume discretizations,
that is, all vertices of ei lie on a circle/sphere, whose center lies in the proper
interior of ei. By integrating the first equation over ei × [tn, tn+1] and using the
divergence theorem, one gets:

0 =
∫ tn+1

tn

∫
ei

(
∂c

∂t
−∇ · (α (c, φ)∇c+ β (c, φ)∇φ)

)
dxdt

=
∫
ei

c(x, tn+1)dx−
∫
e

c(x, tn)dx−
∫ tn+1

tn

∫
∂ei

(α (c, φ)∇c+ β (c, φ)∇φ) · ndA.

(13)

The second equation (1b) is similarly transformed as follows:

0 = −
∫ tn+1

tn

∫
∂ei

(λ(c, φ)∇c+ κ(c, φ)∇φ) dA. (14)

Now, denote by xi the circumcenter of ei and denote by ci(t) the value of the
concentration at xi, that is, ci(t) = c(xi, t). Similarly, let φi(t) = φ(xi, t). The



volume integral in (13) can be approximated by a one-point formula. More-
over, let ej be a neighbor of ei and denote by fij the face common to ei and
ej . Denote by Ni the index set of all same domain neighbors of ei, that is,
Ni = {j ∈ N|ej and ei are neighbors}. Using the standard midpoint flux ap-
proximations and assuming ei and ej share no interface faces one gets:

0 = |ei| (ci(tn+1)− ci(tn))

−
∫ tn+1

tn

∑
j∈Ni

|fij |
(
α i+j

2

cj(t)− ci(t)
d (xi, xj)

+ β i+j
2

φj(t)− φi(t)
d (xi, xj)

)
dt, (15)

0 =−
∫ tn+1

tn

∑
j∈Ni

|fij |
(
λ i+j

2

cj(t)− ci(t)
d (xi, xj)

+ κ i+j
2

φj(t)− φi(t)
d (xi, xj)

)
dt, (16)

where α i+j
2

, β i+j
2

, λ i+j
2

, κ i+j
2

are the harmonic averages of the respective coef-
ficients at the midpoints of each face. That is, given a function ψ(x, t), ψ i+j

2
:=

(|ei|+ |ej |)
(
|ei|
ψi(t)

+ |ei|
ψj(t)

)−1

is the harmonic average approximation.
In the case when ei has an interface face, then (5) and (6) have to be incorpo-

rated. Let an element ei now share an interface face with ek. Then, by definition,
Ni does not contain k. Moreover, suppose for concreteness that ei is electrolyte
and ek is solid. Then we add the terms∫ tn+1

tn

|fik| N (ci(t), ck(t), φi(t), φk(t)), (17)∫ tn+1

tn

|fik| J (ci(t), ck(t), φi(t), φk(t)) (18)

to the RHS of (15) and (16), respectively.
Next, we employ a backward Euler method to approximate the remaining

time integrals. By denoting Ci = ci(tn+1) and Φi = φi(tn+1) this results in the
system of algebraic equations for Cn+1,Φn+1:

0 = |ei|
Ci − ci(tn)

dt
−
∑
j∈Ni

|fij |
(
α i+j

2

Cj − Ci
d (xi, xj)

+ β i+j
2

Φj − Φi
d (xi, xj)

)
+
∑
k∈Ii

|fik| N (Ci, Ck, Φi, Φk), (19)

0 =−
∑
j∈Ni

|fij |
(
λ i+j

2

Cj − Ci
d (xi, xj)

+ κ i+j
2

Φj − Φi
d (xi, xj)

)
+
∑
k∈Ii

|fik| J (Ci, Ck, Φi, Φk). (20)

Here Ii is the set of cells that share an interface with ei, and without loss of
generality, ei is an electrolyte cell. If ei is a solid cell, then the sign of the interface
fluxes has to be reversed.



3 Linearization

Due to the strong nonlinearities involved, the Newton method is used to linearize
the system (19), (20) at each time step. Denote by F (C,Φ) and G (C,Φ) the
right-hand sides of (19) and (20), respectively. The Newton iteration in compo-
nent form is:

0 = Fi (C,Φ) +
∑
j∈Ni

∂Fi
∂Cj

(
C(k),Φ(k)

)(
C

(k)
j − C(k+1)

j

)
+
∑
j∈Ni

∂Fi
∂Φj

(
C(k),Φ(k)

)(
Φ

(k+1)
j − Φ(k)

j

)
, (21)

0 = Gi (C,Φ) +
∑
j∈Ni

∂Gi
∂Cj

(
C(k),Φ(k)

)(
C

(k)
j − C(k+1)

j

)
+
∑
j∈Ni

∂Gi
∂Φj

(
C(k),Φ(k)

)(
Φ

(k+1)
j − Φ(k)

j

)
. (22)

Computing the derivatives is straightforward. Assume, without loss of gen-
erality that ek is the only interface neighbor to the electrolyte cell ei. Then:

∂Fi
∂Cj

=
|ei|
dt
δij +

∑
s∈Ni

|fis|

[
α

(k)
i+s
2

δsj − δij
2

+
∂α i+s

2

∂Cj

C
(k)
s − C(k)

i

d (xi, xj)
+
∂β i+s

2

∂Cj

Φ
(k)
s − Φ(k)

i

d (xi, xj)

]

+ |fij |
(
∂N
∂Ce

(Ci, Ck, Φi, Φk)δij +
∂N
∂Cs

(Ci, Ck, Φi, Φk)δkj

)
,

(23)

∂Fi
∂Φj

=
∑
s∈Ni

|fis|

[
β

(k)
i+s
2

δsj − δij
2

+
∂β i+s

2

∂Φj

Φ
(k)
s − Φ(k)

i

d (xi, xj)
+
∂α i+s

2

∂Φj

C
(k)
s − C(k)

i

d (xi, xj)

]

+ |fij |
(
∂N
∂Φe

(Ci, Ck, Φi, Φk)δij +
∂N
∂Φs

(Ci, Ck, Φi, Φk)δkj

)
, (24)

where δpq is the Kroneker delta symbol. The expressions for the partial deriva-
tives of G are similar:

∂Gi
∂Cj

=
∑
s∈Ni

|fis|

[
λ

(k)
i+s
2

δsj − δij
2

+
∂λ i+s

2

∂Cj

C
(k)
s − C(k)

i

d (xi, xj)
+
∂κ i+s

2

∂Cj

Φ
(k)
s − Φ(k)

i

d (xi, xj)

]

+ |fij |
(
∂J
∂Ce

(Ci, Ck, Φi, Φk)δij +
∂J
∂Cs

(Ci, Ck, Φi, Φk)δkj

)
, (25)

∂Gi
∂Φj

=
∑
s∈Ni

|fis|

[
κ

(k)
i+s
2

δsj − δij
2

+
∂κ i+s

2

∂Φj

Φ
(k)
s − Φ(k)

i

d (xi, xj)
+
∂λ i+s

2

∂Φj

C
(k)
s − C(k)

i

d (xi, xj)

]

+ |fij |
(
∂J
∂Φe

(Ci, Ck, Φi, Φk)δij +
∂J
∂Φs

(Ci, Ck, Φi, Φk)δkj

)
. (26)



The two field variables in our problems, c and φ, represent different physical
quantities, which have very different scales. As a result, the stopping criteria for
the Newton iteration has to be adjusted accordingly. A relative criterion was
used individually for each component, that is, the iteration is terminated if:∥∥F (C(k),Φ(k)

)∥∥∥∥F (C(0),Φ(0)
)∥∥ ≤ TOL and

∥∥G (
C(k),Φ(k)

)∥∥∥∥G (
C(1),Φ(1)

)∥∥ ≤ TOL (27)

where TOL is a prescribed tolerance. Observe that the residual for the electro-
static equation (16) is scaled with the value at the first Newton iteration. The
reason is the following. Given a converged time step tn, the values for c(tn) and
φ(tn) are used as initial guess for the Newton iteration for the time step tn+1.
However, the only difference in the residual will be contribution to F of the dis-
cretization of the time derivative in (15). Thus, the initial residual for G will be
zero, rendering it useless for scaling purposes.

4 Numerical Examples

Two numerical examples were designed to test the model and finite volume
discretization. Both examples are on a micron length-scale, where the active
particles and the electrolyte occupy distinctive domains. The geometry is given
in Figure 1. In both cases, Ω is a cube with a 50µm side. The first example
was designed to test the simplest planar cathode-electrolyte-anode configuration.
The second example is representative of the actual porous microstructure of the
active particles. Both examples were discretized on a 503 regular voxel grid.

Table 1. Material specific parameters and initial conditions.

Material type De κ c0 cmax U0[
cm2

s

] [
A

V ·cm

]
Electrolyte 7.5 × 10−7 0.002 0.001
Cathode 1.0 × 10−9 0.038 0.020574 0.02286 0.001
Anode 3.9× 10−10 1.0 0.002639 0.02639 0

The material constants and model parameters of (2) were taken as follows:
F = 96486

[
A·s
mol

]
, R = 8.314

[
A·V ·s
K·mol

]
and t+(c) = 0.2. The Li+ diffusion coeffi-

cient De, ionic conductivity κ, the initial Li+ concentrations c0, the maximum
Li+ concentration in the electrodes cmax and the open circuit potential for the
electrodes U0, all material dependent parameters, are given in Table 1. All sim-
ulations were performed in isothermal conditions with T = 300 [K].

The first series of numerical runs were performed with the above data. Since
all material parameters were constant, the equations in each subdomain were
linear, thus the nonlinearity was entirely due to the interface condition (7)-(11).
The time step was 50s and a total of 20 timesteps were performed. It took slightly



(a) Example 1 (b) Example 2

Fig. 1. Electrode geometry for each numerical example. The void space is occupied by
the electrolyte.

more than 1000s before the battery the ionic concentration in parts of the domain
became close to zero. A snapshot of the concentration and electric potential, for
each of the two examples, are given in Figures 2 and 3, respectively. Throughout
the computational runs, the Newton iteration converged in 3 iterations at each
time step, for both examples.

A second set of numerical experiments was performed, this time with non-
linear parameters for the electrolyte. In the absence of solid experimental data,
a transference number t+ = 0.2 + 0.8c2 and De = 1.27× 10−7(1 +φ2) were used
for the electrolyte, the remaining parameters being the same. This runs were
done for the sake of testing the fully nonlinear system of equations. Again, the
Newton iteration converged in 3 iterations at each time step, for both examples.

5 Conclusions

The main goal of this paper was to discretize and solve the system of coupled
equations, which describes the diffusion of Li ions in a battery. A cell centered
finite volume method was used to discretize the problem on a regular voxelized
grid. The nonlinearity was treated with a full Newton method, both for the
material parameters and the interface condition. It was found that the standard
Newton method can handle both nonlinearities in nearly optimal number of
iterations.
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