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Abstract. The numerical homogenization of anisotropic linear elastic
materials with strongly heterogeneous microstructure is studied. The de-
veloped algorithm is applied to the case of trabecular bone tissue. In our
previous work [1], the orthotropic case was considered. The homogenized
anisotropic tensor is transformed according to the principle directions of
anisotropy (PDA). This provides opportunities for better interpretation
of the results as well as for classification of the material properties.
The upscaling procedure is described in terms of six auxiliary elastic
problems for the reference volume element (RVE). Rotated trilinear
Rannacher-Turek finite elements are used for discretization of the in-
volved subproblems. A parallel PCG method is implemented for efficient
solution of the arising large-scale systems with sparse, symmetric, and
positive semidefinite matrices. Then, the bulk modulus tensor is com-
puted from the upscaled stiffness tensor and its eigenvectors are used to
define the transformation matrix. The stiffness tensor of the material is
transformed with respect to the PDA which gives a canonical (unique)
representation of the material properties.
Numerical experiments for two different RVEs from the trabecular part
of human bones are presented.

1 Introduction

Many materials, including the human bone have a complex microstructure. In re-
cent years micro computed tomography (µCT) and micro finite element method
(µFEM) analysis proved to be a valuable tool for analyzing bone properties,
see e.g. [2]. The macro level material properties strongly depend on their mi-
crostructure. Nevertheless, the overall mechanical responses can be described
using multilevel techniques that are built upon basic conservation principles at
the micro level.

In our previous work [1], we studied a numerical homogenization algorithm
for computing the upscaled orthotropic stiffness tensor. This approach is further
developed to the general case of anisotropic materials. Here we obtain an effective
stiffness tensors of a reference volume element (RVE).

The trabecular bone is a strongly heterogeneous composition of solid and fluid
phases. Its voxel representation obtained from µCT images is used to formulate
the problem. Our goal is to obtain upscaled material properties of trabecular



bone tissue. In this work, only the mechanical response of the solid phase is
considered. To this purpose a fictitious domain approach is used.

This paper is organized as follows. The applied numerical homogenization
scheme is described in Section 2. In Section 3 transformation to the principal
directions of anisotropy (PDA) is recalled. And finally the upscaled and trans-
formed tensors are presented and discussed in the last section.

2 Homogenization Technique

Let Ω be a parallelepipedal domain representing our reference volume element
(RVE) and u = (u1, u2, u3) be the displacements vector in Ω. Here, components
of the small strain tensor [3] are:

εij (u (x)) =
1

2

(

∂ui(x)

∂xj

+
∂uj(x)

∂xi

)

(1)

We assume that Hooke’s law holds. The stress tensor σ is expressed in the
form

σij = sijklεkl, (2)

where summation over repeating indexes is assumed. The forth-order tensor s is
called the stiffness tensor, and has the following symmetry [4]:

sijkl = sjikl = sijlk = sklij . (3)

Often, the Hooke’s law is written in matrix form:
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The symmetric 6×6 matrix in (4) is denoted with S and. is called also the stiffness
matrix. For an isotropic material matrix S, and the tensor s have only two
independent degrees of freedom. For orthotropic materials (materials containing
three orthogonal planes of symmetry), the matrix S has nine independent degrees
of freedom. In the general anisotropic case, S has 21 independent degrees of
freedom [5].

The goal of our study is to obtain homogenized material properties of the tra-
becular bone tissue. In other words – to find the stiffness tensor of a homogeneous
material which would have the same macro-level properties as our RVE. Our
approach follows the numerical upscaling method from [1] (see also [6, 7]). The
homogenization scheme requires finding Ω-periodic functions ξkl = (ξkl1 , ξkl2 , ξkl3 ),
k, l = 1, 2, 3, satisfying the following equation in a week formulation:

∫

Ω

(

sijpq(x)
∂ξklp
∂xq

)

∂φi

∂xj

dΩ =

∫

Ω

sijkl(x)
∂φi

∂xj

dΩ, (5)



for an arbitrary Ω-periodic variational function φ ∈ H1(Ω). After computing
the characteristic displacements ξkl, from (5) we can compute the homogenized
elasticity tensor sH using the following formula:

sHijkl =
1

|Ω|

∫

Ω

(

sijkl(x)− sijpq(x)
∂ξklp
∂xq

)

dΩ. (6)

From (5) and due to the symmetry of the stiffness tensor (3), we have the relation
ξkl = ξlk. Therefore the solution of only six problems (5) is required to obtain
the homogenized stiffness tensor.

The periodicity of the solution implies the use of periodic boundary condi-
tions. Rotated trilinear (Rannacher-Turek) finite elements [8] are used for the
numerical solution of (5). This choice is motivated by the additional stability of
the nonconforming finite element discretization in the case of strongly hetero-
geneous materials [9]. Construction of a robust non-conforming finite element
method is generally based on application of mixed formulation leading to a
saddle-point system. By the choice of non continuous finite elements for the
dual (pressure) variable, it can be eliminated at the (macro)element level. As
a result we obtain a symmetric positive semi-definite finite element system in
primal (displacements) variables. We utilize this approach, which is referred as
the reduced and selective integration (RSI) [10].

For the solution of the arising linear system, the preconditioned conjugate
gradient is used. For the construction of the preconditioner the isotropic variant
of the displacement decomposition (DD)[11] was used. We write the DD auxiliary
matrix in the form

CDD =





A
A

A



 (7)

where A is the stiffness matrix corresponding to the bilinear form

a(uh, vh) =
∑

e∈Ωh

∫

e

E

(

3
∑

i=1

∂uh

∂xi

∂vh

∂xi

)

de. (8)

Such approach is motivated by the second Korn’s inequality, which holds for
the RSI FEM discretization under consideration. More precisely, in the case of
isotropic materials, the estimate

κ(C−1
DDK) = O((1− 2ν)−1)

holds uniformly with respect to the mesh size parameter in the FEM discretiza-
tion, where ν is the Poisson ratio.

As the arising linear systems are large, the problems are solved in parallel.
Parallel MIC(0) preconditioner for scalar elliptic systems [12] is used to approx-
imate (7). Its basic idea is to apply MIC(0) factorization of an approximation
B of the stiffness matrix A. Matrix B has a special block structure. Its diagonal



blocks are diagonal matrices. This allows the solution of the preconditioning sys-
tem to be performed in parallel. The condition number estimate κ(B−1A) ≤ 3
holds uniformly with respect to mesh parameter and possible coefficient jumps
(see for the related analysis in [12]). This technique is applied three times – once
for each diagonal block of (7). Thus we obtain the parallel MIC(0) preconditioner
in the form:

CDDMIC(0) =





CMIC(0)(B)
CMIC(0)(B)

CMIC(0)(B)



 .

More details on applying this preconditioner for the proposed homogenization
technique can be found in [1].

3 Principal Directions of Anisotropy

We follow the procedure for determining the PDA described in [13]. A coordi-
nate system is said to coincide with the PDA of a material, when the material,
subjected to “all-around uniform pure extension state,” forms a “pure tension
state.”

Let us introduce the bulk modulus tensor

K =





K11 K12 K13

K21 K22 K23

K31 K32 K33



 . (9)

The elements of K are defined as

Kij =

3
∑

k=1

sijkk (10)

We write the “all-round uniform extension” as εij = ε̃δij , where ε̃ is a constant
reference strain and δij is the Kronecker delta. Then, the stress components are

σij = Kij ε̃. (11)

Hence the principal directions of the tensor K coincide with the stress principal
directions. The stress values in these principal directions are

σij = λiε̃δij , (12)

where λi are the eigenvalues of the tensor K. To ensure uniqueness of the trans-
formation, we order the eigenvalues λ3 ≥ λ2 ≥ λ1, i.e. the biggest eigenvalue is
the third and the smallest is the first. With this order, we enforce the material
to orient its strongest direction in z axis and its weakest in x. The case of equal
eigenvalues, leads to equivalence of the material in two or more directions. The
transformation matrix T, which rotates the coordinate system to the one which



coincides with the PDA, is given by the corresponding normalized eigenvectors
vi of K:

T =





v11 v12 v13
v21 v22 v23
v31 v32 v33



 . (13)

Now we are able to rotate the stress tensor using formula

s̄klst = smnprTkmTlnTspTtr. (14)

Here summation over repeating indexes is assumed.

4 Numerical Experiments

To solve the above described upscaling problem, a portable parallel FEM code
is designed and implemented in C++. The parallelization has been facilitated
using the MPI library [14].

The analyzed test specimens are parts of trabecular bone tissue extracted
from a high resolution computer tomography image [15]. The voxel size is 37
µm. The trabecular bone has a strongly expressed heterogeneous microstructure
composed of solid and fluid phases.

Homogenized properties of two different RVEs with sizes of 128× 128× 128
are shown, see Fig. 1. The RVEs are different, but part of the same vertebra.
The Young modulus and the Poisson ratio of the solid phase, taken from [16],
are Es = 14.7GPa and νs = 0.325. Our intention is to obtain the homogenized
elasticity tensor of the RVE, taking into account the elastic response of the solid
phase only. We interpret the fluid phase as a fictitious domain. Thus, we set
Young modulus Ef = ζES for the voxels corresponding to the fluid phase. The
parameter ζ is set to 10−5. The choice of ζ is studied in [1]. We also set νf = νs.
The chosen values of Ef and νf practically do not influence the homogenization
result.

The iteration stopping criterion is ||rj ||C−1/||r0||C−1 < 10−6, where r
j is

the residual at the j-th iteration step of the preconditioned conjugate gradient
method and C stands for the used preconditioner.

Numerical experiments are performed on a Blue Gene/P machine. It is a
massively parallel computer consisting of quad-core computing nodes. The Pow-
erPC based low power processors run at 850 MHz. Each node has 2GB of RAM.
The nodes are interconnected with several specialized high speed networks—3D
mesh network for peer to peer communications and tree network for collective
communications, among others.

The computations were performed on 256 processors. The computations took
between 4 and 5 hours for each of the auxiliary problems. This has notable
increase from the case where a truly periodic media is considered [1]. In that
case the number of iterations (and thus the compute time) for similar problems
was around six times less.



First specimen Second specimen

Fig. 1. Structure of the two RVEs.

The computed homogenized stiffness matrix for the first specimen is

S
H
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802 218 212 −11.7 −1.31 72.8
218 566 167 −16.2 0.25 48.5
212 167 133 −71.4 31.8 22.8

−11.7 −16.2 −71.4 206 31.7 2.91
−1.31 0.25 31.8 31.7 313 −9.11
72.8 48.5 22.8 2.91 −9.11 197
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and for the second one —
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H
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All values are measured in megapascals (MPa). The transformation procedure,
described in Section 3, is applied to the stiffness matrices SH

1 and SH
2 . As a result,

the stiffness matrices S̄H
1 and S̄H

2 , characterizing the properties of the considered
RVEs in the coordinate systems aligned with their PDA are obtained:
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501 221 154 8.36 −14.0 −17.8
221 847 224 8.41 −6.89 18.1
154 224 1340 −16.7 20.9 −0.28
8.36 8.41 −16.7 320 14.2 9.20

−14.0 −6.89 20.9 14.2 196 1.64
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S̄
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343 121 848 31.7 3.75 5.45
121 372 139 38.8 −10.7 −3.90
84.8 139 573 −70.6 7.02 −1.54
31.7 38.8 −70.6 165 8.17 −9.42
3.75 −10.7 7.02 8.17 97.3 22.5
5.45 −3.90 −1.54 −9.42 22.5 119
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. (18)



First specimen Second specimen

Fig. 2. Structure of the two transformed stiffness matrices.

The matrices S̄H
1 and S̄H

2 are visualized on Fig. 2. The degree of anisotropy η
can be defined as the ratio

η = s̄3333/s̄1111. (19)

The degrees of anisotropy for the two RVEs η1 and η2 are 2.67 and 1.67. One
can see that although part of the same vertebra, the two specimens have differ-
ent degrees of anisotropy and different magnitudes of the elastic moduli. This
demonstrates the importance of the material microstructure for the elastic re-
sponse.

It is well known, that the trabecular bone tissue adapts to the stresses it
experiences (a fact referred to as a Wolffs law) [17]. In agreement with this, the
presented homogenized stiffness tensors show considerable level of anisotropy.
Our results evidently confirm that the anisotropy cant be neglected in the sim-
ulations. As a next step in this study, the analysis of a representative set of CT
images is needed to provide data for correlation analysis of the homogenized
stiffness tensors. Then, the map of principle directions of the experienced loads
for a particular bone at the organ level will provide new opportunities for more
realistic patient specific simulations using the clinically available information for
the bone density.

In this context, let us remind that the presented results use very high reso-
lution X-ray CT scans. Due to the level of radiation intensity, such a full length
organ-level scanning is not applicable in-vivo. In this sense, the more standard
multiscale approach is not applicable due to the lack of data.

In addition, the fluid phase of the bone plays an important part in its elastic
response. One possible approximation of this two-phase system is to interpret the
fluid as an almost incompressible elastic material (see, e.g., [18]). One important
future goal is to verify the related results in a comparison with some more general
poroelastic (say Biot) models.
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