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Two parallel iterative solvers for large-scale linear systems related to µFEM simulation
are presented. The problems solved represent the strongly heterogeneous structure of
real bone specimens or a geocomposite material. The voxel data are obtained by a
high resolution computer tomography.
We consider the weak formulation of the linear elasticity problem in the form: find
u ∈ [H1

E(Ω)]3 = {v ∈ [H1(Ω)]3 : vΓD
= uS} such that

∫

Ω

[2µε(u) : ε(v) + λ divudivv]dΩ =

∫

Ω

f tvdΩ +

∫

ΓN

gtvdΓ, (1)

∀v ∈ [H1
0 (Ω)]3 = {v = [H1(Ω)]3 : vΓD

= 0}, with the positive constants λ and µ of
Lamé, the symmetric strains

ε(u) := 0.5(∇u + (∇u)t),

the volume forces f , and the boundary tractions g, ΓN ∪ ΓD = ∂Ω, |ΓD| 6= ∅. The

Lamé coefficients are given by λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
, where E stands

for the modulus of elasticity, and ν ∈ (0, 1

2
) is the Poisson ratio.

To obtain a stable saddle-point system one usually uses a mixed formulation for u

and divu. By the choice of piece-wise constant finite elements for the dual variable,
it can be eliminated at the macroelement level, and thereafter we get a symmetric
positive definite FEM system in primal unknowns (displacement). This approach is
known as reduced and selective integration (RSI) technique, see [2]. The discretization
of (1) using nonconforming rotated trilinear elements of Rannacher-Turek [4] leads to
the coupled system of linear equations
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Here the stiffness matrix K is written in block form corresponding to a separate dis-
placements components ordering of the vector of nodal unknowns. Since K is sparse,
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symmetric and positive definite, we use the PCG algorithm to solve the system (2).
Crucial for its performance is the preconditioning technique used. Here we focus on
two preconditioners based on the isotropic variant of the displacement decomposi-
tion (DD)[5]. We write the DD auxiliary matrix in the form

CDD =





A

A

A



 (3)

where A is the stiffness matrix corresponding to the bilinear form

a(uh, vh) =
∑

e∈Ωh

∫

e

E

(

3
∑

i=1

∂uh

∂xi

∂vh

∂xi

)

de. (4)

Such approach is motivated by the second Korn’s inequality, which holds for the RSI
FEM discretization under consideration. This means that the estimate

κ(C−1

DDK) = O((1 − 2ν)−1)

holds uniformly with respect to the mesh size parameter in the FEM discretization.
The first of the studied preconditioners is obtained by parallel MIC(0) factorization
of the blocks in (3). As an alternative, inner PCG iterations with BoomerAMG
preconditioner for A are used to approximate the DD block-diagonal matrix (3).
BoomerAMG is a parallel algebraic multigrid implementation from the package Hypre,
developed in LLNL, Livermore. For a description of the algorithms used and their
settings, see [3] and the references therein.
Table 1 presents the time T in seconds, the number of iterations It (the outer ones
for the AMG code), varying the preconditioners, the problem sizes and the platforms
for a model problem representing vertically loaded brick. The computer platforms
C1, C2 and C3 are described in [3].

Table 1: Parallel Tests I
C1 C2 C3

MIC(0) AMG MIC(0) AMG MIC(0) AMG
n N p T [s] It T [s] It T [s] It T [s] It T [s] It T [s] It

64 2 396 160 1 136.6 115 150.1 9 83.7 115 84.0 9 83.9 115 115.1 9
128 19 021 824 8 202.0 163 195.6 10 172.1 163 229.8 10 127.8 163 152.6 10
256 151 584 768 64 355.6 230 261.4 10 464.1 230 430.0 10 328.2 230 307.1 10

In a good agreement with the theory, the number of iterations for MIC(0) increases
as O(

√
n), while the AMG iterations stay about the same. For the smallest problem

(N=2 396 160) MIC(0) clearly outperforms the AMG code. For the medium size (N=
19 021 824) the times are rather similar. However, for the largest problem (N=151
584 768) the advantage of AMG is well expressed.
The bone microstructure is a typical example of strongly heterogeneous media. In the
presented tests, the computational domain is a composition of solid and fluid phases.
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The CT image is extracted from the dataset [1]. The voxel size is 37µm. Each voxel
corresponds to a macroelement from the RSI FEM discretization. The bone specimen
is placed between two plates (see Fig. 1). The thickness of the plates is 1 voxel. The
position of the bottom plate is fixed (homogeneous Dirichlet boundary conditions),
and a force of ||g|| = 1 is uniformly distributed on the top one. This setting simulates
a vertically loaded bone specimen.

Figure 1: Structure of the solid phase: 32× 32× 32 - left, 64× 64× 64 - middle, and
128 × 128 × 128 - right.

The considered test problems are given by the following parameters: Ep = 10, Es = 1,
Ef = ζ ∈ {0.1, 0.01, 0.001}, ν = 0.3. Here, Ep is the elasticity modulus of the two
plates, Es stands for a scaled elasticity modulus of the solid phase, while Ef introduces
varying coefficient jumps between solid and fluid phases.
The results presented in Table 2.

Table 2: Parallel Tests II

ζ = 0.1 ζ = 0.01 ζ = 0.001
MIC(0) AMG MIC(0) AMG MIC(0) AMG

n p T [s] It T [s] It T [s] It T [s] It T [s] It T [s] It

64 1 239.3 330 374.9 27 348.3 505 757.9 57 588.6 823 1040.5 78
128 8 833.2 708 681.0 25 975.5 830 1501.3 60 2166.7 1850 2908.9 107
256 64 2393.8 1237 945.4 25 3495.7 1831 2114.4 57 6025.8 3150 5520.1 114

The considered algorithms were successfully applied to another test problem. The
voxel data represents a coal-polyurethane geocomposite (see Fig. 2 left). The domain
is cubic – 75x75x75mm, but the scan is non-uniform in all directions – 35x110x110
voxels. The mechanical properties used were: Coal – ν = 0.25, E = 4000MPa;
Polyurethane – ν ∈ [0.1, 0.25], E ∈ [200, 2100]MPa. The setting used was the same –
vertically loaded specimen. On the right on Fig. 2 are shown vertical displacements.
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Figure 2: Left: coal-polyurethane geocomposite brick; right: vertical displacements.

The general conclusion is that the studied codes provide a stable toolkit for computer
simulation of the bone microstructure. Both approaches have their advantages de-
pending on the size of the FEM systems and the level of heterogeneity of the bone
specimens. The achieved parallel scalability well corresponds to the connectivity of
the considered problems.
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