
 1

��������			

������������������������
������������������������

Stefka Fidanova
Bulgarian Academy of Science, Bulgaria

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

ABSTRACT

The ant colony optimization algorithms and their applications on the multiple knapsack
problem (MKP) are introduced. The MKP is a hard combinatorial optimization problem with
wide application. Problems from different industrial fields can be interpreted as a knapsack
problem including financial and other management. The MKP is represented by a graph, and
solutions are represented by paths through the graph. Two pheromone models are compared:
pheromone on nodes and pheromone on arcs of the graph. The MKP is a constraint problem
which provides possibilities to use varied heuristic information. The purpose of the chapter
is to compare a variety of heuristic and pheromone models and different variants of ACO
algorithms on MKP.

INTRODUCTION

Combinatorial optimization is a process of find-
ing the best or optimal solution for problems
with a discrete set of feasible solutions. Appli-
cations occur in numerous settings involving
operations management and logistics. The eco-
nomic impact of combinatorial optimization is
profound, affecting diverse sections. While
much progress has been made in finding exact
solutions to some combinatorial optimization

problems (COPs), many hard combinatorial
problems (NP-problems) are still not exactly
solved in a reasonable time and require good
meta-heuristic methods. The aim of meta-heu-
ristic methods for COPs is to produce quickly
good-quality solutions. In many practical prob-
lems they have proved to be effective and
efficient approaches, being flexible to accom-
modate variations in problem structure and in
the objectives considered for the evaluation of
solutions (Lonnstedt, 1973). For all these rea-

2

Ant Colony Optimization and Multiple Knapsack Problem

sons, meta-heuristics has probably been one of
the most stimulated research topics in optimiza-
tion for the last two decades. Examples are
decision making problems.

The ant colony optimization (ACO) is a new
meta-heuristic method. ACO algorithms are
applied in real life and industrial problems for
which a good solution for a short time is re-
quired. ACO achieves good results for prob-
lems with restrictive constraints like multiple
knapsack problem. It represents a multi-agent
system where low-level interaction between
single agents results in a complex behavior of
the whole ant colony. It imitates the behavior
shown by real ants when searching for food.
Ants are social insects that live in colonies and
whose behavior is aimed more to the survival of
the colony as a whole than to that of a single
individual component of the colony. An impor-
tant and interesting aspect of ant colonies is
how ants can find the shortest path between the
food sources and their nest. Ants communicate
information about food sources via a chemical
substance called pheromone, which the ants
secrete as they move along.

Analogously, ACO is based on the indirect
communication of a colony of simple agents,
called “artificial” ants, mediated by “artificial”
pheromone trails. The pheromone trails in ACO
algorithms serve as distributed numerical infor-
mation, which ants use to probabilistically con-
struct solutions to the problem to be solved and
which ants adapt during the algorithm’s execu-
tion to reflect their search experience. Artifi-
cial ants not only imitate the behavior de-
scribed, but also apply additional problem-spe-
cific heuristic information. The idea is devel-
oped by Moyson and Manderick (1988). The
first example of ant algorithm is Ant System
(Dorigo, Maniezzo, & Colorni, 1996), and it has
been applied to and provided solutions for vari-
ous hard combinatorial optimization problems.
Recently, different versions of the ACO algo-

rithms such as the ant colony system (Dorigo,
1999, pp. 53-66), the ant algorithm with elitist
ants (Dorigo, 1999, pp. 137-172), the max-min
ant system (Stützle & Hoos, 2000), the ant
algorithm with additional reinforcement
(Fidanova, 2002), and the best-worst ant sys-
tem (Cordón, Fernàndez de Viana, & Herrera,
2002) have been applied to many optimization
problems. Examples are the traveling salesman
problem (Dorigo, 1999, pp. 53-66), the qua-
dratic assignment (Gambardella, 1999, pp.167-
176), the vehicle routing (Gambardella, 1999,
pp. 63-76), and the multiple knapsack problem
(Fidanova, 2003).

The multiple knapsack problem (MKP) is a
hard combinatorial optimization problem with
wide applications which enlists many practical
problems from different domains like financial
and other management. It is an interesting
problem of both practical and theoretical point
of view: practical because of its wide applica-
tion; theoretical because it is a constraint prob-
lem and gives various possibilities for heuristic
constructions.

The aim of this chapter is to introduce ACO
and its application on MKP.

ANT COLONY OPTIMIZATION
ALGORTHM

All ACO algorithms can be applied to any COP.
They follow specific algorithmic scheme. After
the initialization of the pheromone trails and
control parameters, a main loop is repeated
until the stopping criteria are met. The stopping
criteria can be a certain number of iterations, a
given CPU time limit, or a time limit without
improving the result or if some lower (upper)
bound of the result is known and the achieved
result is close enough to this bound. In the main
loop, the ants construct feasible solutions, and
then the pheromone trails are updated. More

 3

Ant Colony Optimization and Multiple Knapsack Problem

precisely, partial problem solutions are seen as
states: each ant starts from random state and
moves from a state i to another state j of the
partial solution. At each step, ant k computes a
set of feasible expansions to its current state
and moves to one of these expansions, accord-
ing to a probability distribution specified as
follows. For ant k, the probability k

ijp to move
from a state i to a state j depends on the
combination of two values:

∈

=

∑
∈

otherwise

allowedjif

p

k

allowedl
ilil

ijij

k
ij

k

0

.

.

ητ
ητ

 (1)

where:

• ijη is the attractiveness of the move as
computed by some heuristic information,
indicating a priori desirability of that move;

• ijτ is the pheromone trail level of the
move, indicating how profitable it has been
in the past to make that particular move (it
represents therefore a posterior indication
of the desirability of that move); and

• kallowed is the set of remaining feasible
states.

Thus, the higher the value of the pheromone
and the heuristic information are, the more
profitable it is to include state j in the partial
solution. In the beginning, the initial pheromone
level is set to 0τ , which is a small positive
constant. In nature there is not any pheromone
on the ground at the beginning, or the initial
pheromone is 00 =τ . If in ACO algorithm the
initial pheromone is 00 =τ , then the probability
to chose next state will be 0=k

ijp and the

search process will stop from the beginning.
Thus it is important that the initial pheromone
value is positive.

The pheromone level of the elements of the
solutions is changed by applying the following
updating rule:

ijijij ττρτ ∆+← . (2)

where the rule 10 << ρ models evaporation
and ijτ∆ is an added pheromone. The ACO
algorithms differ in pheromone updating. There
exist various versions of ACO algorithms such
as the ant system (Dorigo et al., 1996), the ant
colony system (Dorigo, 1999, pp. 53-66), ACO
with elitist ants (Dorigo, 1999, pp. 137-172), the
max-min ant system (Stützle & Hoos, 2000),
the ant algorithm with additional reinforcement
(Fidanova, 2002, pp. 292-293), the best-worst
ant system (Cordón et al., 2002), and so on. The
main difference between them is pheromone
updating.

Ant System

The first ant algorithm is ant system. In this
algorithm all pheromone is decreased, and after
that every ant adds a pheromone corresponding
to the quality of the solution. More precisely:

−

−
=∆

problemonminimizatiisitif)(/)1(

problemonmaximizatiisitif)()1(

k

k

k
ij

Sf

Sf

ρ

ρ
τ

where:

• k
ijτ∆ is the pheromone added by the ant k;

• Sk is the solution achieved by ant k;
• f(Sk) is the value of the objective function.

In any ant system, better solutions and ele-
ments used by more ants receive more phero-
mone.

4

Ant Colony Optimization and Multiple Knapsack Problem

Ant Colony System (ACS)

The main features of the ACS algorithm are as
follows: to use the best found solution, after
each iteration the ants—which construct the
best solution from the beginning of the trials—
add pheromone; to avoid stagnation of the
search, the pheromone on other solutions is
decreased. Local pheromone updating and glo-
bal pheromone updating in ACS are applied. In
the local pheromone updating the value of the
pheromone on used elements decreases and
comes between initial pheromone 0τ and the
old value of the pheromone. It is a kind of
diversification of the search in the search space.

0).1(. τρτρτ −+← ijij

In the global pheromone updating, the ant
that constructs the best solution adds another
pheromone depending on the quality of the
solution.

ijijij τατατ ∆−+←).1(.

=∆

problemonminimizatiisitif)(/1

problemonmaximizatiisitif)(

k

k

k
ij

Sf

Sf

τ

The main idea of ACS is to enforce the
pheromone of the best found solution and at the
same time to diversify the search.

Ant Algorithm with Elitist Ants

In this ant algorithm only one or a fixed number
(n) of ants add pheromone. The pheromone
corresponding to other elements is only evapo-
rated. Thus the pheromone of the best n solu-
tions is forced. It is a kind of intensification of
the search around the best found solutions.

Max-Min Ant System (MMAS)

The main features of MMAS algorithm are as
follows:

• To exploit the best found solution—after
each iteration only one ant adds a phero-
mone.

• To avoid stagnation of the search, the
range of possible pheromone value is lim-
ited to a fixed interval []maxmin ,ττ .

In MMAS algorithm the pheromone value is
initialized so that after the first iteration all
pheromone values are equal to maxτ . In the next
iterations only the elements belonging to the
best solution receive a pheromone; other phero-
mone values are only evaporated. The main
idea of MMAS is to use fixed lower and upper
bounds of the pheromone values. If some phero-
mone value is less/greater than lower/upper
bound, it becomes equal to this fixed lower/
upper bound and thus early stagnation of the
algorithm is avoided.

Best-Worst Ant System (BWAS)

The main idea of BWAS is to use a pheromone
mutation. The pheromone value of the best
solution is increased, while the pheromone value
of the worst solution is decreased. Thus the
probability to choose elements of worst solution
in the next iteration becomes lower.

Ant Algorithm with Additional
Reinforcement (ACO-AR)

The main idea of ACO-AR is after pheromone
updating to add additional pheromone to unused
elements. Thus some elements receive addi-
tional probability to be chosen and become
more desirable. Using ACO-AR algorithm the
unused elements have the following features:

 5

Ant Colony Optimization and Multiple Knapsack Problem

• They have a greater amount of phero-
mone than the elements belonging to poor
solutions.

• They have a less amount of pheromone
than the elements belonging to the best
solution.

Thus the ants are forced to exploit a search
space which has not been exploited yet without
repeating the bad experience.

ANT ALGORITHM AND
CONVERGENCE

The ACO is a meta-heuristic algorithm for
approximate solution of combinatorial optimi-
zation problems. The construction of a good
solution is a result of the agents’ cooperative
interaction. Failure in local optimum may occur
when we perform the ACO algorithm. This can
happen when the pheromone trail is signifi-
cantly higher for one choice than for all others.
This means that one of the choices has a much
higher amount of pheromone than the others,
and an ant will prefer this solution component
over all alternatives. In this situation, ants con-
struct the same solution over and over again,
and the exploration of the search space stops.
It should be avoided by influencing the prob-
abilities for choosing the next solution compo-
nent which depends directly on the pheromone
trails. Various techniques exist to avoid failing
into local optimum as re-initialization, smooth-
ing of the pheromone, additional reinforcement,
diversification, and intensification of the search.

Re-Initialization

When the ants repeat the same solution over
and over again, the pheromone is re-initialized
(Stützle & Hoos, 2000) and the algorithm starts
from the beginning. The aim is to start to create

solutions from other starting states and prob-
ably to construct differently from previous so-
lutions. This technique can prevent some failing
into local optimums, but the algorithm is not
guaranteed to converge to an optimal solution.
This technique can be applied to any ant algo-
rithm.

Smoothing of the Pheromone Trails

 The main idea of the smoothing (Stützle &
Hoos, 2000) is to increase the pheromone trails
according to their differences to the maximal
pheromone trail as follows:

).(max ijijij ττδττ −+← ,

where 10 << δ is a smoothing parameter. The
above proposed mechanism has the advantage
that the information gathered during the run of
the algorithm is not completely lost, but merely
weakened. For 1=δ this mechanism corre-
sponds to a re-initialization of the pheromone
trails, while for 0=δ pheromone trail smooth-
ing is switched off. After the smoothing, the
current lower bound of the pheromone in-
creases.

Fixed Bounds of the Pheromone

Other method to prevent early stagnation is to
fix the lower and the upper bound of the phero-
mone (Stützle & Hoos, 2000). Thus if the
pheromone becomes less/greater than the
lower/upper bound, it becomes equal to this
lower/upper bound. Thus there are not choices
of very high or very low amounts of phero-
mone.

Additional Reinforcement

The aim of additional reinforcement is to add
additional pheromone on choices of pheromone

6

Ant Colony Optimization and Multiple Knapsack Problem

low amount and thus they become more desir-
able (Fidanova, 2002, pp.292-293). It is a way
to force the ants to look for new solutions.

Search Diversification and
Intensification

In some ant algorithms, diversification and in-
tensification techniques—like increasing the
amount of the pheromone for some choices and
decreasing it for others—are used. The aim is
to intensify the solution search on one side and
to diversify it on the other.

It is important to know whether the algo-
rithm converges to the global optimum. Stützle
and Dorigo (2002) proved that if the amount of
the pheromone has a finite upper bound and a
positive lower bound, then the ACO algorithm
converges to the optimal solution. This means
that if the probability to choose any element
does not converge to zero, then the ACO
algorithm converges to the global optimum.
Stützle and Dorigo (2002) proved that the Ant
Colony System and Max-Min Ant System
satisfy the conditions for convergence and
thus they converge to the global optimum
when the time (number of iterations) converge
to infinity.

Additional reinforcement can be applied to
any ACO algorithm. Fidanova (2004) has proved
that after additional reinforcement of unused
elements of any ACO algorithm, it converges to
optimal solution when the algorithm is run for a
sufficiently large number of iterations indepen-
dently whether the original ACO algorithm
converges.

MULTIPLE KNAPSACK
PROBLEM

The MKP has numerous applications in theory
as well as in practice. It also arises as a sub-

problem in several algorithms for more com-
plex COPs, and these algorithms will benefit
from any improvement in the field of MKP.

The MKP can be thought of as a resource
allocation problem, where there are m resources
(the knapsacks) and n objects, and object j has
a profit jp . Each resource has its own budget

ic (knapsack capacity) and consumption ijr of
resource i by object j. We are interested in
maximizing the sum of the profits, while work-
ing with a limited budget. The MKP can be
formulated as follows:

njx

micxrtosubject

xp

j

n

j
ijij

n

j
jj

,,1}1,0{

,,1.

.max

1

1

�

�

=∈

=≤∑

∑

=

=

jx is 1 if the object j is chosen and 0
otherwise.

There are m constraints in this problem, so
MKP is also called the m-dimensional knap-
sack problem. Let },,1{ mI �= and },,1{ nJ �= ,
with 0≥ic for all Ii ∈ . A well-stated MKP
assumes that 0>jp and ∑ =

≤≤ n

j ijiij rcr
1

 for all
and. Note that the matrix and the vector are
both non-negative.

We can mention the following major appli-
cations: problems in cargo loading, cutting stocks,
bin-packing, budget control, and financial man-
agement may be formulated as MKP. Sinha
and Zoltner (1979) propose the use of the MKP
in fault tolerance problem, and Diffe and
Hellman (1976) designed a public cryptography
scheme whose security realizes the difficulty of
solving the MKP. Matrello and Toth (1984)
mention that two-processor scheduling prob-
lem may be solved as a MKP. Other applica-
tions are industrial management, team manage-

 7

Ant Colony Optimization and Multiple Knapsack Problem

ment, naval, aerospace, and computational com-
plexity theory.

The shortest path problem in a transporta-
tion network deals with determining the subset
of the connected roads that collectively com-
prise the shortest driving distance or the small-
est driving time or the cheapest fair between
two cities. The problem is: what subset of lines
gives the faster response time for communica-
tion between them? Complexity theory is a part
of the theory of computation dealing with the
resources required during the computation time
to solve a given problem. More theoretical
application appears either in case a general
problem is transformed to a MKP or MKP
appears as a sub-problem in solving the gener-
alized assignment problem. It again is used in
solving a vehicle routing problem. In addition,
MKP can be seen as a general model for any
kind of binary problems with positive coeffi-
cients (Kochenberger, McCarl, & Wymann,
1974).

In solving MKP one is not interested in
solutions giving a particular order. Therefore a
partial solution is represented by , and the most
recent elements incorporated to S, need not be
involved in the process for selecting the next
element. Also, solutions for ordering problems
have a fixed length, as a permutation of a
known number of elements is searched. Solu-
tions of MKP, however, do not have a fixed
length. In this chapter the solution will be
represented by sequence where is 1 if the
object j is chosen and 0 otherwise.

ACO ALGORITHM FOR MKP

The MKP is an interesting problem from a
practical and theoretical point of view: practi-
cal, because it involves a lot of real-life and
industrial problems; theoretical, because it gives
several possibilities for pheromone and heuris-

tic models. One of the basic elements of the
ACO algorithm is the mapping of the problem
onto a graph. We decide which elements of the
problem should correspond to the nodes and the
ones to the arcs. The solutions of the problem
are represented by paths through the graph.

We define the graph of the MKP as fol-
lows: the nodes correspond to the objects and
the arcs fully connect nodes. Fully connected
graph means that after the object I, the object
j might be chosen if there are enough re-
sources and if the object j is not chosen yet. At
each iteration, every ant constructs a solution.
It first randomly chooses the initial object
(node in the graph) and then iteratively adds
new objects (nodes in the graph) that can be
selected without violating resource constraints.
Once each ant has constructed its solution,
pheromone trails are updated. The pheromone
model and heuristic information connected
with MKP will be described in detail in the
following subsections. Ants start to construct
their solution from a random node. Therefore
a small number of ants can be used. By
experiment, it is found that between 10 and 20
ants are enough to achieve good result, with-
out increasing the number of iterations. Thus
the used computer resources such as time and
memory are decreased.

Pheromone Model

To solve MKP with ACO algorithm, the key
point is to decide which components of the
constructed solutions should be rewarded and
how to exploit these rewards when construct-
ing new solutions. One can consider two differ-
ent ways of laying pheromone trails:

• A first possibility is to lay pheromone trails
on each selected node of the graph (ob-
ject). The idea is to increase the desirabil-
ity of some nodes so that these nodes will

8

Ant Colony Optimization and Multiple Knapsack Problem

be more likely to be selected in construct-
ing a new solution.

• A second possibility is to lay pheromone
trails on the arcs (i,j) of the graph. Here
the idea is to increase the desirability to
choose node j when the last selected node
is i.

The first possibility is closely related to the
nature of the problem, as MKP is an unordered
problem. To solve MKP with ACO algorithm,
Leguizamon and Michalevizc (1999) use the
first possibility, while Fidanova (2003) uses the
second possibility.

The two pheromone possibilities have been
tested on 20 benchmarks of MKP, from OR
Library, with 100 objects and 10 constraints
(see http://mscmga.ms.ic.ac.uk/jeb/orlib). The
number of iterations K=500 is fixed for all the
runs. For the tests we use ACS algorithm and
20 runs of each of the benchmarks. The initial
pheromone parameter is fixed to τ

0
=0.5. The

evaporation parameters are α=ρ=0.1. The num-
ber of ants is set to be 10. As shown in Figure
1, there is very early stagnation of the algorithm

by pheromone on nodes. This effect can be
explained with large pheromone accumulation
on some nodes, and thus the ants repeat the
same solution over and over again. In the
second case the pheromone is dispersed on the
arcs. We will illustrate these phenomena with a
small example with five objects and one con-
straint.

Example: max(x
1
+3x

2
+2x

3
+x

4
+2x

5
)

2x
1
+x

2
+3x

3
+x

4
+3x

5
≤6

For heuristic information, let the profit of
the objects be used. Thus the objects with
greater profit are more desirable. The ACS is
applied with one ant. Other parameters are
τ

0
=0.5, α=ρ=0.5. In a first iteration, let the

ant start from node 1. Using probabilistic rule
the achieved solution in both cases is (x

1
,x

2
,x

3
),

and the value of objective function is 6. After
updating, the new amount of the pheromone
is:

a. pheromone on nodes:
(3.25, 3.25, 3.25, 0.5, 0.5)

b. pheromone on arcs:

Non

Non

Non

Non

Non

5.05.05.05.0

5.05.05.05.0

5.05.05.05.0

5.05.025.35.0

5.05.05.025.3

In the second iteration, let the ant start from
the node 2. Thus constructed by the ant, the
solution in a both cases is (x

2
, x

3
, x

1
). It is the

same as in the first iteration, but achieved in
different order. The new pheromone is:

a. pheromone on nodes:
(3.937, 3.937, 3.937, 0.5, 0.5)

b. pheromone on arcs:

Figure 1. Average solution quality: the thick
line represents the pheromone on arcs and
the dashed line represents the pheromone
on nodes

 9

Ant Colony Optimization and Multiple Knapsack Problem

Non

Non

Non

Non

Non

5.05.05.05.0

5.05.05.05.0

5.05.05.025.3

5.05.0937.35.0

5.05.05.025.3

In the third iteration, let the ant start from
the node 3. The achieved solution by both cases
is (x

3
, x

2
, x

1
). The new pheromone is:

a. pheromone on nodes:
(4.109, 4.109, 4.109, 0.5, 0.5)

b. pheromone on arcs:

Non

Non

Non

Non

Non

5.05.05.05.0

5.05.05.05.0

5.05.025.325.3

5.05.0937.325.3

5.05.05.025.3

Heuristic Information

The second component in the transition prob-
ability is the heuristic information. The MKP is
a constraint problem, and the constraints can be
used for constructing heuristic information in
various manners. There are two main types of
heuristics: static and dynamic. Static heuristics
remain unchanged during the run of the algo-
rithm, while the dynamic heuristics correspond
to the current state of the problem. The profit of
the objects will be included in the heuristics
because it is the most important information for
objective function. A better result is expected
when we include in the heuristics more infor-
mation for the problem.

Static Heuristics

Two types of static heuristics are proposed,
called “heuristics A” and “heuristics B” re-
spectively.

• Heuristics A: Let
m

i ijj rs
1

. For heu-

ristic information we use: 21 / d
j

d
jij sp , 0 <

d
1
 and 0 < d

1
 are parameters. The ex-

penses of the objects are included in heu-
ristic information. Therefore, the objects
with greater profit and less average ex-
penses are more desirable. Thus we try to
have some balance between expenses
and the profit for a given object.

• Heuristics B: Let i

m

i ijj crs /
1

. For heu-

ristic information we use: 21 / d
j

d
jij sp , 0 <

d
1
 and 0 < d

1
 are parameters. Thus the

heuristic information depends on the profit,
the expenses, and the budgets. The objects
with greater profit, which use a lesser part
of the budget, are more desirable.

Dynamic Heuristics

The third and the forth types of heuristic infor-
mation are dynamic, and they correspond to the
current state of the algorithm. We call them
“heuristics C” and “heuristics D” respectively.

• Heuristics C (Leguizamon &
Michalevizc, 1999): Let

j

n

j ijii xrcb
1

 be the remainder of the

budget before choosing the next object

and
m

i iijj brs
1

/ if 0ib and
m

i ijj rs
1

if b
i
= 0. For heuristic information we use:

21 / d
j

d
jij sp , where 21 dd . The aim is

for the heuristic information to have maxi-
mal correspondence to the current state
of the algorithm and thus to achieve good
result. Leguizamon and Michalevizc
(1999) do not verify if 0ib , but because
it can happen and there is division by b

i
,

we add this verification in the algorithm.
Thus the objects with greater profit, which
use less part of the available budget, will
be more desirable.

10

Ant Colony Optimization and Multiple Knapsack Problem

• Heuristics D: This is similar to heuristics
C, but the parameters d

1
and d

2
can be

different. By this heuristics, we can ob-
serve the influence of the parameters d

1

and d
2.

The ACO algorithms with four kind of heu-
ristic information have been tested on 20 bench-
marks of MKP, from OR Library, with 100
objects and 10 constraints. For the tests we use
ACS algorithm with pheromone on arcs. The
initial pheromone parameter is fixed to τ

0
=0.5.

The evaporation parameters are set to α=ρ=0.1.
When d

1
≠ d

2
, d

1
=3 and d

2
=2, otherwise d

1
=d

2
=1.

The number of ants is set to 10. First we
observe that the heuristics B shows advantage
over the other tree heuristics. This means that
it is more important that the expenses be a small

part of the relevant budget. We expected to
achieve better results by dynamic heuristics
because they correspond to the current state of
the problem. In spite of our expectations, we
achieved weaker results by dynamic heuristics.
Using dynamic heuristics, the chosen object
order became important; the desirability of an
object was not the same if it was chosen in the
beginning of the iteration or later. The MKP is
an unordered problem, and for it the order in
which the objects are chosen is not important.
Thus we can explain better results by static
heuristics. Comparing heuristics C and D, we
observe the importance of the parameters d

1

and d
2.

In the case d
1
≠ d

2
, the achieved results

are better. The parameters d
1
 and d

2
show the

importance of the profit and the constraints in
heuristic information. If d

1
is greater than d

2
,

then the profit is more important, and in the
opposite case the constraints are more impor-
tant. If both values d

1
and d

2
 are great, then the

heuristic information is more important than the
pheromone in the transition probability.

Comparison between
ACO Algorithms

The ACO algorithms are differing in phero-
mone updating. We compare some ACO algo-
rithms applied on MKP. The ant colony system,
the max-min ant system, and the ant algorithm
with additional reinforcement have been cho-
sen, because for them it is proven to converge
to the global optimum. These ACO algorithms
have been tested on 20 benchmarks of MKP
with 100 objects and 10 constraints from OR
Library. The reported results are average on 20
runs of each benchmark. The pheromone is laid
on the arcs and the heuristics B is used. ACO-
AR is applied on ant algorithm with elitist ant.
The added additional pheromone is equal to the
maximal added pheromone. The initial phero-
mone parameter is fixed to τ

0
=0.5. The evapora-

Figure 2. The graphics show the average
solution quality (value of the total cost of the
objects in the knapsack) over 20 runs; the
dash-dot line represents heuristics A, the
dash line represents heuristics B, the dotted
line represents heuristics C, and the thick
line represents heuristics D

 11

Ant Colony Optimization and Multiple Knapsack Problem

tion parameters are α=ρ=0.1. The minimal
pheromone is set to τ

min
=1000, and the value of

the maximal pheromone is equal to the approxi-
mate upper bound of the pheromone (Stützle &
Hoos, 2000). The number of ants is set to 10. As
shown in Figure 3, ACO-AR outperforms ACS
and MMAS. By ACS and MMAS we achieve
very similar results. In some of the runs, ACO-
AR reaches the best found results in a literature
by meta-heuristics methods.

CONCLUSION

In this chapter the ACO algorithms and their
implementations on MKP are described. The
MKP is represented by graph and the solutions
are represented by paths through the graph.
We compare two pheromone models, phero-
mone on the arcs of the graph of the problem
and pheromone on the nodes of the graph. We
observe that laying the pheromone on the arcs,
the algorithm achieves better results. When the
pheromone is laid on the nodes on some of
them, the pheromone concentration becomes
very high and ants choose them with higher

Figure 3. Average solution quality: the thick
line represents ACO-AR, the dotted line
represents MMAS, and the dashed line
represents ACS

probability. We compare four representations
of heuristic information. Best results are
achieved when the heuristic information de-
pends on the profit, the expenses, and the
budgets. The objects with greater profit, which
use fewer parts of the budgets, are more desir-
able. We achieve better results by static heuris-
tics than by dynamics. Using dynamic heuris-
tics the probability to choose the same object at
the beginning of the iteration is different than
choosing it later, and for MKP the chosen
objects order is not important. At the end we
compare the results achieved by three of the
ACO algorithms, proved to converge to the
global optimum, ACS, ACO-AR, and MMAS.
We achieve best results by ACO-AR, and in
some of the runs the achieved results are equal
to the best found in the literature. In the future
we will investigate hybridization of the ACO
algorithms, combining them with other meta-
heuristic techniques and appropriate local search
procedures.

ACKNOWLEDGMENT

This work is supported by the Marie Curie
program of the European Community by grant
MERG-CT-2004-510714.

REFERENCES

Cordón, O., Fernàndez de Viana, & Herrera, F.
(2002) Analysis of the best-worst ant system
ant its variations on the QAP. In M. Dorigo, G.
Di Caro, & M. Sampels (Eds.), From ant
colonies to artificial ants (pp. 228-234) (LNCS
2463). Berlin: Springer-Verlag.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996).
The ant system: Optimization by a colony of
cooperative agents. IEEE Transactions on

12

Ant Colony Optimization and Multiple Knapsack Problem

Systems, Man and Cybernetics—Part B,
26(1), 29-41.

Dorigo, M., & Gambardella, L.M. (1999). Ant
colony system: A cooperative learning approach
to the traveling salesman problem. IEEE Trans-
actions on Evolutionary Computing, 1, 53-66.

Dorigo, M., Di Caro, G., & Gambardella, M.
(1999). Ant algorithms for distributed discrete
optimization. Journal of Artificial Life, 5,
137-172.

Diffe, W., & Hellman, M.E. (1976). New di-
rection in criptography. IEEE Transactions in
Information Theory, 36, 644-654.

Fidanova, S. (2002). ACO algorithm with addi-
tional reinforcement. In M. Dorigo, G. Di Caro,
& M. Sampels (Eds.), From ant colonies to
artificial ants (pp. 292-293) (LNCS 2463).
Berlin: Springer-Verlag.

Fidanova, S. (2002). Evolutionary algorithm for
multiple knapsack problem. In D. Corn (Eds.),
Proceedings of the PPSN VII Workshops,
Granada, Spain.

Fidanova, S. (2003). ACO algorithm for MKP
using various heuristic information. In I, Dimov,
I. Lirkov, S. Margenov, & Z. Zlatev (Eds.),
Numerical methods and applications (pp.
434-330) (LNCS 2542). Berlin: Springer-Verlag.

Fidanova, S. (2004). Convergence proof for a
Monte Carlo method for combinatorial optimi-
zation problems. In M. Bubak, G.D. Albada,
P.M.A. Sloot, & J. Dongarra (Eds.), Computa-
tional science (pp. 527-534) (LNCS 3039).
Berlin: Springer-Verlag.

Gambardella, M. L., Taillard, E. D., & Agazzi,
G. (1999). A multiple ant colony system for
vehicle routing problem with time windows. In
D. Corne, M. Dorigo, & F. Glover (Eds.), New
ideas in optimization (pp. 63-76). New York:
McGraw Hill.

Gambardella, M. L., Taillard, E. D., & Dorigo,
M. (1999). Ant colonies for the QAP. Journal
of the Operational Research Society, 50,
167-176.

Kochenberger, G., McCarl, G., & Wymann, F.
(1974). A heuristics for general integer pro-
gramming. Journal of Decision Science, 5,
34-44.

Leguizamon, G., & Michalevizc, Z. (1999). A
new version of ant system for subset problems.
Proceedings of the International Confer-
ence on Evolutionary Computations, Wash-
ington.

Lonnstedt, L. (1973). The use of operational
research in twelve companies quoted on the
Stockholm Stock Exchange. Journal of Op-
erational Research, 24, 535-545.

Matrello, S., & Toth, P. A. (1984). A mixture of
dynamic programming and branch-and-bound
for the subset-sum problem. Journal of Man-
agement Science, 30, 756-771.

Moyson, F., & Manderick, B. (1988). The col-
lective behavior of ants: An example of self-
organization in massive parallelization. Proceed-
ings of the AAAI Spring Symposium on Paral-
lel Models of Intelligence, Stanford, CA.

Sinha, A., & Zoltner, A. A. (1979). The mul-
tiple-choice knapsack problem. Journal of
Operational Research, 27, 503-515.

Stützle, T., & Hoos, H. H. (2000). Max-min ant
system. In M. Dorigo, T. Stützle, & G. Di Caro
(Eds.), Future generation computer systems
(Vol. 16, pp. 889-914).

Stützle, T., & Dorigo, M. (2002). A short
convergence proof for a class of ant colony
optimization algorithms. IEEE Transactions
on Evolutionary Computation, 6(4), 358-365.

