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1 Introduction

Combinatorial optimization is a branch of optimization. Its domain is optimization
problems which set of feasible solutions is discrete or can be reduced to a discrete one,
and the goal is to find the best possible solution. A combinatorial optimization prob-
lem consists of objective function, which needs to be minimized or maximized, and
constraints. Examples of optimization problems are Traveling Salesman Problem [6],
Vehicle Routing [7], Minimum Spanning Tree [5], Constrain Satisfaction [4], Knapsack
Problem [3], etc. They are NP-hard problems and in order to obtain solution close
to the optimality in reasonable time, metaheuristic methods are used. One of them
is Ant Colony Optimization (ACO) [2].

Real ants foraging for food lay down quantities of pheromone (chemical cues) marking
the path that they follow. An isolated ant moves essentially at random but an ant
encountering a previously laid pheromone will detect it and decide to follow it with
high probability and thereby reinforce it with a further quantity of pheromone. The
repetition of the above mechanism represents the auto-catalytic behavior of a real ant
colony where the more the ants follow a trail, the more attractive that trail becomes.
The ACO algorithm uses a colony of artificial ants that behave as cooperative agents
in a mathematical space where they are allowed to search and reinforce pathways
(solutions) in order to find the optimal ones. The problem is represented by graph
and the ants walk on the graph to construct solutions. The solutions are represented
by paths in the graph. After the initialization of the pheromone trails, the ants
construct feasible solutions, starting from random nodes, and then the pheromone
trails are updated. At each step the ants compute a set of feasible moves and select the
best one (according to some probabilistic rules) to continue the rest of the tour. The
structure of the ACO algorithm is shown by the pseudocode below. The transition
probability p; j, to choose the node j when the current node is ¢, is based on the
heuristic information 7; ; and the pheromone trail level 7; ; of the move, where 7, j =
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where Unused is the set of unused nodes of the graph.

The higher the value of the pheromone and the heuristic information, the more prof-
itable it is to select this move and resume the search. In the beginning, the initial
pheromone level is set to a small positive constant value 7g; later, the ants update
this value after completing the construction stage. ACO algorithms adopt different
criteria to update the pheromone level.
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Ant Colony Optimization
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do
for k=0 to number of ants
ant k choses start node;
while solution is not constructed do
ant k selects higher probability node;
end while
end for
Update-pheromone-trails;
end while

Figure 1: Pseudocode for ACO
The pheromone trail update rule is given by:

Tij < PTij + AT j,

where p models evaporation in the nature and Ar7; ; is new added pheromone which
is proportional to the quality of the solution.

Our novelty is to use Intuitionistic Fuzzy Estimations (IFE see [1]) of start nodes with
respect to the quality of the solution and thus to better menage the search process.
We offer various start strategies and their combinations.

2 Start Strategies

The known ACO algorithms create a solution starting from random node. But for
some problems, especially subset problems, it is important from which node the search
process starts. For example if an ant starts from node which does not belong to the
optimal solution, probability to construct it is zero. Therefore we offer several start
strategies.

Let the graph of the problem has m nodes. We divide the set of nodes on IV subsets.
There are different ways for dividing. Normally, the graph are randomly enumerated.



An example for creating of the subset, without lost of generality, is: the node number
one is in the first subset, the node number two in the second subset, etc. the node
number N is in the N — th subset, the node number N + 1 is in the first subset, etc.
Thus the number of the nodes in the separate subsets are almost equal. We introduce
estimations D, (i) and FE;(i) of the node subsets, where ¢ > 2 is the number of the
current iteration and D;(i) and E;(i) are weight coeflicients of j — th node subset
(1 <j < N), which we calculate by the following formulas:
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where ¢ > 1 is the current process iteration and for each j (1 <j < N):
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and f; 4 is the number of the solutions among the best A%, and g, p is the number
of the solutions among the worst B%, where A+ B < 100, 7 > 1 and

N
E n; =n,
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where n; (1 < j < N) is the number of solutions obtained by ants starting from
nodes subset j. Initial values of the weight coefficients are: D;(1) =1 and E;(1) = 0.
Obviously, F;(i), Gj(4), Fj(i) and G;(i) € [0,1], i.e., they are IFEs.

We try to use the experience of the ants from previous iteration to choose the better
starting node. Other authors use this experience only by the pheromone, when the
ants construct the solutions. Let us fix threshold E for E;(i) and D for D;(i), than
we construct several strategies to choose start nod for every ant, the threshold E
increase every iteration with 1/i where i is the number of the current iteration:

1 If E;(i) > E then the subset j is forbidden for current iteration and we choose
the starting node randomly from {j |j is not forbidden};

2 If E;(i) > E then the subset j is forbidden for current simulation and we choose
the starting node randomly from {j |j is not forbidden};

3 If E;(i) > E+ then the subset j is forbidden for K, consecutive iterations and
we choose the starting node randomly from {j |j is not forbidden};

4 If E > E;(i) and D > D;(i) for Ko consecutive iterations, then the subset j
is forbidden for current simulation and we choose the starting node randomly
from {j | is not forbidden};



5 Let r; € [0.5,1) is a random number. Let ro € [0,1] is a random number. If
ro > 11 we randomly choose node from subset {j |D;(i) > D}, otherwise we
randomly chose a node from the not forbidden subsets, r; is chosen and fixed
at the beginning.

6 Let r; € [0.5,1) is a random number. Let ro € [0,1] is a random number.
If 7o > r we randomly choose node from subset {j |D;(i) > D}, otherwise
we randomly chose a node from the not forbidden subsets, r1 is chosen at the
beginning and increase with rs every iteration.

Where 0 < K; <”number of iterations” is a parameter. If K; = 0, than strategy 3 is
equal to the random choose of the start node. If K; = 1, than strategy 3 is equal to
the strategy 1. If K; =”maximal number of iterations”, than strategy 3 is equal to
the strategy 2.

We can use more than one strategy for choosing the start node, but there are strate-
gies which can not be combined. We distribute the strategies into three sets: St1 =
{strategyl, strategy?2, strategy3}, St2 = {strategyd} and St3 = {strategyd, strategy6}.
The strategies from same set can not be used at once. Thus we can use strategy from
one set or combine it with strategies from other sets. Exemplary combinations are
(strategyl), (strategy2; strategyb), (strategy3; strategy4; strategy6).

In this paper we address the modelling of the process of ant colony optimization
method by using fuzzy estimations, combining six start strategies. So, the start node
of each ant depends of the goodness of the respective region. In a future we will focus
on parameter settings which manage the starting procedure. We will investigate on
influence of the parameters to algorithm performance.
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